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The pro-inflammatory signalling regulator
Stat4 promotes vasculogenesis of great
vessels derived from endothelial precursors
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Vasculogenic defects of great vessels (GVs) are a major cause of congenital cardiovascular

diseases. However, genetic regulators of endothelial precursors in GV vasculogenesis remain

largely unknown. Here we show that Stat4, a transcription factor known for its regulatory role

of pro-inflammatory signalling, promotes GV vasculogenesis in zebrafish. We find stat4

transcripts highly enriched in nkx2.5þ endothelial precursors in the pharynx and demonstrate

that genetic ablation of stat4 causes stenosis of pharyngeal arch arteries (PAAs) by

suppressing PAAs 3–6 angioblast development. We further show that stat4 is a downstream

target of nkx2.5 and that it autonomously promotes proliferation of endothelial precursors of

the mesoderm. Mechanistically, stat4 regulates the emerging PAA angioblasts by inhibiting

the expression of hdac3 and counteracting the effect of stat1a. Altogether, our study

establishes a role for Stat4 in zebrafish great vessel development, and suggests that Stat4

may serve as a therapeutic target for GV defects.
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G
reat vessel defects (GVDs) are one of the major causes of
congenital cardiovascular diseases, which lead to the
death of millions of infants and children annually1,2.

GVDs include carotid artery anomalies, aberrant subclavian
arteries, interrupted aortic arch, coarctation of the aorta, patent
ductus arteriosus, proximal pulmonary artery hypoplasia and
others3,4. Cellular and genetic mechanisms of great vessel
malformations remain largely unknown, partly due to the
intricate structure and transformation of GVs in fetal growth5,6.
Investigation of the vasculogenesis of great vessels may help
clarify GVD etiologies7. During vasculogenesis, angioblasts,
which originate from endothelial precursors of the mesoderm,
coalesce and assemble into the primary structure of great vessels
such as the aortic arch arteries (also known as pharyngeal arch
arteries, PAAs)8,9. The PAAs connect the blood flow from the
heart to the dorsal aorta in the embryo, and they provide an
indispensable contribution to the carotid arteries and great vessels
of the heart10,11.

Recent studies have found that the endothelium of great vessels
is derived from mesodermal precursors expressing heart field
markers, such as Nkx2.5. It has been reported that subpopula-
tions of nkx2.5þ cells in the anterior lateral plate mesoderm
(ALPM) condense to form four pairs of clusters that give rise to
PAAs 3–6, but the function of Nkx2.5 is not required until the
activation of the vasculogenesis programme of great vessels12.
This finding suggests that spatiotemporally specific mediators
regulate the angioblast fate of nkx2.5þ endothelial precursors to
form great vessels. We previously found that repression of the
second heart field (SHF) regulator Ltbp3 led to great vessel
anomalies13. It is reported that the deletion of the SHF regulator
FGF8 in the cardiogenic mesoderm also causes PAA phenotypes
in mice14. Tcf21, together with Nkx2.5, marks a dispensable
group of PAA progenitors for great vessel formation in
zebrafish10. Although Tbx haploinsufficiency causes aortic arch
defects in mice, it is involved in endoderm–mesenchyme
interactions but not angioblast formation in the mesoderm15,16.
Despite the roles of these cardiogenic regulators in the
development of great vessels, the specific regulators of nkx2.5þ

endothelial precursors of great vessels have not been revealed.
Using the transparent zebrafish embryo model, we are able to

visualize the process of great vessel vasculogenesis, which is
difficult to study in mice and humans due to gestation in the
uterus13,17. This vasculogenesis programme in zebrafish lasts from
28 h post-fertilization (hpf) to 48 hpf, which is comparable to
similar processes that occur in the fourth week of human embryo
development11,12. Using this model, we conduct a transcriptional
microarray analysis of nkx2.5þ cells at 30 hpf and identify signal
transducer and activator of transcription factor 4 (stat4), which is
highly expressed, as a potential regulator of nkx2.5þ endothelial
precursors. As a pro-inflammatory signalling mediator, Stat4 has
long been shown to direct the development of fully functional
T helper 1 cells and is canonically activated by interleukin (IL)-12
receptor-associated JAK kinases18,19.

In this study, we generate a stat4 mutant line using the
CRISPR/Cas system, and describe a pivotal role of Stat4 in
regulating the proliferation of endothelial precursors during great
vessel vasculogenesis. Furthermore, we uncover that stat4 is
downstream of nkx2.5 and promotes angioblast formation by
suppressing hdac3 and stat1a. Our findings elucidate a surprising
and important function of Stat4 in the establishment of great
vessels.

Results
Conservation of Stat4 and its expression in the pharynx. The
orthologues of all mammalian STAT genes in zebrafish have been

identified with the high primary sequence conservation20.
Zebrafish stat4 encodes a 731-aa protein, which contains four
functional domains and shares 68.7% sequence similarity with
human STAT4. Stat4 is located on Chromosome 9 in zebrafish,
and no paralogs have been identified. The genes flanking
zebrafish stat4 are syntenic with the STAT4 locus in humans.
As evident from the domain structure and amino-acid sequence
alignment, zebrafish stat4 is closely related to the corresponding
mammalian homologues (Fig. 1a and Supplementary Fig. 1).

The expression level of stat4 was found to be 18-fold higher in
nkx2.5þ cells by transcriptional microarray analysis of the
Tg(nkx2.5:Zsyellow) line at 30 hpf than in somatic cells (Fig. 1g).
Pathway enrichment analysis showed that Jak-Stat signalling
was a major upregulated pathway in nkx2.5þ cells
(Supplementary Fig. 2A). The activated genes of the Jak-Stat
pathway were listed in the heatmap and scatter plot, among
which stat4 was the most highly activated (Supplementary
Fig. 2B,C). In situ hybridization showed that expression of stat4
was enriched in the ALPM at 28 h post fertilization (hpf) and
48 hpf (Fig. 1b–d and Supplementary Fig. 3A–G). Stat4
transcripts were also distributed in the pharyngeal arch area at
60 hpf (Supplementary Fig. 3H,I). As shown in Supplementary
Fig. 3E–I, stat4 is not expressed in the heart at 24 hpf or 48 hpf,
but we could observe the weak expression of stat4 in the heart at
60 hpf.

Similar to stat4, nkx2.5 transcripts were co-localized in the
pharyngeal clusters of the ALPM at 28 hpf, which subsequently
differentiates into aortic arch angioblasts in the pharynx, as
visualized by the angioblast marker tie1 (Fig. 1e,f). Later, nkx2.5þ

ZsYellow populations from the mesoderm formed the primitive
great vessels, the third to sixth pairs of PAAs (PAAs 3–6)
visualized by the ZsYellowþ /mCherryþ population of
Tg(nkx2.5:ZsYellow);Tg(flk1:mCherry) embryos (Supplementary
Fig. 4A–C). The Stat4 protein co-localized with Nkx2.5 proteins
in PAAs 3–6 at 60 hpf, as revealed by double immunofluorescent
staining (Fig. 1h–j).

Loss of stat4 causes stenosis of the primitive great vessels.
A splice morpholino, targeting the splice acceptor site for intron 3
of stat4, was employed to suppress normally spliced stat4 tran-
scripts in zebrafish embryos, generating stat4 morphants. Reverse
transcription PCR showed that the transcript was efficiently
knocked down. Whereas control embryos expressed normal
stat4 transcripts, the morphants expressed improperly spliced
stat4 messenger RNAs (mRNAs) without exons 3 and 4
(Supplementary Fig. 5A). The stat4 morphants did not show
obvious developmental abnormalities other than the stenosis of
PAAs 3–6.

The CRISPR/Cas system was employed to generate stat4
zebrafish mutants by targeting exon 3 (Supplementary Fig. 5B).
After CRISPR/Cas RNA injection, we detect the F1 generation
heterozygotes and found robust induction of targeted insertion/
deletion mutations by assessing the frequency of altered alleles
(Supplementary Table 1). The selected homozygous stat4 mutant
of the F3 generation shown in Fig. 2 had a two-base pair deletion
that caused a frame-shift mutation and a premature stop codon in
exon 3, leading to a truncated protein with 58 amino acids
(Fig. 2a). The heterozygous and homozygous stat4 mutants were
born at normal Mendelian ratios and showed atrophic pharyngeal
regions and a slightly small head at 72 hpf compared with the
wild-type siblings. The mutants had fewer and shorter arch
arteries than their wild-type siblings, which have full-length arch
arteries and plump necks. There were no apparent defects in the
other tissues or the development of homozygotes (Supplementary
Fig. 6A–C). The stat4 mutant and morphant embryos had the
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same phenotype, but the deficiency of mutants was stronger than
that of morphants.

The defect of PAAs 3–6 can be seen in pathological sections of
the mutants. The arch arteries in mutants lack lumen endothe-
lium, but the surrounding smooth muscle of the vasculature did
not have any evident abnormality compared with wild-type
controls. The deficiency of PAAs 3–6 in the mutants led to
atrophy of the pharynx, and the jaw defect can also be observed in
tissue sections (Fig. 2b,c). The stenosis of PAAs 3–6 caused by
stat4 deficiency can be clearly visualized by the stat4� /� ;
Tg(kdrl:mCherry) lines (Fig. 2d,e). Furthermore, the shunted
blood flow labelled by gata1þ was undetectable in PAAs 3–6
vessels in the stat4� /� ;Tg(gata1:DsRed) line, while the major
vessels such as the lateral dorsal aorta and common cardinal vein
retained robust blood flow (Fig. 2f,g). The stat4� /� ;
Tg(fli1:EGFP);Tg(gata1:DsRed) line indicated that the narrow
and short PAAs 3–6 in the mutants were unable to support blood
flow (Fig. 2h,i and Supplementary Fig. 7A). The lack of blood flow
was due to stenosis of the arch artery lumens, visualized in the
stat4� /� ;Tg(fli1:nucEGFP) line. The cell count numbers
revealed an B58% decrease in differentiated endothelial cells of
PAAs 3–6 in stat4 mutants compared with the control (Fig. 2j-l).
As shown in Supplementary Fig. 7B,C, the yellow cells remained
in PAAs 3–6 of stat4 morphants in the Tg (nkx2.5:zsyel-
low);Tg(kdrl:mCherry) line, indicating that the remained
structure of PAAs 3–6 was derived from nkx2.5þ cells.
However, an insufficient number of nkx2.5þ cells led to the

deficient growth of the arch arteries in the morphants compared
with the controls.

Taken together, suppression of stat4 caused agrowth deficiency
of PAAs 3–6, while the first pair of aortic arch arteries that is
established before the initiation of circulation were not impaired
in either the control or stat4 mutant/morphant embryos. The
model of stenosis of the primitive great vessels (PAAs 3–6) caused
by stat4 deficiency is shown in Fig. 2m.

Lack of Stat4 prevents emergence of PAA angioblasts. In stat4
mutants, the lack of tie1 transcripts in arch arteries 3–6 of the
stat4 mutants suggested a decline in the vasculogenesis
programme of the nkx2.5þ cells derived from PAAs 3–6 com-
pared with the control group at 60 hpf (Fig. 3a,b). The resin
sections showed that the tie1 probe labelled the four cords of
PAAs angioblasts in the control, while only minimal tie1þ

angioblasts were observed in PAAs 3–6 of stat4 mutants
(Fig. 3c,d). The vasculogenesis defect in stat4 mutants was
observed as early as emergence of the four pairs of angioblastic
cords (ACs) (as indicated by the asterisk and bracket). Loss of
stat4 inhibited the emergence of tie1-labelled ACs, the number of
which was significantly decreased in mutants at 44 hpf. The stat4
morphants phenocopied the tie1þ PAA angioblast deficiency
seen in the mutants. The recruitment of stat4 mRNA specifically
restored all four pairs of ACs in the morphants (Fig. 3e–h,k).
Evaluation of endothelial precursors by etv2 and scl at the top of
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the signalling hierarchy of angioblast formation demonstrated
that suppression of stat4 inhibited the emergence of both etv2 and
scl clusters in stat4 mutants (Fig. 3i,j,m–o). The myoblast marker
tcf21 was not affected in the mutants at 28 hpf (Fig. 3l,p) or in the
Tg (tcf21:GFP) stat4 morphants at 30 hpf (Supplementary
Fig. 8S,T). Evaluation of flk1 expression, the endothelial marker,
showed the loss of ACs 3–6 at 38 hpf (Supplementary Fig. 7D–F).
Angiogenesis represented by flk1þ inter-segmental vessels was
not affected in the stat4 morphants (Supplementary Fig. 7G–I).
Evaluation of the vascular mesoderm by etv2 demonstrated that
other vasculatures such as the cranial21 or somatic vasculatures
were not significantly impaired by suppression of stat4
(Supplementary Fig. 7J,K).

Embryonic haematopoiesis in the intermediate cell mass was
not evidently disturbed by scl probe detection in morphants
(Supplementary Fig. 8A,E). The gata1-labelled somatic blood flow
was normal in stat4 morphants compared with the control group
(Supplementary Fig. 8B,F). Rag1-labelled T cells of the thymus
and the foxn1-labelled thymus epithelia are not interrupted in
stat4 morphants compared with the control embryos
(Supplementary Fig. 8C,D,G,H). Neural crest-derived pharyngeal
mesenchyme is unaffected in stat4 morphants, as revealed by
hand2 and dlx2a expression patterns (Supplementary
Fig. 8I,J,M,N). The normal tbx1 expression pattern in morphants
demonstrated that the loss of stat4 did not alter pharyngeal

ectoderm or endoderm at 28 hpf, comparable to the controls
(Supplementary Fig. 8K,O). Additionally, tbx1 expression in the
pharyngeal mesoderm is not significantly impaired in the mutants
at 28 hpf (Supplementary Fig. 8Q,R).

Meanwhile, the gata4þ cardiac progenitors in the ALPM
remain normal in stat4 morphants (Supplementary Fig. 8L,P) at
18-somite stage (ss). Both the nkx2.5þ cardiac progenitors and
the formation of the linear heart tube are normal in stat4
morphants (Supplementary Fig. 9A,B,D,E). No obvious differ-
ences are found in the ltbp3þ SHF of the control embryos and
the morphants (Supplementary Fig. 9I,L). The heart morphology
from 48 hpf to 60 hpf is not impaired in the embryos lacking stat4
compared with the control using the Tg(nkx2.5:ZsYellow) line
(Supplementary Fig. 9C,F).

Stat4 promotes proliferation of nkx2.5þ endothelial precursors.
Morphogenesis of the four clusters of nkx2.5þ endothelial pre-
cursors in the ALPM remained unchanged, despite the lack of
stat4, as shown in the transverse sections of Tg(nkx2.5:ZsYellow)
embryos at 30 hpf (Fig. 4a,c). However, the BrdU cooperation assay
showed that the quantity of the co-localized BrdUþ (red) and
nkx2.5þ (green) cells was significantly reduced in the stat4 mor-
phants compared with the control embryos (Fig. 4a–d,g, yellow).
Cellular apoptotic evaluation of nkx2.5þ clusters by TdT-mediated
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dUTP nick end labelling (TUNEL) revealed that the lack of stat4
did not impair endothelial precursor survival (Fig. 4e,f,h).

Cell-dye was used to label the nkx2.5þ endothelial precursors
to further investigate their proliferation and migration in the
absence of stat4. Tg(nkx2.5:ZsYellow) embryos were injected with
CellTracker Red in the ZsYellowþ pharyngeal cluster region at
28 hpf. After culturing for 4 h, the single cell was labelled and
imaged at 32 hpf as the starting point. At this time, the labelled
cells in the control and morphant embryos did not show any
obvious differences. The same embryos were imaged again at
55 hpf. As shown in Fig. 5a,b,d,e,g, the labelled cell forms multiple
dyeþ cells in the PAAs of control embryos, while the labelled cell
remains in its original location without proliferation in the stat4
morphants, indicating repressed proliferation and migration of
endothelial precursors in stat4 morphants.

We also wondered whether stat4 regulated the fate equilibrium
between the endocardium and great vessel endothelium derived

from nkx2.5þ endothelial precursors. No labelled cells migrated
to the heart tube in morphants, as shown in Fig. 5e. Using the
Tg(fli: nucEGFP) line, we counted the endocardium cell numbers
in the heart and outflow tract at 55 hpf and found no obvious
changes in cell numbers in the morphants compared with the
controls (Fig. 5c,f,h). Hence, stat4 was not involved in the fate
determination between the great vessel endothelium and the
endocardium. Evaluation of myod indicated no defects in the
PAA- and facial-muscle lineage or in the somatic skeletal muscle
of mutants (Fig. 5k,l). Only the distance between PAA- muscles
and the ventral aorta muscles in stat4 mutants was shorter than
that in the control embryos.

The specification of endothelial precursors in the ALPM was
tested by comparing the morphogenesis of the four pairs of
nkx2.5þ pharyngeal clusters between the controls and mutants.
No evident change was found by 30 hpf between the two groups,
suggesting that the specification of nkx2.5þ endothelial
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precursors was not prevented by the suppression of stat4
(Fig. 5i,j), consistent with the results in Fig. 4a–d and
Supplementary Fig. 9G,H,J,K. The schematic illustration in
Fig. 5m shows the fate of nkx2.5þ cells in the ALPM, and the
loss of stat4 can inhibit the proliferation of nkx2.5þ endothelia
precursor clusters 3–6 to cause insufficient assembly of the
primitive great vessels.

Stat4 acts downstream of Nkx2.5 to regulate PAA angioblasts.
Notably, nkx2.5 knock down reduced the number of PAAs ACs,
which showed a similar phenotype as the stat4 morphant
embryos, consistent with the previous study12. Co-suppression of
stat4 and nkx2.5 by half dosages of morpholinos caused a total
depletion of ACs 3–6. Overexpression of nkx2.5 transcripts by
injecting in vitro synthesized full-length nkx2.5 mRNA did not
restore the tie1þ AC quantity of stat4 morphants. In contrast,
replenishment of stat4 mRNA rescued the reduction in the
number of ACs in nkx2.5 morphant embryos, as shown by the
increase in the percentage of embryos with over two pairs of ACs
3–6 to control levels (Fig. 6a–f).

The chromatin immunoprecipitation (ChIP) assay showed that
Nkx2.5 can bind to the promoter region of stat4, and the binding
can be inhibited by nkx2.5 knock down. The Nkx2.5 DNA-
binding site (NKE)22 was found in the binding enrichment region
at the stat4 locus using primer 5, suggesting that stat4 was a direct
target of Nkx2.5 (Fig. 6g).

Cellular autonomous analysis of Stat4 was carried out by
utilizing an nkx2.5 promoter and the tol2 transposon to generate
chimeric embryos with transient gene expression in nkx2.5þ

cells, as shown in Fig. 6h,m. Driven by the nkx2.5 promoter, full-
length (f) or N-terminal truncated forms (D) of Stat4 were
expressed with high fidelity in nkx2.5þ cells, as indicated by
the mCherry fluorescence, within bilateral ACs at 32 hpf. The
tie1 in situ hybridization of the positive transgenic embryos
(DPOS) with dominant-truncated Stat4 in nkx2.5þ cells and the
negative embryos (DNG) reveals that DPOS embryos displayed a
reduced number of ACs compared with DNG and controls.

Overexpression of full-length Stat4 in nkx2.5þ cells (fPOS) can
sufficiently reverse the reduced number of ACs caused by the
nkx2.5 morpholino (fNG) (Fig. 6h–q).

Stat4 regulates angioblasts by suppressing Stat1a and Hdac3.
To understand the downstream signalling of Stat4 in this process,
a small molecule lisofylline, the canonical inhibitor of IL-12-
mediated stat4 activation23, was used to treat the embryos. The
tie1 in situ hybridization of lisofylline-treated embryos showed
that the number of PAA angioblast cords did not decline,
indicating that IL-12 signalling was not involved in the angioblast
formation. However, overexpression of the Stat4-specific
inhibitor Socs3a/b24 did reduce the number of tie1-expressing
cords. Similarly, overexpression of another Stat4-specific
inhibitor, Pias2 ( previously known as Piasx25), also resulted in
a decrease of tie1-expressing cords, mimicing the phenotype of
stat4 mutants (Fig. 7a–e,k).

Many studies have confirmed the association of the Stat4-Stat1
locus in chronic inflammation diseases26, and Stat4 can
counteract the function of Stat1 in T cells27. Hence, we
knocked down stat1a and stat1b in stat4 mutants and found
that the knockdown of stat1a can partially rescue the loss of ACs
but not stat1b (Fig. 7i,j). It has been reported that Hdac3
deacetylates Stat1, thus permitting its phosphorylation and ability
to inhibit proliferation. Notably, HDAC type I and II inhibitor
Trichostatin A (TSA)-treated embryos rescues the PAA
angioblast cluster loss seen in mutants. It has been reported
that HDACs 3 is responsive to TSA treatment in vascular
endothelium28. We found that the injection of hdac3 mRNA can
efficiently inhibit vasculogenesis of the great vessels. Moreover,
morpholino-mediated hdac3 knock down can rescue the PAAs
phenotype of the stat4 mutant (Fig. 7f–h,k).

The ChIP assays showed that Stat4 can target the promoter
regions of hdac3 and stat1a, and the binding was mostly enriched
in the hdac3 promoter region identified by primer 3 (Fig. 7l–n).
Furthermore, the levels of Hdac3 and Stat1 proteins were
upregulated in stat4 mutants, as shown in the western blot, while
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the Nkx2.5 protein level was not affected (Fig. 7p and
Supplementary Fig. 10). Expression level changes of these genes
were confirmed by quantitative PCR (Q-PCR) results. The cell
proliferation-related gene cdk2 was significantly downregulated,
whereas the expression levels of its inhibitors cdkn2a/b and atrip
were elevated in the absence of stat4 (Fig. 7o). Based on the
described results, we show a schematic representation of the
signalling pathway regulated by stat4 and involved in PAA
angioblast formation (Fig. 7q).

Discussion
The deficiency of primitive great vessels is a key predisposing
factor for cardiovascular disease29,30. Unlike the relatively

advanced knowledge of endothelial development, little
information about the regulation of endothelial precursors of
the great vessels has been available to date. Our findings
demonstrate that Stat4 has a critical role in promoting
vasculogenesis of the great vessels. Several lines of evidence
support this conclusion: (1) stat4 transcripts are located
specifically in the pharynx and persisted throughout PAA
vasculogenesis; (2) loss of stat4 selectively causes the stenosis of
PAAs 3–6 by suppressing angioblast emergence of the great
vessels in mutants; (3) lack of stat4 inhibits the proliferation but
not the apoptosis, fate equilibrium or specification of nkx2.5þ

endothelial precursors; (4) Stat4 expression is regulated by
Nkx2.5 to autonomously promote PAA angioblast formation;
and (5) Stat4 promotes PAA angioblast emergence by inhibiting
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epigenetic regulator hdac3 expression and counteracting the
effects of stat1a.

PAA endothelial progenitors derive from the caudal nkx2.5þ

clusters in the ALPM12. We found that the proliferation of these
progenitors is Stat4 dependent. The nkx2.5þ PAA endothelial
progenitors could still differentiate into arch artery endothelium
without Stat4. However, lack of stat4 prevents proliferation of
nkx2.5þ cells and eventually results in stenosis of the primitive

GVs. A previous study showed that tcf21, together with nkx2.5,
marked a group of PAA progenitor cells, but the tcf21þ nkx2.5þ

progenitors were not required for PAA formation10. In this
study, we found that genetic ablation of stat4 did not affect the
tcf21-expressing PAA cells. The PAA- and facial-muscle also
remained normal in stat4 mutants, indicating that the muscle
cell lineage of PAAs was not affected by the loss of stat4.
This evidence implicated that stat4 might specifically regulate the
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PAA endothelial cell lineage rather than other cell lineages of
PAAs.

Although Stat4 has been most extensively investigated as a
critical mediator for several pro-inflammatory cytokines and

chemokines such as IL-12 and type I interferon in T lymphocytes,
it was unknown whether it had any role in vasculogenesis. Several
studies have provided clues that the Stat4-mediated inflammation
is involved in cardiovascular diseases. STAT4 has been
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demonstrated to be one of the strongest genetic susceptibility
factors for systemic lupus erythematosus, and notably, patients
with systemic lupus erythematosus with the STAT4 risk allele
have a strikingly increased risk of cardiovascular disease31. Stat4
has been found to be involved in the development of cardiac
allograft vasculopathy in mice32. Also, PIAS2, the specific
inhibitor of STAT4, has a critical role in human umbilical vein
endothelial cells33. This evidence implicates a genetic
predisposition via STAT4 to some cardiovascular diseases.

Some of the Stat4-related pro-inflammatory factors may
participate in the vasculogenesis of great vessels. Recent studies
have highlighted a paradigm where the endogenous mechanisms
of pro-inflammatory factors function to maintain normal tissue
homeostasis34. Pro-inflammatory cytokines and chemokines are
also reported to be expressed in the hearts of infants with
congenital heart disease with GVDs35. Low levels of STAT4 are
expressed in cultured human umbilical vein endothelial cells and
are tyrosine-phosphorylated by interferon but not IL-12 (ref. 36).
We show here that canonical IL-12-Stat4 signalling does not
participate in Stat4-mediated PAA vasculogenesis, however,
Stat4-specific inhibition-by Pias2, Socs3a and Socs3b suppresses
PAA angioblasts formation. Most SOCS proteins act in a classical
negative-feedback loop to inhibit cytokine signal transduction37.
Socs3 can specifically inhibit the activation of Stat4 by binding to
the Stat4 docking site in its upstream receptor through the SH2
domain. In addition, socs3a and socs3b are found to be highly
expressed in nkx2.5þ cells, together with the upregulation of
stat4 in this study (Supplementary Fig. 2).

Since previous studies have confirmed the association of
STAT4-STAT1 locus on chromosome 2 (Fig. 1a) in inflammatory
diseases18,26, and stat1a was enriched in the nkx2.5þ cells in
our microarray, we speculated that Stat1 may be involved in
the Stat4 signalling network. Indeed, repression of stat1a
can partially rescue GVDs caused by the absence of stat4.
Previous studies have shown that stat1 has anti-proliferation roles
in pro-inflammatory cells and vasculatures38. Moreover,
Stat4 acts as a key molecule in overcoming the Stat1-dependent
inhibition of proliferation in T cells27. Hence, it is possible
that Stat4 can activate the proliferation of PAAs by inhibiting
Stat1a.

It is reported that HDAC can modulate the pro-inflammatory
response39, thus it was conceivable to hypothesize that HDAC
may be involved in the Stat4 signalling in GV vasculogenesis.
Indeed, we show that treatment with the HDAC type I and II
specific inhibitor TSA can reverse the PAA phenotype of stat4
mutant embryos, and Hdac3 has an important role in PAA
vasculogenesis downstream of Stat4. A recent study showed that
TSA could enhance vascular repair by recruiting human
endothelial progenitors and increasing the expression of SCL-
dependent genes, which may support our findings here40. It is
reported that the HDAC3 inhibitor has no significant effect on

the heart28,41. We also confirmed that stat4 deficiency did not
have evident effects on the heart during PAAs formation.
Meanwhile, Stat1 can be deacetylated by Hdac3, thus
permitting its phosphorylation42. Based on our data and the
previous reports, Hdac3 seems to be an important target of Stat4
in mediating the proliferation of the endothelial precursors of
great vessels.

In summary, our study provides insights into a potential role of
the pro-inflammatory regulator Stat4 in great vessel establish-
ment and endothelial precursor proliferation. Therefore, Stat4 can
possibly serve as a diagnostic marker or a therapeutic target for
GVD.

Methods
Zebrafish strains maintenance. Zebrafish embryos were raised at 28.5 �C and
morphologically staged. The wild-type lines AB/Tubingen, Tg(nkx2.5:ZsYellow),
Tg(gata1:DsRed), Tg(flk1:mCherry), Tg(fli1:eGFP), Tg (tcf21: GFP) and Tg(fli1:-
nucGFP) lines have been previously reported13. Embryos or tail fins were collected
for genotyping. All zebrafish in this study were treated in strict accordance with the
recommendations in the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health. The experimental protocols were approved by the
Review Board on the Ethics of Animal Experiments of Institute of Health Sciences,
Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences (Shanghai,
China).

FAC sorting and microarray analysis. The embryos of Tg(nkx2.5:ZsYellow) at
30 hpf were dissociated by incubation in 1� PBS supplemented with 0.125% dis-
pase (Life Technologies, NY, USA) for 30 to 45 min at 28.5 �C. The cells were
washed and resuspended in ice-cold 0.9� PBS plus 5% FBS and were passed
through a filter with a 40 mm pore size. Samples were sorted twice into lysis buffer
via a triple-LASER fluorescence-activated cell sorting instrument (FACSAria, BD
Biosciences, CA, USA) to ensure cell purities of 495%, maximal RNA integrity,
and minimal loss of material. Two independent sets of purified RNA from nkx2.5þ

cells and nkx2.5� somatic cells were prepared and labelled according to the
manufacturer’s instructions (Affymetrix, Santa Clara, CA, US). Samples were then
hybridized onto a Zebrafish Oligonucleotide Microarray (AffymetrixGeneChip).
The Affymetrix(R) software and GeneSpring software7.3 were used to analyse the
data and visualize differential expression, respectively.

Construction and microinjection of CRISPR/Cas. The stat4 target sites of
CRISPR/Cas were determined online (http://zifit.partners.org/ZiFiT/CSquar-
e9Nuclease.aspx). For the efficient induction of mutagenesis in stat4, one target site
was finally selected from the candidate sites. Stat4 guide RNA (gRNA) was targeted
to exon 3 (CRISPR/Cas stat4 E3, GGCATCAAACCATGAATCTATGG) with
forward (50-ATAGGCAT CAAACCATGAATCTAGT-30) and reverse (50-TAAA
ACTAGATTCATGGTTTGATGC-30) primers. Stat4 gRNA was obtained by
in vitro transcription with the MAXISCRIPT T7 Kit (Ambion, Thermo Fisher
Scientific Inc., US) and then purified using the mirVana miRNA Isolation Kit
(Ambion) following the manufacturer’s instructions. CRISPR capped nls-zCas-nls
RNA was synthesized using SP6 mMessage mMachine Transcription Kit
(Ambion). A mixture of RNAs (500 ng ml� 1 of nls-zCas-nls RNA and 90 ng ml� 1

of gRNA) in 0.05% phenol red and 120 mM KCl was injected into the cellular
portion of one-cell stage embryos, resulting in an B60% rate of deformity at
24 hpf.

Generation of zebrafish stat4 mutant lines. The surviving embryos after
injection with CRISPR/Cas RNAs were raised to adulthood and screened for

Figure 7 | stat4 promoted the PAA angioblast programme by suppressing stat1a and hdac3. (a–k) In situ hybridization analysis of tie1 transcripts in

the control (a), stat4 mutants (b), embryos with 50 ng ml� 1 pias2 mRNA injection (c), embryos with 50 ngml� 1 socs3a and socs3b mRNAs injection

(d), embryos treated with 85 mM lisofylline (e), stat4 mutants with 0.2 mM TSA treatment (f), embryos with 50 ngml� 1 hdac3 mRNA injection

(g), stat4 mutants with 4 ng ml� 1 hdac3 morpholino (h), stat4 mutants with 4 ng ml� 1 stat1b morpholino (i), stat4 mutants with 4 ngml� 1 stat1a morpholino

(j) at 44 hpf. Scale bars, 50mm. (k) Proportional quantification of indicated tie1þ expressing cords number (s4� /� : stat4 mutants), Kruskal–Wallis test

with the Dunn’s multiple comparison test, **Po0.01, n.s.: P40.05, n Z30 embryos per each group. (l–n) The ChIP analysis with anti-Stat4 antibody for

the promoter regions of hdac3 and stat1a in the wild-type control and stat4 mutants at 44 hpf across six experimental replicates (n¼ 30 embryos/replicate

in each group, analysis of variance (ANOVA) test with multiple comparison post-hoc test, **Po0.01, ***Po0.001). (m) The binding enrichment regions at

the hdac3 and stat1a locus are indicated by primers (P1–P6). (o) Q-PCR results of related genes expression in the control and stat4 morphants at

44 hpf across six experimental replicates (n¼ 10 embryos/replicate in each group. Error bars indicate s.d., unpaired two-tailed Student’s

t-test, *Po0.05, **Po0.01. (p) Protein levels of Nkx2.5, Hdac3 and Stat1a in the wild-type control and stat4 mutants detected by western blots at 44 hpf.

b-actin is used as the internal control. (q) A network is drawn to illustrate the stat4 pathway in controlling PAA proliferation. Red: activation, Blue:

suppression.
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founders with germ-line mutations in the stat4 locus. The T7 endonuclease I
(T7E1) enzyme was used to screen for mutations (New England Biolabs, MA, USA)
according to the manufacturer’s instructions. After the outcross between the
founders and wild-type zebrafish, the outcross between the F1 and the wild-type,
and the subsequent incross between the heterozygous F2 generation, we obtained
several mutant lines for further investigation.

Microinjection of zebrafish embryos. Knockdown of genes was achieved by the
injection of corresponding anti-sense morpholinos into one-cell-stage embryos.
Morpholinos were purchased from Gene Tools (USA). Nkx2.5 morphants were
obtained via the injection of 1 nl of nkx2.5 morpholino (4 ngml� 1) targeting the
nkx2.5 splicing site43. To generate stat4 morphants, one-cell stage embryos were
injected with 1 nl of anti-sense morpholino (6 ng ml� 1) targeting the third-intron
fourth exon splice acceptor sequence (MOstat4: 50-GTATTTCACCTGGGAGAAT
AGAAGA-30). To validate the effectiveness of MOstat4-mediated stat4 splicing
inhibition, we obtained first strand complementary DNAs (cDNAs) from control
and MOstat4 embryos and performed PCR to amplify the sequence spanning
MOstat4 target region with forward (50-TTCAGCAACTGGATATTAAGTTCCT
CGAA-30) and reverse (50-TGAACGCTGCTTCTTATCACA GCC-30) primers.
Then, agarose gel electrophoresis of the PCR products was used to visualize the
bands.

Capped tol2 transposase and nkx2.5, stat4, socs3a, socs3b and pias2 mRNAs
were synthesized in vitro from linearized plasmid templates by SP6 mMessage
mMachine Transcription Kit (Ambion) (Supplementary Table 2). Rescue assays
were carried out by co-injection of 50 ng ml� 1 mRNA into one-cell-stage embryos.
A 4.8 kb nkx2.5 promoter was prepared from Tubigen genome using the forward
(50-GTAGACTGAGTATTCGTTGCGTTAT-30) and the reverse (50-TTCCTGA
CAACAGCCGA-30) primers44. The N-terminal 51 amino-acid residues truncated
stat4 fragment were amplified from cDNA library with the forward primer (50-CT
AGCTAGCATGGCTACTGTACTCTTCAAT-30) and the reverse primer (50-CTA
GCTAGCGGGTGAACTCATAGCGCTCTC-30). The full-length and truncated
stat4 cDNA were driven by the nkx2.5 promoter, and the constructs were injected
into the cellular portion of the one-cell-stage embryos at 50 ngml� 1.

RNA probe synthesis and whole mount in situ hybridization. Zebrafish wild-
type cDNA was used for amplifying stat4, tie1, nkx2.5, hand2, gata4, scl, etv2, flk1,
tbx1, foxn1 and rag1 sequences that were subcloned into pCS2þ vector
(Supplementary Table 2). T3 RNA polymerase (Roche Applied Science, IN, USA)
was used to generate RNA probes transcripts from linearized DNA templates.

Whole-mount in situ hybridizations were conducted using digoxygenin (DIG)
labelled anti-sense RNA probes (Roche Applied Science, Mannheim, Germany).
Embryos were collected and fixed in 4% paraformaldehyde. Following dehydration
and rehydration in a decreasing methanol series, the embryos were digested with
10mg ml� 1 proteinase K and hybridized overnight at 70 �C. After blocking and
washing, the embryos were stained with nitro-blue tetrazolium chloride/5-bromo-
4-chloro-30-indolyphosphate p-toluidine (Roche Applied Science, Mannheim,
Germany).

Compound inhibitor treatment. Inhibition of IL-12 signalling was performed by
incubating wild-type Tubingen zebrafish embryos in 85 mM lisofylline egg water
(Caymanchem) or an equivalent amount of dimethylsulphoxide (DMSO) as a
control, starting at the 18-somite stage. Both DMSO and lisofylline-treated wild-
type embryos were fixed for tie1 in situ hybridizations at 44 hpf and imaged.
Similarly, 0.2 mM TSA was used to inhibit the function of HDACs type I and II
starting at 28 hpf, and the treated embryos were fixed and subjected to tie1 in situ
hybridizations at 44 hpf.

Immunohistochemistry. Fixed embryos were rehydrated in 1�PBS/0.5% Triton
X-100 (PBSTx) and blocked with PBSTx/1% BSA/0.1% DMSO for 3 h. The
embryos were then incubated with primary antibodies and secondary antibodies
diluted in blocking solution for 2 h. Primary antibodies for GFP (IgG2a mouse
monoclonal, Life technology), ZsYellow (anti-RCFP rabbit polyclonal antibody,
Clontech), Nkx2.5 (Thermo Fisher, US) and Stat4 (Sigma, US) were incubated at a
1:50 dilution. Secondary antibodies (Alexa Fluor 488 goat a-mouse IgG, Alexa
Fluor 546 goat-rabbit IgG (Invitrogen) were used at a 1:500 dilution.

BrdU staining and TUNEL immunostaining. Control and MOstat4

Tg(nkx2.5:ZsYellow) embryos at 30 hpf were incubated in a pre-chilled 10 mM
BrdU/15% DMSO solution on ice for 20 min, transferred to pre-warmed egg water
and incubated for 15 min at 28.5 �C before fixation. The embryos were digested
with 1 mg ml� 1 Proteinase K for 30 min at room temperature. Mouse a-BrdU
(Roche Applied Science, Mannheim, Germany) and a-mouse Alexa Fluor 546
(Invitrogen, Carlsbad, CA) primary and secondary antibodies were both used at
dilutions of 1:500. Following antibody staining and washes, the embryos were
incubated with 0.5 mg ml� 1 40,6-diamidino-2-phenylindole in 1�PBS for 10 min
in the dark at room temperature. After three 1� PBS washes, the embryos were
mounted and imaged.

The TUNEL assay was performed with the In Situ Cell Death Detection Kit
TMR red (Roche). The morpholino injected Tg(nkx2.5:ZsYellow) embryos and
wild-type embryos at 28 hpf were fixed and stored in 100% methanol at � 20 �C.
After rehydration, Proteinase K digestion and acetone treatment, embryos were
permeated with a permeabilization solution (0.5% Triton X–100, 0.1% sodium
citrate in PBS) at room temperature for 1 h. Then, the embryos were stained by the
enzyme solution and photographed.

Cell tracker red labelling. Cell Tracker Red dye was purchased from Invitrogen
and diluted to 10 mM in egg water. Tg(nkx2.5:ZsYellow) embryos at 28 hpf were
injected with an 1 nl drop of dye in the pharyngeal ZsYellow region outside the
heart tube. Following the injection, images were taken at B32 hpf and again at
55 hpf.

Chromatin immunoprecipitation (ChIP). Chromatin was prepared from zebrafish
embryos at 44 hpf and fragmented by sonication with Fisher Scientific’s Sonic
Dismembrator (6% amplitude, pulse for 10 s on and 30 s off for a total sonication
‘on’ time of 2 min 40 s) to produce fragments ranging from 100 to 500 bp. Then,
five percent chromatin was removed from each sample and used as the input
control. ChIP was performed using antibodies specific for Nkx2.5 (PA5-49431,
Thermo Fisher, US), Stat4 (WH0006775M1, Sigma, US) and IgG control
(2719s, Cell Signaling, US) at dilutions of 1:100, 1:100 and 1:1,000, respectively.
The bound DNA and mock DNA were used for SYBR green Q-PCR analyses.

Western blot analysis. Western blot was performed with the standard protocols.
Protein was prepared from zebrafish embryos at 44 hpf and dissolved in 4�
protein SDS–polyacrylamide gel electrophoresis Loading Buffer (Takara). Nkx2.5,
Stat1a and Hdac3 were detected with anti-Nkx2.5 (PA5-49431, Thermo Fisher,
US), anti-Stat1a (SAB3500364, Sigma, US) and anti-Hdac3 (ab32369, Abcam, US)
at the dilution of 1:1,000, followed by incubation with an anti-rabbit IgG-horse-
radish peroxidase antibody (ab97069, Abcam, US) at a dilution of 1:5,000. b-actin
was used as the internal control using an anti-b-actin antibody (A2228, Sigma, US),
followed by an anti-mouse IgG antibody (62-6520, Invitrogen, US) diluted 1:1,000
and 1:5,000 in the block solution, respectively. Full scans of all western blots are
presented in Supplementary Fig. 10.

Confocal fluorescent imaging. Whole mount transgenic embryos were prepared
in 3% agarose in a glass-bottomed culture dish, and the images were captured using
an Olympus FV10-ASW confocal microscope system (Olympus, Tokyo, JP)45.
EGFP was excited with a 488-nm Argon laser and imaged through a 505-536-nm
filter. ZsYellow protein was excited with a 514-nm Argon laser and imaged through
a 530-nm long pass filter. DsRed was excited with a 543-nm HeNe laser and
imaged through a 560-nm long pass filter. mCherry was excited with a 564-nm
HeNe laser and imaged through a 595-nm filter. The cells were counted in Z-stack
confocal images using the ImageJ software.

Quantitative PCR analysis. Total RNA was reverse transcribed into cDNA with
SuperScript III Reverse Transcriptase (Invitrogen). Quantitative real-time PCR
(qPCR) was performed with SYBR Green (TOYOBO) on a 7900HT Fast Real-Time
PCR System (Applied Biosystems). The relative RNA amount was calculated with
the DDCt method and normalized with gapdh (the primers are listed in
Supplementary Table 2).

Statistical analysis. All biological experiments were performed at least three
times. Data were analysed using Graphpad Prism 6 software. Quantitative data
were presented as the mean±s.e.m. The normality of data was examined by the
Shapiro-Wilk test. The data with normal distributions were analysed by the
unpaired Student’s two-tailed t-test between two groups, while the analysis of
variance test with the multiple comparison post-hoc test was used to compare three
or more groups. The data of non-normal distributions were analysed by the
Kruskal–Wallis test with adjustments for multiple comparisons46. Statistical
significance was denoted by *Po0.05, **Po0.01, ***Po0.001. The number of ACs
(1 to 4) on the same side of the pharynx was counted to evaluate the deficiency of
PAAs 3–6. Dysmorphic animals due to unknown developmental delays were
excluded equally from the control and experimental groups.

Data availability. Microarray data have been deposited in ArrayExpress with the
accession number E-MTAB-5406. All relevant data supporting the findings of this
study are available within the paper and its supplementary information files, or
from the authors on request.
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