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Abstract
Three-dimensional (3D) bioprinting is a computer-controlled technology that 
combines biological factors and bioinks to print an accurate 3D structure in a layer-
by-layer fashion. 3D bioprinting is a new tissue engineering technology based on 
rapid prototyping and additive manufacturing technology, combined with various 
disciplines. In addition to the problems in in vitro culture process, the bioprinting 
procedure is also afflicted with a few issues: (1) difficulty in looking for the appropriate 
bioink to match the printing parameters to reduce cell damage and mortality; 
and (2) difficulty in improving the printing accuracy in the printing process. Data-
driven machine learning algorithms with powerful predictive capabilities have 
natural advantages in behavior prediction and new model exploration. Combining 
machine learning algorithms with 3D bioprinting helps to find more efficient bioinks, 
determine printing parameters, and detect defects in the printing process. This 
paper introduces several machine learning algorithms in detail, summarizes the 
role of machine learning in additive manufacturing applications, and reviews the 
research progress of the combination of 3D bioprinting and machine learning in 
recent years, especially the improvement of bioink generation, the optimization of 
printing parameter, and the detection of printing defect.

Keywords: Bioprinting; Additive manufacturing; K-nearest neighbor;  
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1. Introduction
Three-dimensional (3D) printing technology, which is also called additive 
manufacturing, is a branch of rapid prototyping technology. It is a manufacturing 
technology that accumulates materials layer by layer and solidifies them to obtain solid 
finished products[1,2]. The 3D model obtained by computer rendering or scanning is first 
discretized into a stack of parallel layers by slicing software. Then, through the numerical 
control system, spraying, extrusion, hot melting, laser, and other methods, the filament-
like, liquid or powdered plastic, ceramic, metal, and other materials are positioned, 
scanned, and stacked layer by layer. Finally, the printed solid product is obtained[3]. 
In recent years, 3D printing technology has attracted much attention because of its 
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theoretical versatility, diverse materials, and abilities of 
accurately reproduce complex models. The application of 
3D printing technology has also penetrated from the initial 
manufacturing industry to various industries, including 
the biomedical field, especially in fabricating human 
tissues and organs, showing great value and application 
prospects[4].

3D bioprinting provides precise control for the 
manufacture of scaffolds with natural extracellular matrix 
properties. Common types of printing include inkjet 
bioprinting, laser-assisted bioprinting, extrusion-based 
bioprinting, and scaffold-free bioprinting[5] (Figure 1). 
The bioinks of inkjet bioprinting are mainly composed of 
biological materials and cells. By changing the printer’s 
parameters, droplets of different sizes can be intermittently 
sprayed from the nozzle. The method could guarantee high 
print speed and outstanding cell activity while ensuring 
lower cost. Laser-assisted bioprinting mainly offers the 
driving force for the bioink printing by focusing the laser 
on the printer substrate[6]. Compared with other printing 
technologies, laser-assisted bioprinting can guarantee ideal 
cell viability with a survival rate of up to 95%. Extrusion-
based 3D bioprinting is currently the most widely utilized 
technology in the scope of biological manufacturing. It 

mainly uses the air stress or mechanical driving force of 
the piston to make the composite bioink of biomaterials, 
cells or growth factors continuously extruded from the 
needle nozzle in the form of filaments. The 3D lithography 
printing system prints a 3D structure by laser, ultraviolet or 
visible light, or applies selective light and laser light curing 
of biological materials to print 3D structures[7,8].

For 3D bioprinting, the final printing effect is 
determined by a variety of printing parameters. For 
example, parameters such as the speed set by the nozzle, 
the pressure, and the temperature used for extruding 
materials have a direct impact on cell activities. To secure 
the survival of the cells in the printed structure, it is usually 
necessary to mix the cells with the bioink before printing[9]. 
Bioink is used as a carrier in the field of 3D bioprinting. 
It is traditionally applied to wrap cells in it, to ensure the 
average growth and survival of the cells. Bioinks provide 
cells with a culture environment similar to an extracellular 
matrix, so they are often used as cell carriers in 3D 
bioprinting. Bioink is mainly divided into natural materials 
and synthetic materials. Biological manufacturing requires 
that bioink has good biological properties and printing 
performance. Therefore, it needs to be selected according 
to the specific manufacturing needs of bioink[10].

Figure 1. Type of 3D bioprinting. (A) Extrusion-based bioprinting. (B) Scaffold-free bioprinting. (C) Inkjet bioprinting. (D) Laser-assisted bioprinting. 
Reprinted from ref. [5] under the terms of the Creative Commons CC-BY license.
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Although 3D bioprinting has the potential to be 
applied in the regeneration strategy, many problems 
concerning the printing process and the materials that can 
be used for bioprinting are waiting to be overcome[11,12]. 
The challenges of the printing procedure include printing 
accuracy, printing speed, and compatibility of the printing 
procedures with cells. The most significant limitation of 
bioprinting technology is that the printed tissue structures 
do not resemble the natural tissues and organs. Most 
of the time, the current bioprinting methods can only 
achieve structural design and fabrication but the fabricated 
structures can hardly function like how their natural 
counterparts do.

After analyzing relevant features in existing data, 
machine learning can be employed to process new data. 
Machine learning, with its rich experience, is more adept 
at dealing with new problems[13]. In recent years, there 
have been a lot of investigations targeting at combining 
machine learning with 3D bioprinting, and favorable 
outcomes have been obtained[14,15]. In this paper, the 
recent work about 3D bioprinting in bioink preparation, 
parameter optimization, and defect detection through 
machine learning are summarized. The paper is organized 
as follows: First, the applications of machine learning in 
additive manufacturing are listed, shedding the light on 
the application of machine learning technology in 3D 
bioprinting. Then, the basic principles of machine learning 
algorithms such as K-nearest neighbor, back propagation 
neural network, convolutional neural network, long short-

time memory, and integrated learning are shown. Next, 
the successful applications of machine learning technology 
in bioink preparation, printing parameter optimization, 
and defect detection are summarized in the subsequent 
sections.

2. Additive manufacturing with machine 
learning
3D bioprinting is a new tissue engineering technology 
based on rapid prototyping and additive manufacturing 
technology, mostly involving multiple disciplines. Additive 
manufacturing is the general name of a method used to 
construct 3D object from computer-aided design model, 
while bioprinting is a branch of this method that is 
predominantly used in fabricating biological constructs[16,17] 
(Figure 2). By reviewing and summarizing the instances of 
the combination of additive manufacturing and machine 
learning, it is helpful to understand the advantages of the 
combination of machine learning and bioprinting more 
profoundly and further expand the application of machine 
learning in bioprinting[18,19].

At present, the product development of additive 
manufacturing is not mature enough, and the design rules 
also need more in-depth research. Ko et al.[20] designed 
a knowledge reasoning structure with a decision tree 
algorithm. The dataset for model training was derived from 
the additive manufacturing case of laser powder fusion. The 
trained model was verified on the test data of the National 

Figure 2. An error compensation method used in additive manufacturing. Reprinted from ref. [17] under the terms of the Creative Commons CC-BY 
license.
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Institute of Standards and Measurement Technology, and 
the results demonstrated that it had great significance. Li 
et al.[21] surveyed a scheme to uncover the relationship 
between the design method of additive manufacturing and 
the roughness of the final product. Random forest, decision 
tree, and support vector regression algorithms were 
integrated into the scheme. In the actual printing case, the 
roughness data of the printed product was collected based on 
multiple sensors, and a dataset was constituted for training 
the ensemble learning algorithm. The results verified 
that the scheme could reveal the relationship between 
bioprinting design and final print roughness. Zhu et al.[22] 
presented a mode to obtain the shape deviation between 
the theoretical design of printing and the actual prints. The 
mode included the transformation perspective algorithm 
and Gaussian process algorithm. The transformation 
perspective algorithm built the theory model, while the 
Gaussian process algorithm learned shape deviation data 
and predicted shape deviation. The data in the dataset 
were obtained by measuring the printed product with a 3D 
laser scanner. Explanatory cases demonstrated the effect of 
the mode. To obtain better results, the group considered 
adding more parameters to the framework. In order to 
assess the print performance corresponding to bioprinting 
design, Jiang et al.[23] conducted in-depth research based on 
deep neural network algorithms. Machine learning could 
find the relationship between bioprinting design space and 
performance space, and deep neural network algorithms 
had advantages in input–output relationship mapping. The 
simulated data between stress and strain responses formed 
the dataset for training a deep neural network. The case of 
ankle scaffold bioprinting indicated that the approach was 
practical.

Machine learning also plays a vital role in the 
defect detection of additive manufacturing. Ghayoomi 
Mohammadi et al.[24] applied various machine learning 
algorithms to achieve real-time defect detection during 
laser powder additive printing. The data processed by the 
machine learning algorithm and the training data in the 
dataset were both generated by the continuous monitoring 
of the printing by the acoustic emission sensor. The 
k-means clustering technique marked the acoustic data, 
and the neural network improved the precision of the data. 
The principal component analysis was performed to detect 
defect in real time, and the Gaussian mixture model was 
conducted to determine defect. The example of tool steel 
printing proved that the method was reliable. Caggiano 
et al.[25] combined machine learning with image processing 
to detect printing defects online. The machine learning 
algorithm used in the procedure was a deep convolutional 
neural network, and the processed image came from the 
layered image in the laser melting process. The experiment 

proved that the technology was effective and provided 
a strong guarantee for ensuring the quality of printed 
products. Gobert et al.[26] combined the linear support 
vector machine algorithm with the high-resolution layered 
image to detect defects during the printing period. In 
the printing process, multiple high-definition photos 
were taken by high-resolution digital single-lens reflex 
cameras for each layer to construct a dataset. During the 
printing process, each layer of the printed product was 
continuously imaged by computed tomography, and the 
image was processed with the trained model to detect 
problems in time. The cross-validation implementation 
confirmed that the accuracy of the method could reach at 
least 80%. Li et al.[27] applied a variety of machine learning 
algorithms to detect geometric faults in the printing 
process. The data in the dataset were not the data in the 
objective case, but the artificially synthesized 3D defect 
data, to save the training time and related costs. K-nearest 
neighbor, bagging of trees, gradient boosting, random 
forest, and support vector machine algorithms were all 
employed in the research. Experimental data showed that 
the two algorithms, bagging of trees and random forest, 
were the best.

In line with the above-mentioned instances, machine 
learning algorithms have achieved significant advances 
in the design and defect detection in the field of 
additive manufacturing. As a special branch of additive 
manufacturing, 3D bioprinting is likely to encounter 
similar problems in product design and defect detection. 
Thus, a summary regarding the advances of machine 
learning in additive manufacturing can provide a very 
good guidance on the design and defect detection of 
3D-bioprinted products. A timely review in this regard can 
shed light on the solutions to the existing problems in 3D 
bioprinting, and promote the expansion of the utilization 
of machine learning in 3D bioprinting as well as the rapid 
development of 3D bioprinting. Of course, there are many 
applications of machine learning in additive manufacturing 
beyond product design and defect detection.

3. Theory of several machine learning 
algorithms
3.1. K-nearest neighbor
K-nearest neighbor method is a supervised learning 
algorithm in machine learning. Each data in the dataset 
should be labeled in advance. The k-nearest neighbor 
algorithm is one of the most concise algorithms in the 
machine learning field, which can be applied in both data 
classification and data regression[28]. The algorithm needs 
to store all the data, traversing all the data each time a 
prediction is made. At the same time, the algorithm does 
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little or no processing of the data. The k-nearest neighbor 
algorithm has no explicit learning or training procedure, 
which belongs to lazy learning. When there is little or no 
prior information about data construction, the k-nearest 
neighbor algorithm is a good option[29].

The method owns a straightforward principle: when 
test instances are classified, the training dataset is scanned 
first to find k training samples that are most similar to the 
test dataset. Then, the type of the test instance is evaluated 
by voting according to the category of this sample, or 
weighted voting will be conducted on the correlation 
between each instance and the test pieces. If the output is 
required in the form of the probability of the test instance 
corresponding to each type, it can be estimated by the 
distribution of the number of instances with different 
categories in each dataset[30].

3.1.1. Algorithm implementation process
After the training and test dataset are ready, the k-nearest 
neighbor algorithm classifies each piece of the test dataset 
according to the following steps. First, the space between the 
test instance and each training piece requires a calculation. 
Second, the k-nearest neighbor algorithm will sort all the 
distances according to the increasing correspondence of 
distance. Third, k points with the shortest distance are 
chosen. Then, the frequency of the k points in the category 
is identified. Finally, the class with the largest frequency is 
returned as the predictive classification of the test data[31].

3.1.2. Key steps of k-nearest neighbor algorithm
The three critical steps in the k-nearest neighbor algorithm 
are the selection of the k value, the calculation of distance, 
and the formulation of the classification strategy.

A small k value denotes that the training data, which 
is almost equal to the input data, plays a role in the last 
estimation category, but the overfitting issue could happen 
easily. While the value of k is enormous, the advantage 
is that the prediction error rate can be suppressed. But 
the drawback is that the approximate error increases[32] 
(Figure 3), and then the training instance which is far away 
from the test data will also affect the estimation, resulting 
in an error prediction. In practical application, a smaller 
value is generally chosen for the k value, and the best 
k value is usually chosen by the cross-validation method. 
When the number of training instances approaches infinity 
and k = 1, the error rate is at most twice the Bayesian error 
rate, and if the k value also approaches almost infinity, the 
error rate approaches the Bayesian error rate[33].

There are several ways to compute the space between the 
input sample and each training point. The most common 
methods are Euclidean and Manhattan[34]. The n-dimensional 
vectors x and y are represented separately from the data to be 
tested and a point in the sample set. The Euclidean distance 
calculates the square root of the sum of square variances 
between the input sample and the pieces in the training set:

x yi i�� ��� 2

1i

n  (I)

The Manhattan distance is the sum of the absolute 
difference between the test sample and the points in the 
training set:

x yi ii

n
�

�� 1
  (II)

Before the calculation, the value of each feature should 
be normalized, which can help prevent the weights of 

Figure 3. Schematic figure of the k-nearest neighbor algorithm. Reprinted from ref. [32] under the terms of the Creative Commons CC-BY license.
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attributes with enormous initial values from being larger 
than those with smaller initial values.

The classification judgment rules in the algorithm 
are often majority voting[35]. The most class value of the 
k nearest training pieces of the input data determines its 
category. In the regression task, the average value of k 
nearest neighbors can be used as the predictive value.

3.2. Artificial neural network
Compared with traditional machine learning algorithms 
such as the k-nearest neighbor, a neural network has better 
generalization ability, and it can automatically extract the 
characteristics of sample data for classification, regression, 
and nonlinear operations. The simplest artificial neural 
network consists of three layers, an input layer, a hidden 
layer, and an output layer. The data comes in from the 
input layer, and after being processed by the hidden layer, 
the output layer outputs the final result[36]. The most critical 
section is the hidden layer, where most of the data feature 
extraction and generalization work is done. An artificial 
neural network containing multiple hidden layers is often 
called a deep neural network, and the corresponding 
learning process is called deep learning[37].

The data sequence from the input layer through the 
hidden layer and finally output in the output layer is 
considered to be positive. Such a neural network model 
is called a feedforward neural network. In the process 
of feedforward neural network model training, the 
parameters of each neuron are constantly modified until 
the final model can better fit the data in the training 
set. Feedforward neural network usually uses the back 
propagation algorithm based on gradient descent to update 
neuron parameters[38].

3.2.1. Feedforward neural network
The feedforward neural network is a classical neural 
network model, which is also called multilayer perceptron. 
Feedforward refers to the one-way propagation of 
parameters from the input end to the output end. The 
model itself and the output of the model do not form a 
directed ring[39]. There is no feedback connection, and the 
information always flows to the output end. When there is 
a feedback connection in the network, the model does not 
belong to the feedforward neural networks. In the forward 
propagation stage, the input feature vector is processed, 
and the output value of each node is calculated. If there is a 
deviation between the real value of the output layer and the 
expected value, the error is propagated back[40].

3.2.2. Back propagation algorithm
A back propagation refers to the order in which neurons 
update parameters first from the output layer, then from 
the hidden layer, and finally from the input layer, which is 

the opposite direction of the data propagation in the neural 
network model. The essence of neural network training is 
to adjust the parameters of each layer iteratively according 
to the error between the actual output and the expected 
output[41]. In the training stage, the gradient of the loss 
function is calculated layer by layer through the back 
propagation algorithm, the output error of each layer in the 
network is fed back to the upper layer through the iterative 
method, and then the weight of the network is updated 
layer by layer, so that the theoretical value is closer to the 
sample value. After several iterations, the output error of 
the objective function is reduced to the minimum value, 
and the trained model is obtained[42].

Gradient refers to the expression that expresses the 
partial derivative of a parameter in a function of multiple 
variables in the form of a vector. In the geometric sense, 
it represents the place where the function changes and 
increases the most. The gradient descent algorithm is a 
search-based optimization method, which is a common 
method to minimize the loss function. Its mathematical 
theory is the chain derivative rule of compound function. 
The gradient descent algorithm mainly obtains the gradient 
of the objective function for all variables in the process of 
training the neural network. In the operation of the neural 
network gradient descent, the weight is updated through 
the negative gradient direction, and the effective optimal 
way of the objective function can be obtained[43].

There are two commonly used gradient descent 
algorithms: batch gradient descent algorithm and random 
gradient descent algorithm. The difference between them 
mainly lies in the number of samples used to obtain gradient 
and update parameters. The former uses all samples, while 
the latter only selects one sample at random. Random 
gradient descent algorithm has advantages in training 
speed because only one sample is randomly selected to 
update parameters, while the batch gradient descent 
algorithm has more advantages in convergence speed and 
can converge to the local optimal point faster[44].

3.3. Convolutional neural network
The simple network structure of the artificial neural network 
model is the reason for the loss of spatial information in 
vector space, the difficulty of multi-parameter training, 
and the problems of network overfitting. However, a 
convolutional neural network can better solve the defects 
of artificial neural networks. Its main characteristics are 
local connection and parameter sharing, and it is easier to 
optimize the network by reducing the number of weights, 
thus reducing the risk of model overfitting. Convolutional 
neural networks have a significant improvement in large 
image processing performance compared with artificial 
neural networks[45].
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The convolutional neural network is a kind of 
feedforward neural network that contains convolution 
and pooling computation as well as a depth structure. It 
is one of the classical algorithms of deep learning. The 
convolutional neural network framework is generally 
composed of the input layer, convolutional layer, pooling 
layer, fully connected layer, and output layer[46]. The depth 
of the network depends on the number of the convolutional 
layer, pooling layer, and fully connected layers, in which 
the order of pooling layer and convolutional layer can be 
changed. In the traditional neural network, the connections 
between neurons at each layer are fully connected, while 
in the convolutional neural network, the connections 
between neurons on each feature map are only connected 
with neurons in a small region of the upper layer. The 
hidden layer is alternately composed of convolutional 
layer and pooling layer. Features are extracted through 
convolution operation, and then more abstract features are 
obtained through pooling operation. Finally, the obtained 
feature map is input to the fully connected layer, and the 
result of the last fully connected layer operation is input to 
the output layer[47].

3.3.1. Convolution layer
The convolutional layer is a basic component of the 
convolutional neural network architecture. It mainly 
performs shallow feature extraction on the data 
transmitted to the network, such as image edge, texture, 
shape, and other features. Feature extraction usually refers 
to the combination of linear and nonlinear calculations, 
i.e., convolution operation and activation function. The 
convolutional layer has two important properties. The 
neurons between the convolutional layers are connected 
to the local receptive field of the previous layer employing 
local connection and weight sharing. Compared with the 
fully connected network, the local connection mode can 
greatly reduce the number of network training parameters 
and speed up the training speed. Local connection means 
that neurons are only associated with a small number of 
pixels in the input image. For image data, the correlation 
between adjacent pixels is greater than that between pixels 
far apart, i.e., the local correlation of the image. A local 
connection aims to extract the local features of the image 
by using this feature and combine it into the global features 
of the image at the deep level of the network. Although the 
network using local connection will reduce the parameters, 
the order of magnitude of the parameters is still large, so 
the concept of weight sharing is proposed to further reduce 
the network training parameters[48].

3.3.2. Pooling layer
The pooling layer is associated with the convolutional layer, 
and the feature maps output by the convolutional layer 

needs to be processed by pooling. The pooling function will 
carry out statistical selection and information filtering on 
the input features to adjust the output data. Pooling layers 
select the pooling area for pooling operations. Common 
operations include mean pooling, maximum pooling, and 
mixed pooling. The use of pooling reduces the size of the 
feature data, as well as the size of the input data in the next 
layer, improves the efficiency of data statistics, and reduces 
the quantity storage space[49].

3.3.3. Fully connected layer
Fully connected layers in convolutional neural networks 
act as “classifiers,” which can map the learned features 
and distributed representations to the label space. It can 
be simply understood as combining the features extracted 
from the previous layers into a single output value, which 
can reduce the influence of feature location on classification. 
Convolutional neural networks connect the data to one or 
more fully connected layers after passing through several 
convolutional and pooling layers. Each neuron in a fully 
connected layer is fully connected to all neurons in the 
previous layer for output. The local information with class 
distinguishing features in the convolutional layer and the 
pooling layer will be integrated by the fully connected 
layer, and the output value of the last fully connected layer 
is the corresponding probability[50].

3.4. Long short-term memory
A long short-term memory network is a modified 
recurrent neural network, which can remember long- and 
short-term information. It can not only deal with the long 
distance dependence problem that the recurrent neural 
network cannot manage, but also solve common issues 
such as gradient explosion or gradient disappearance in 
the neural network[51]. Therefore, it is very outstanding 
in handling sequence data. Long short-term memory 
networks are suitable for treating and evaluating critical 
information with long distance and delays in time series. 
A long short-term memory network is a variant of the 
recurrent neural network, whose core concepts are cell 
state and gate mechanism[52] (Figure 4).

3.4.1. Cell state
The cell state corresponds to the way information is being 
conveyed, so that information can be transported in the 
sequence. It can be regarded as the memory of the network. 
In theory, the cell state can transfer the related knowledge 
during the sequence handling. As a result, the information 
in the earlier time stage can even be carried into the cells 
during the later time stage, which conquers the impact of 
short-term memory[53].

The cell state of the previous layer is multiplied by the 
forgetting vector point by point. If it is multiplied by a 
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number that is almost zero, this information needs to be 
abandoned in the new cell state. Then, the value is added 
point by point with the output result of the input gate to 
update the latest information determined by the neural 
network to the cell state. Thus, the updated cell state is 
obtained[54].

3.4.2. Gate mechanism
The reason that long short-term memory can deal with 
the long-term dependence issue of the recurrent neural 
network is that long short-term memory integrates a gate 
mechanism to control the flow and loss of attributes[55]. The 
addition and removal of information are controlled by a 
gate mechanism that learns what information should be 
saved or forgotten during the training procedure[56].

Forgetting gate. After new information is input, if the 
architecture will forget the old information, the forgetting 
gate is used to accomplish it. The forgetting gate is a vital 
element of the long short-term memory network section, 
which can control what information to retain and what 
information to forget, and in some way avoid the issue of 
gradient vanishing and gradient explosion caused by the 
reverse propagation of gradient over time. The forgetting 
gate identifies what information the long short-term 
memory networks discard from the cellular state of the 
previous moment. The gate reads the relevant information 

and maps it via a function to a value between zero and 
one, which is then multiplied by the cell state to determine 
what information to discard. When its value is one, the 
information is completely kept, and when the value is zero, 
the information is completely discarded[57].

Input gate. Input gate is utilized to revise cell state. 
First, the information about the earlier hidden status and 
the existing input is converted to the sigmoid function. 
The value will be adjusted into the range of zero to one 
to determine what information to modify. Zero means not 
essential, and one means crucial. Second, the information 
of the preceding hidden state and the current input 
information is transmitted to the tanh function to obtain a 
new candidate value vector. Finally, the output value of the 
sigmoid function is multiplied by the output value of the 
tanh function. The output result of the sigmoid function 
will identify which information in the output result of the 
tanh function is significant and needs to be retained[58,59].

Output gate. Output gate is employed to predict the 
output of the subsequent hidden state, which includes 
the information that has been input earlier. First, we pass 
the previous hidden state and the current input to the 
sigmoid function, and then deliver the updated cell state to 
the tanh function. Finally, the result of the tanh function 
is multiplied by the production of the sigmoid function 

Figure 4. Structure of the long short-term memory algorithm. Reprinted from ref. [52] under the terms of the Creative Commons CC-BY license.
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to get the information the hidden state should own. The 
hidden status is then taken as the result of the current cell, 
and the latest cell state and the refreshed hidden state are 
transferred to the subsequent time stage[60].

3.5. Ensemble learning
Ensemble learning is the procedure of training several 
base machine learning frameworks and combining their 
results[61]. Based on different models, the organization is 
committed to building an excellent prediction framework. 
The combination of the machine learning frameworks can 
enhance the stability of the overall scheme and acquire more 
precise estimation results. Ensemble learning models are 
usually more reliable than individual models[62] (Figure 5).

 3.5.1. Combination model of ensemble learning
Ensemble learning combines several weak classifiers 
through a specific strategy to produce a robust classifier, 
and the classification precision of the strong classifier is 
much better than each weak classifier[63]. The combination 
strategies of ensemble learning are divided into three types:

Bagging. Bagging methods improve the independence 
of each base model by randomly constructing training 
samples and selecting features. Due to the different training 
data, the obtained learner will be different. However, if 
each subset of the sample is entirely different, each base 
learner can only train a small part of the data and cannot 
carry out effective learning. Therefore, sampling subsets 
are often obtained by overlapping each other[64].

Boosting. The essential difference between boosting 
and bagging is the diverse way they treat the base models. 
The boosting method selects the elite through continuous 
testing and screening, and then gives the elite more voting 
rights[65]. The poor performance of the basic model provides 
fewer voting right, and then synthesizes the voting of all 
models to get the final result.

Stacking. There are two main differences between 
bagging, boosting, and stacking. First, stacking generally 

regards heterogeneous vulnerable learners, where various 
learning algorithms are combined. However, bagging and 
boosting commonly regard homogeneous weak learners. 
Secondly, the stacking law habitually connects the basic 
model with the met model, while bagging and boosting 
incorporate the weak learner based on the deterministic 
algorithm[66].

3.5.2. Result generation of ensemble learning
For different prediction results that multiple weak 
classifiers produce, ensemble learning usually uses the 
following three methods to make the final result.

Average method. For the regression evaluation problem 
of numerical classes, the typically applied integration 
strategy is averaging. It averages the outputs of several 
weak classifiers to calculate the last result. The most 
straightforward average is the arithmetic average. In 
addition, we can multiply each result by a weight to 
calculate weighted average[67,68].

Voting method. The simplest voting algorithm is the 
relative majority voting method, and the result that appears 
most often is the last category. If several categories obtain 
the highest vote simultaneously, one is randomly chosen as 
the final result. The slightly more complex voting solution 
is the absolute majority voting way, i.e., more than half of 
the votes. Based on the relative majority voting algorithm, 
not only the highest number of votes is needed, but the 
highest number of votes should also exceed half at the 
same time. Otherwise, the estimation will be rejected[69]. 
A more sophisticated approach is the weighted voting 
way. Similar to the weighted average method, the number 
of classified votes for each weak learner is multiplied by 
a weight, and the weighted votes of each type are finally 
summed. The class corresponding to the maximum value 
is the final result.

Learning method. The last two methods average or vote 
on the outputs of weak learners, which are sufficiently 
straightforward. But they may have a significant learning 

Figure 5. An ensemble learning framework. Reprinted from ref. [62] under the terms of the Creative Commons CC-BY license.
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error, and the learning method is designed. The learning 
method is an easy logical processing of a layer of learners, 
instead of the results of weak learners. The results of 
training weak learners are input, and a learner is retrained 
to obtain the last output. In that case, we call the weak 
learner the primary learner, and the learner used for 
combination is called the secondary learner. For the test 
sample, the primary learner is first predicted to gain the 
input data of the secondary learner. Then, the secondary 
learner is predicted again to obtain the final prediction 
result[70].

3.6. Comparison of the machine learning methods
The traditional machine learning algorithm represented 
by K-nearest neighbor is generally considered shallow 
learning, and the features of the training data must be 
specified manually in the training process. Its feature 
extraction ability of sample data and model generalization 
is relatively weak, and it is usually applied in classification 
and linear regression problems. Machine learning 
algorithms represented by neural networks are considered 
deep learning, which can automatically extract features 
from training data without human intervention. Therefore, 
deep learning has better feature extraction ability and model 
generalization ability as well as good analysis effect on high-
dimensional data, and can deal with nonlinear problems. 
However, the deep learning model has poor explanatory 
ability, involves many parameters, and consumes a lot of 
resources in the training process. However, the traditional 
machine learning algorithm has a complete mathematical 
theory and strong interpretability. Moreover, the training 
of traditional machine learning algorithm models require 
fewer resources[71].

Multi-layer perceptron, convolutional neural networks, 
and long short-term memory neural networks all belong 
to deep learning. When there are too many layers in the 
multi-layer perceptron model, there will be too many 
model parameters, resulting in high training costs and 
overfitting problems. Convolutional neural network 
solves these problems by using local connection and 
parameter sharing to some extent. However, the data in the 
convolutional neural network can only travel forward and 
have no memory of the data that have been processed. Long 
short-term memory neural network not only has memory 
function, but also can deal with long-term dependence 
problem. But the structure of long short-term memory 
neural network is too complex[72].

Regardless of how a single machine learning model is 
trained and optimized, it always has some shortcomings 
that are difficult to solve. Ensemble learning can combine 
a variety of machine learning algorithms to get a better 
model to obtain better predictive performance. The 

integrated learning algorithm itself is not a single machine 
learning algorithm, but through the construction and 
combination of multiple machine learning machines to 
complete the learning task, it has a high accuracy in the 
machine learning algorithm, with the shortcomings being 
the complicated training process of the scheme and the low 
efficiency[67].

4. Looking for more suitable bioinks
Bioprinted products are composed of bioinks that are 
deposited layer by layer, and therefore, the performance 
of bioinks has a significant impact on the final bioprinted 
products. Due to the variety of bioprinting technologies, 
it is difficult to find a unified standard to prepare bioink. 
Advanced technology and high level of operators’ 
experience are often required to manually prepare bioink, 
and the quality of final product is not guaranteed. The 
machine learning algorithm, combined with its powerful 
feature analysis ability, gives a perfect solution for the 
preparation of bioink through the configuration of bioink 
in the existing cases and addressing the inconsistent quality 
of the final printed product.

The cell activity in bioink has a very important influence 
on the final printing effect. However, the low activity of cells 
in extrusion-based bioprinting limits its application. Reina-
Romo et al.[73] attempted to quantitatively analyze the effects 
of cells in bioink based on machine learning algorithms. 
They studied the force of three hydrogels when passing 
through two nozzles of different shapes. The collected 
data were analyzed by a machine learning algorithm called 
Gaussian process. The algorithm was not only suitable 
for estimating the importance of each parameter, but 
also could calculate the influence of changing parameters 
on the final printing results. The dataset was derived 
from the existing accurate data, and its adaptability was 
verified by random partition. The effect of the framework 
was verified by comparing the calculated results with 
the current experimental data. In order to maintain cell 
activity and withstand the pressure in the printing process, 
Allencherry et al.[74] studied the configure method of 
hydrogel and gelatin bath in extrusion-based bioprinting. 
A convolutional neural network was employed to identify 
the quality of the final prints. The objects processed by the 
neural network and the data in the dataset were all images 
obtained by optical microscope scanning, with a total of 
108 images in the dataset. A statistical analysis reported 
that the accuracy of the model could reach 93.51%. Xu 
et al.[75] introduced a framework containing four machine 
learning algorithms to determine viability of cells in 
bioink in stereolithography-based bioprinting. The four 
algorithms are random forest, k-nearest neighbor, ridge 
regression, and neural networks. They first continuously 
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changed the experimental parameters to test the viability of 
cells in the bioink to obtain the result data. These data were 
randomly divided into a training set and a validation set 
and used to train machine learning algorithms. Based on 
the framework, they validated the influence mechanism of 
ultraviolet intensity, exposure time, and other parameters 
on cell activity in bioink.

Based on ensemble learning algorithms, Wu et al.[76] 
predicted the speed and volume of droplets formed 
by bioink during inkjet bioprinting. Their ensemble 
learning system included machine learning algorithms 
such as support vector machine, regularized least squares 
regression, and random forest. The dataset was derived 
from images of the droplet formation process taken by 
the imaging system. The experimental data confirmed 
that the model could accurately predict the speed and 

volume of droplets formed by bioink. In order to obtain 
bioprinted products that meet both mechanical properties 
and biocompatibility, Lee et al.[77] studied the method of 
generating bioinks through machine learning algorithms. 
They first analyzed the relationship between rheology 
and printability using the relative minimum general 
generalization algorithm. Then, they mined the results 
based on the multiple regression algorithm to obtain the 
formulation of bioink. They determined that high elastic 
modulus could improve shape fidelity, and it could be 
extruded below the critical yield stress. Subsequently, they 
used hydrogels to generate a 3D-bioprinted product and 
confirmed the conclusion.

By 3D-bioprinting collagen matrix materials, 
Yamanishi et al.[78] simulated the process of pulmonary 
fibrosis in vitro (Figure 6). They employed machine 

Figure 6. Shrinkage behavior of collagen microgel bioink. (A) The normalized region of normal human lung fibroblast (NHLF) bioink. (B) The normalized 
region of idiopathic fibrosis (IPF) bioink. (C) Response of NHLF to stimulation in bioink. (D) Response of IPF cells to stimulation in bioink. Reprinted 
from ref.[78] under the terms of the Creative Commons CC-BY license.
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learning algorithms to analyze the shrinkage kinetics of 
bioinks used in the printing process. The dataset contained 
10,000 photos taken by a microscope in the incubator. The 
machine learning algorithm was the knowledge analysis 
segmentation, which had been coupled with off-the-shelf 
software and could directly process images. The team finally 
determined the reaction curve of bioink inhibited by three 
small molecules. Tourlomousis et al.[79] proposed a method 
of controlling cell phenotype by regulating the biophysical 
properties of cells in bioink. All the cell images applied in 
the study were obtained by a 3D confocal microscope, and 
then multi-dimensional features of cells were extracted 
from the pictures. The dataset was also constructed by 
multi-dimensional features of cells extracted from images. 
The machine learning algorithm for classifying cells after 
adjusting biophysical characteristics was the support vector 
machine algorithm. The research results have important 
reference significance for the design of materials for single 
cell bioprinting.

Safir et al.[80] utilized blood as an example to investigate 
the detection method of bacteria in bioink in acoustic 
printing. They divided the bioink into many droplets, each 
containing only one or several cells. Then, they analyzed 
each droplet by Raman spectroscopy and obtained a 
large amount of experimental data. These data were 
objects processed by machine learning algorithms and 
components of the dataset used to train machine learning 
algorithms. The results of the random forest algorithm for 
bacteria classification were compared with the results of 
scanning electron microscopy images, which proved the 
effectiveness of the framework. The framework had a high 
accuracy of 99% in a single bacterial droplet. Even in mixed 
bacterial droplets, it could still reach 87%. Due to the lack 
of printability, bioinks made of hydrogels often failed to 
perform 3D bioprinting. However, due to the low cost 
of hydrogels, the research community has been looking 
for hydrogel formulations that can be used as bioinks. 
Nadernezhad et al.[81] analyzed the data based on machine 
learning algorithms to reveal the recipe for transforming 
hydrogels into printable bioinks. The fundamental 
experimental data were processed by MATLAB software 
and random forest algorithm. The dataset of the training 
algorithm was composed of a random selection of data. 
Eventually, the researchers identified 13 indicators that had 
a crucial influence on the bioprinted products, which had a 
positive effect on the formulation of hydrogels which were 
transformed into bioinks.

5. Parameter optimization of 3D bioprinting
Traditionally, many trial-and-error experiments are 
required to find the appropriate 3D bioprinting parameters. 
When a set of printing parameters do not achieve the 

desired results, it is necessary to constantly change the 
reference effect until a satisfactory result is obtained. This 
method not only consumes a lot of time and energy, but also 
causes a lot of waste of raw materials. Even if good results 
have been achieved, it is difficult to apply the parameters 
in combination to other bioprinting activities due to the 
differences in bioinks and 3D bioprinting methods. The 
powerful learning ability of the machine learning algorithm 
based on the existing data can yield a better combination 
of printing parameters for other bioprinting cases after the 
model is trained. The operation can save a lot of time and 
cost, and the versatility is better than the original method.

The bioink used in 3D bioprinting based on digital light 
processing has a light scattering effect, which will affect the 
final printing effect. Traditionally, the printing parameters 
need to be optimized to compensate for the scattering 
effect. However, this method is laborious and will cause 
serious waste of printing materials. By learning the existing 
optimization case data through a deep neural network, 
Guan et al.[82] developed a parameter optimization method 
that can automatically compensate for the light scattering 
effect of printing bioink. The dataset for training deep 
neural networks was composed of 4,000 pairs of data 
generated by program simulation. Experiments showed 
that after optimizing the printing parameters by the 
method, the 3D bioprinter had an excellent compensation 
effect on the light scattering effect of bioink. Bone et al.[83] 
proposed a hierarchical machine learning framework to 
determine the optimal parameters for 3D bioprinting 
based on alginate hydrogel, involving printing speed, 
bioink concentration, nozzle diameter, etc. The framework 
was divided into three layers, and the support vector 
machine algorithm was introduced. The dataset was 
obtained by comparing the final product with the design 
model by changing the printing parameters. This approach 
was particularly suitable for parameter prediction in the 
bioprinting of complex structures. Shi et al.[84] conducted 
multi-parameter optimization of inkjet bioprinting based 
on a fully connected neural network. The fully connected 
neural network included four layers: an input layer, 
two hidden layers, and an output layer. Multiple results 
generated by the simulation program formed the dataset 
for training the fully connected neural network, containing 
120 data. Experiments revealed that the inkjet bioprinting 
parameters optimized by the method could significantly 
promote the precision and stability of printing. In order 
to enhance the accuracy of drop-on-demand printing, 
the team utilized a multi-layer perceptron neural network 
to find suitable printing parameters[85]. The architecture 
coupled computational fluid dynamics model and neural 
network algorithm, and optimized parameters such as 
bioink viscosity and nozzle diameter based on classification. 
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The dataset was composed of 99 simulated data obtained 
by the simulation program. The results indicated that the 
neural network with four hidden nodes in a hidden layer 
had the best prediction accuracy, which could reach 90%.

Fu et al.[86] studied the optimization method of 
parameters in extrusion-based bioprinting based on 
a support vector machine algorithm. The parameters 
involved path height, nozzle temperature, nozzle size, and 
composition. In addition to the optimization method for 
determining the printing parameters, the researchers also 
investigated the training effect of small-scale data sets on 
machine learning algorithms. There were only 12 pieces of 
data in the dataset they used, which were obtained in actual 
experiments. Using the support vector machine model 
created by them to evaluate the parameters in advance 
before extrusion-based bioprinting could ensure that the 
probability of high-quality printing was higher than 75%. 
In addition, they also studied the universality of the model. 
Tian et al.[87] collected data from published literature 
and trained the machine learning regression model to 
find better parameters in extrusion-based bioprinting 
(Figure  7). The bioink contained alginate and gelatin, 
and the studied parameters included cell viability and 
extrusion pressure. Support vector regression and random 
forest regression were utilized in the regression model, 
and the dataset contained 956 data. The calculation results 
verified that the model could not only predict the printing 
effect in the original literature after a lot of training, but 
also further analyze the details. The research results once 
again confirmed the effectiveness of machine learning in 
the design of bioprinting experiments. Ruberu et al.[88] 
investigated the printability of extrusion-based bioprinting 
based on the Bayesian optimization algorithm in a search 
for better printing parameters. Unlike other machine 
learning algorithms, the Bayesian optimization algorithm 
did not need a lot of data to train the model. Its advantage 
was that the construction of the architecture was completed 
with only a few experimental data. The experimental 
results showed that compared with the previous methods, 

the model could also optimize the printing parameters 
while significantly reducing the number of experiments.

6. Defect detection during 3D bioprinting
It is inevitable to have various problems in the 3D 
bioprinting process, which may lead to the final product 
not meeting the relevant requirements. If the manual 
method is used to monitor errors in the printing procedure, 
the method would be time-consuming and labor-
intensive, and require high level of skill and experience 
of the operator. The quality of 3D-bioprinted products is 
difficult to guarantee. Machine learning algorithms could 
automatically monitor the printing process and detect 
defects in time by automatically learning the characteristics 
of existing defective products. Therefore, machine learning 
algorithms are also widely applied in the defect detection 
of 3D bioprinting.

Jin et al.[89] designed four models based on machine 
learning algorithms to detect anomalies on each layer 
during 3D bioprinting. Support vector machine and 
deep neural network algorithms are employed in the four 
models. A dataset including 240 images was constructed 
by the team to detect defects in the transparent bioprinting 
process and optimize the parameters of the printing 
process. Experiment results revealed that the model with a 
conventional neural network worked best. They expected 
that introducing transfer learning into the model would 
help reduce the burden of building a dataset and improve its 
versatility. In order to find out the possible quality problems 
in the extrusion-based bioprinting process in time, Bonatti 
et al.[90] added a long short-term memory neural network 
to the bioprinting control process (Figure 8). A camera was 
placed in front of the printer to film the printing process 
and extract the dataset for training the neural network. 
The team constantly modified the printing parameters to 
obtain videos of the bioprinting in different states, which 
ultimately improved the comprehensiveness of the dataset. 
Experimental results showed that the method could 

Figure 7. (A) Feature weight in random forest regression and (B) feature weight in random forest classification. Reprinted from ref. [87] under the terms of 
the Creative Commons CC-BY license.
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effectively detect quality errors during 3D bioprinting, and 
a bigger error signified that a higher detection accuracy 
was reached. Tebon et al.[91] utilized a conventional neural 
network to detect high-throughput drug screening problems 
in 3D-bioprinted organs. A quantitative phase imaging 
technology was employed to obtain relevant images. The 
training dataset contained 100 manually marked organ-
like objects in randomly selected imaging frames. The team 
demonstrated that the detection effect of the method was 
good, providing a new solution for the rapid screening of 
3D-bioprinted organs. Tröndle et al.[92] obtained a renal 
sphere by bioprinting and tested its toxicity based on deep 
learning technology. Due to the precise deposition of low-
volume, low-viscosity bioink, the renal sphere was generated 
by drop-on-demand bioprinting. They obtained the relevant 
images by fluorescently labeling toxic substances on the 
kidney sphere. A hyper-parameter Bayesian-optimized 
convolutional neural network evaluated the toxicity of renal 
spheres through image processing. The dataset utilized to 
train the neural network was created by the researchers 
using single cell images. Experiments showed that the 
accuracy of the model could reach 78.7%.

7. Conclusion
The rapid development of 3D bioprinting technology in 
recent years is accompanied by the outstanding outcomes 
regarding its application. Although there are still many 
problems to overcome, new attempts have been made. 
In recent years, machine learning has been applied in 
many cases, which gives a solid impetus of incorporating 
machine learning to various fields, and the scope of 
application is also expanding. This paper summarizes 

the research developments of machine learning in the 
field of 3D bioprinting in recent years, hoping to promote 
the combination of the two technologies further. First, 
the basic principles of k-nearest neighbor, long short-
term memory, and ensemble learning are introduced. 
Then, the application of machine learning in additive 
manufacturing is reviewed. The in-depth analysis of 
additive manufacturing technology is helpful to study 3D 
bioprinting, which is essentially an additive manufacturing 
technology. Finally, the existing work of machine learning 
in bioink preparation, printing parameter optimization, 
and printing defect detection of 3D bioprinting are 
summarized. It is expected that this paper can inspire 
more and better research and development of methods 
concerning the combination of 3D bioprinting and 
machine learning.
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