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Abstract: Self-assembling nanoparticles (SANPs) promise an effective delivery of bisphosphonates or
microRNAs in the treatment of glioblastoma (GBM) and are obtained through the sequential mixing
of four components immediately before use. The self-assembling approach facilitates technology
transfer, but the complexity of the SANP preparation protocol raises significant concerns in the clinical
setting due to the high risk of human errors during the procedure. In this work, it was hypothesized
that the SANP preparation protocol could be simplified by using freeze-dried formulations. An
in-depth thermodynamic study was conducted on solutions of different cryoprotectants, namely
sucrose, mannitol and trehalose, to test their ability to stabilize the produced SANPs. In addition,
the ability of SANPs to deliver drugs after lyophilization was assessed on selected formulations
encapsulating zoledronic acid in vitro in the T98G GBM cell line and in vivo in an orthotopic mouse
model. Results showed that, after lyophilization optimization, freeze-dried SANPs encapsulating
zoledronic acid could retain their delivery ability, showing a significant inhibition of T98G cell
growth both in vitro and in vivo. Overall, these results suggest that freeze-drying may help boost the
industrial development of SANPs for the delivery of drugs to the brain.

Keywords: self-assembling nanoparticles; bisphosphonates; zoledronic acid; lyophilization; differential
scanning calorimetry; glioblastoma; scale-up

1. Introduction

Glioblastoma (GBM) is a highly aggressive and generally incurable brain tumor char-
acterized by a rapid invasion of the entire brain [1]. Despite the relentless progress of
treatment protocols, the prognosis of GBM is in most cases grim, with a devastatingly low
median patient survival time (14.6 months from the diagnosis) [2,3] as well as a considerably
high chance of recurrence [4].

Numerous attempts have been made to improve GBM therapeutic strategies, in-
cluding the loading of low-molecular-weight chemotherapy drugs such as docetaxel [5],
paclitaxel [6] and doxorubicin [7] within nanoparticles (NPs) for brain targeting. Among
these, zoledronic acid (ZOL) is the most potent amino-bisphosphonate and showed a
powerful anticancer activity in many types of tumors, including GBM [8–11]. However, the
advancements in clinical outcomes have been marginal so far. This is mainly due to the
unfavorable pharmacokinetic profile of ZOL that accumulates into the bone, making the
achievement of tumoricidal concentration in extraskeletal tissues challenging. In addition,
in the case of brain tumors, the presence of the blood–brain barrier (BBB) represents a
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further obstacle to hydrophilic drugs such as ZOL, thus preventing the drugs from reaching
the therapeutic target [12,13]. As such, the production of nanosystems endowed with
BBB-crossing ability may open novel therapeutic opportunities in the treatment of central
nervous system (CNS) tumors.

A novel formulation based on hybrid self-assembling nanoparticles (SANPs) for the
delivery of anionic drugs, e.g., bisphosphonates in GBM treatment, has been recently de-
veloped [14–16] and patented (WO/2012/042024 A1, EP2621539A1, US20140086979) by
our group. The promising results obtained by using SANPs for the delivery of bisphos-
phonates in GBM supported the designation of ZOL as an orphan drug by the European
Medicines Agency (EMA/COMP/509421/2016) and by the Food and Drug Administration
(11/29/2016) for the treatment of glioma [16]. The patented product is a SANP-based
formulation that is obtained by mixing lipid and inorganic components with ZOL. SANPs
spontaneously form following a set-up assembling protocol and must be immediately used
after the self-assembly. This strategy has been designed to overcome scale-up issues which
often limit the industrial development of nanomedicines. Therefore, ZOL-encapsulating
SANPs can be prepared by using components already available on the market or easy to
be prepared at industrial scales. The reconstitution of parenteral antineoplastic prepara-
tions must be carried out in a hospital pharmacy specifically equipped for these activities;
international guidelines for the preparation of parenteral antineoplastic drugs detail the
actions needed to minimize the risk of errors during the reconstitution. This is particularly
important in the case of SANPs, which self-assemble following a complex reconstitution
procedure associated with a high risk of errors. In clinical settings, the use of a single pow-
der component that can be easily reconstituted with a solvent represents a more appealing
option for SANP administration.

However, freeze-drying of lipid-based colloidal dispersions is challenging and requires
the use of cryoprotectants, which can protect the lipid bilayers from the damage caused
by ice crystal formation during freezing [17], probably by hampering the phase transition
and consequently preventing the formation of ice crystals [18]. Lyophilized formulations
are generally characterized by satisfactory stability, ease of handling in terms of shipping
and storage [19,20] and increased shelf life of products such as live virus vaccines [21]
and biological products [22]. Moreover, lyophilized liposomes can be stored with no
refrigeration, which allows a drastic reduction in storage costs.

Here, we optimized the SANP formulation protocol to obtain a single-component
powder formulation to be reconstituted with a suitable solvent immediately before admin-
istration. For this purpose, a SANP dispersion was produced and tested for its response to
freeze-drying. Subsequently, a thorough thermodynamic study was performed on batches
containing sucrose, mannitol and trehalose to assess the effect of the different cryoprotec-
tants on the developed formulation. Finally, in vitro and in vivo studies were performed to
evaluate whether the reconstituted freeze-dried ZOL-encapsulating SANPs possessed a
comparable ability to deliver ZOL in GBM cells and tissues.

2. Results and Discussion

The main objective of this work was the development of a strategy to simplify the
preparation of ZOL-loaded SANPs to obtain SANP formulations that are easy to set up
and suitable for industrial production. Specifically, the intent was to obtain a powder to
be reconstituted at the time of administration with a suitable solvent. The preparation of
ZOL-encapsulating SANPs usually involves three different steps (as depicted in Figure 1)
and an ordered mixing of four components. Briefly, CaP NPs (component 1) are mixed
with a ZOL solution to obtain CaP NP complexes. In a second step, pre-formed PEGylated
cationic liposomes (component 3) are mixed with a Tf buffer solution (component 4) to
obtain a colloidal dispersion of PL-Tf. SANPs are finally obtained by mixing the PL-Tf
complex with CaPZ and administered straight after. In this framework, the lyophilization
of SANPs in suspension was studied to select the cryoprotectant that shows the strongest
propensity to preserve the stability of nanocarriers.
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Figure 1. SANP preparation procedure. Preparation protocol of hybrid self-assembling NPs en-
capsulating ZOL (PL-Tf-CaP-ZOL/SANPs-ZOL). PL = PEGylated liposomes; Tf = transferrin; CaP
NPs = calcium phosphate nanoparticles; ZOL = zoledronic acid.

2.1. Lyophilization of SANP Formulations

In the perspective of this work, after the addition of a cryoprotectant, the mean size
and size distribution of the as-produced liposomes must be retained. Indeed, lyophilization
can lead to the formation of lipid aggregates [23]. Destabilizing effects such as water crystal
formation during freezing, vesicle aggregation after dehydration and phase transition
during rehydration do frequently occur [17]. In particular, the formation of ice in the
membrane is fatal for the vesicle and must be absolutely avoided [18]. The destabilizing
effect of lyophilization on liposomes in the absence of cryoprotectants is generally described
in terms of increases in size and polydispersity index, which occur due to a disordered
aggregation caused by the breakdown of the hydrogen bonds between the water molecules
and the phospholipids [20]. Furthermore, the uncontrolled release of the encapsulated
drug can occur during the secondary drying of the liposomes if the process temperature
exceeds the phase transition temperature of the liposomal membrane.

A cryoprotectant can hinder membrane phase transitions, protecting the liposomes
from the damage induced by ice crystallization and preventing the phase separation of
the lipid components and the uncontrolled release of the loaded active molecule [18].
Cryoprotectants are generally sugars, and their protective effect relies upon two main
mechanisms: (i) incorporation of sugar in place of water due to the interaction of sugar
with the polar heads of the phospholipids, which is associated with a drop in the phase
transition temperature of the lipid membrane; (ii) formation of a sugar matrix due to the
increase in the cryoprotectant concentration in the solution during freeze-drying. This
prevents vesicle melting and aggregation, as well as water crystallization upon freezing.
Furthermore, the interaction between the surface of liposomes and the sugar matrix reduces
the surface tension, thus stabilizing the nanocarriers after drying [24,25].

The cryoprotectant properties of sugars strongly depend on their proclivity to form a
solid amorphous phase upon brisk freezing [26]. Therefore, DSC has been used to appraise
the crystallization propensity of cryoprotectant solutions [27] and select the most suitable
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cryoprotectant among trehalose, mannitol and sucrose. In this study, DSC traces allowed
the determination of thermal transitions in each sample under heating and cooling [28].

All DSC profiles under heating, displayed in Figure 2, exhibit an endothermic transi-
tion peak. In the case of water, used as a reference (Figure 2A and Table 1), the extrapolated
average onset and peak appear at −0.57 ◦C and −2.58 ◦C, respectively, with an average
heat of fusion of 338 J/g, which is consistent with literature data (334 J/g) [29].
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Table 1. Thermal parameters of formulations containing mannitol, trehalose and sucrose.

Thermal Parameters of SANP Formulations in the Presence of Cryoprotectants

Phase Parameter Water Mannitol Sucrose Trehalose

Heating

Left limit (◦C) ± SD * - −27.8 ± 1.6 * - -
Peak (◦C) ± SD * - −20.4 ± 2.2 * - -

Right limit (◦C) ± SD * - −14.3 ± 2.0 * - -
Onset (◦C) ± SD * - −26.2 ± 2.1 * - -
∆H (J/g) ± SD * - 3.21 ± 0.38 * - -

Heating

Left limit (◦C) ± SD * −0.23 ± 0.10 * −9.24 ± 1.14 * −9.67 ± 0.6 * −10.0 ± 0.4 *
Peak (◦C) ± SD * 2.58 ± 0.01 * 1.99 ± 0.38 * 1.35 ± 0.30 * 1.73 ± 0.22 *

Right limit (◦C) ± SD * 8.26 ± 0.83 * 7.52 ± 0.40 * 7.57 ± 1.10 * 8.14 ± 1.72 *
Onset (◦C) ± SD * −0.57 ± 1.55 * −1.60 ± 0.10 * −1.65 ± 0.09 * −1.24 ± 0.03 *
∆H (J/g) ± SD * 338 ± 13 * 297 ± 13 * 283 ± 9 * 296 ± 17 *

* Standard deviations were calculated for n ≥ 2 independent batches; water was used as a reference.

In the presence of a cryoprotectant, the endothermic peak was broader than the water
peak due to the presence of solutes (Figure 2B–D), and the extrapolated onset and peak
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temperature values were slightly lower compared to water, with quite lower average heats
of fusion (Table 1). Differently from what has been observed with sucrose and trehalose,
in the case of mannitol a small exothermic peak was identified around −20 ◦C, with an
average heat of 3.21 J/g (Figure 2B). This peak was ascribed to a partial crystallization of
mannitol during heating.

Overall, DSC results demonstrated that sucrose and trehalose possess similar thermo-
dynamic attributes, while mannitol set out a slender propensity to crystallization, which is
not ideal for an optimized lyophilized product. Therefore, mannitol was excluded from the
subsequent studies.

In order to design an optimized freeze-drying process, the macroscopic collapse
temperature of the formulation (Tc) should be known [30]. Tc can be defined as the
threshold temperature above which the freeze-dried product loses its macroscopic structure
and collapses during freeze-drying [31]. Tc is approximately 2 ◦C higher than the transition
glass temperature (Tg) in the frozen state [32], or it is equal to the eutectic temperature
(Teu) if solutes are crystallized in the frozen solution. To develop an optimized product, the
operating lyophilization temperature needs to be considerably lower than Tc [33,34]. In
this work, a “safe” process temperature was set at 10 ◦C below the onset temperature of
the endothermic DSC peak (Table 1), i.e., at ≤−20 ◦C, with a “safe” pressure much lower
than the vapor pressure of water at that temperature, i.e., ≤0.2 mbar.

The freeze-dried formulations were evaluated for their technological attributes, in the
absence of the selected cryoprotectants (trehalose and sucrose), immediately after being
rehydrated. As displayed in Table 2, a major rise in SANP size and polydispersity index
(PI) was detected after lyophilization for SANPs without cryoprotectant and with trehalose.

Table 2. Mean diameter, polydispersity index and zeta potential of SANP formulations without or
with different kinds of cryoprotectants.

Technological Features of SANPs before and after Lyophilization

Cryoprotectant Lyophilization Mean (nm) ± SD * PI ± SD * PZ (mV) ± SD *

- Before 131.0 ± 10.7 * 0.143 ± 0.020 * +5.9 ± 0.7 *
After 244.2 ± 14.0 * 0.466 ± 0.030 * +6.4 ± 0.9 *

Sucrose
Before 162.4 ± 6.8 * 0.216 ± 0.020 * +8.1 ± 2.0 *
After 159.6 ± 15.4 * 0.245 ± 0.030 * +7.4 ± 0.7 *

Trehalose
Before 123.3 ± 4.2 * 0.149 ± 0.010 * +5.4 ± 0.6 *
After 380.0 ± 7.7 * 0.514 ± 0.300 * +6.5 ± 1.5 *

* Standard deviations were calculated for at least three independent batches.

The formulation containing sucrose showed an adequate stability in terms of mean
diameter and polydispersity index. The stabilizing impact of the cryoprotectant can be
associated with its binding to the liposome membrane interface which prevents membrane
mobility, thereby limiting membrane disruption during freezing [35]. To avoid the for-
mation of a cake, a rapid freezing in liquid nitrogen was necessary both to anneal the
product and hamper phase separation. As displayed in Table 3, the formulation was
named SANPs 1. Moreover, in order to facilitate industrial scale-up, solubilized Tf was
replaced with freeze-dried Tf. Thus, an additional formulation, namely SANPs 2, was
studied using solid lyophilized Tf instead of a Tf solution. In both cases, sucrose was added
before lyophilization.

The SANPs 1 formulation exhibited low mean diameter and PI after lyophilization,
thereby pointing at the key role of sucrose in preserving SANP stability and avoiding
nanoparticle aggregation. Therefore, the lyophilized SANPs 2 (SANP 2-L) formulation was
selected as the lead product for the second part of this study. To confirm the ability of the
selected novel formulation to deliver ZOL, the efficacy of SANP 2-L was tested in vitro and
in vivo compared to the starting SANPs 1.
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Table 3. Mean diameter, polydispersity index and zeta potential of SANPs 1 and SANPs 2 formula-
tions before and after lyophilization.

Characteristics of SANPs Lyophilized in the Presence of Sucrose

Formulation Lyophilization Mean (nm) ± SD * PI ± SD * PZ (mV) ± SD *

SANPs 1
Before 134.4 ± 3.3 * 0.126 ± 5.3 * +5.3 ± 0.1 *
After 145.6 ± 15.4 * 0.245 ± 0.03 * +8.9 ± 3.3 *

SANPs 2
Before 110.8 ± 6.5 * 0.165 ± 0.040 * +8.2 ± 3.2 *
After 91.3 ± 6.3 * 0.220 ± 0.030 * +12.0 ± 2.3 *

* Standard deviations were calculated for at least three independent batches.

2.2. In Vitro Effects of SANP Formulations

Although the SANPs showed physical–chemical characteristics appropriate for in-
travenous use, their cytotoxicity following the freeze-drying step was firstly investigated
in vitro in a GBM cell line. In order to investigate if the lyophilized formulation maintained
the ability to deliver ZOL and inhibit cell proliferation compared to the non-lyophilized
one, the antiproliferative effect induced by SANPs 1 and SANP 2-L was studied on T98G
cells after 72 h of incubation. Briefly, cells were seeded in 96-well plates filled with serum-
containing media, and after 24 h of incubation at 37 ◦C, cells were treated with increasing
concentrations (1.5–200 µM) of either the two different formulations or the respective plain
SANPs (used as reference compounds) for 72 h. Finally, an MTT assay was performed. As
reported in Figure 3, preliminary results showed that the dried formulation was character-
ized by a high efficacy in delivering ZOL in cells because it can significantly inhibit cell
viability at very low concentrations. In more detail, plain SANPs 1 showing a percentage of
cell viability lower than 80% at 200 µM but higher than 80% at 100 µM and plain SANP 2-L
showing 80% cell viability at the highest concentration (200 µM) were considered nontoxic
in our experimental model. Additionally, SANPs 1 inhibited 50% of cell growth (IC50) at a
concentration of 12.5 µM, while freeze-dried SANP 2-L had an IC50 equal to 1.56 µM. In
conclusion, we found that the freeze-drying step did not impair SANP delivery efficacy;
indeed, SANP 2-L, as we supposed, enhanced ZOL delivery and consequently enhanced
cell growth inhibition compared to non-freeze-dried SANPs. The highest toxicity of SANP
2-L evidenced in vitro could be reasonably ascribed to the use of freeze-dried Tf that, when
mixed with the cationic liposomes, could favor the Tf/liposome interaction, leading to
a higher amount of Tf conjugated on vesicle surface compared to SANPs 1. It can be as-
sumed that the preparation procedure of SANP 2-L led to an increased interaction between
nanoparticle surface and Tf, with the consequent highest amount of Tf molecules on SANPs
surface and increased target activity on cell receptors. In line with these observations, a
different value of zeta potential was also found for SANPs 1 and SANP 2-L (Table 3).

2.3. In Vivo Effects of SANP Formulations

Finally, the therapeutic efficacy of the different SANP formulations was evaluated
in vivo in an orthotopic GBM model. For this purpose, 2.5 × 105 U373-MG (Uppsala)
LUC cells were inoculated intra-brain into immunocompromised mice. This tumor model
closely recapitulates a histological phenotype consistent with human GBM. After 8 days,
when the tumor mass became visible by bioluminescence analysis, mice were divided
into three groups: untreated mice, mice treated with SANPs 1 and with mice treated with
freeze-dried SANP 2-L. Interestingly, in all cases, SANP formulations were well tolerated
as no toxic deaths or body weight loss was reported in animals. The antitumor efficacy
of SANP formulations was evaluated by using the IVIS imaging system. As reported in
Figure 4A, tumor growth was significantly inhibited starting from 23 days after treatment
with both SANP formulations that showed a very similar inhibition rate. Stabilization of
the disease for about two weeks was observed in 3/6 mice, and interestingly, 1/6 mice
treated with both SANPs 1 and SANP 2-L showed a complete disappearance of the tumor,
as confirmed by an undetectable bioluminescent signal (Figure 4B), lasting for at least
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four weeks (Table 4). Compared to previous results obtained in T98G cells, in vivo studies
did not show a significant difference in efficacy when using SANPs 1 and SANP 2-L.
More interestingly, both the formulations maintained the ability to deliver ZOL in a brain
tumor, compared to the previously developed formulation [10]. These data demonstrate
the possibility to freeze-dry SANP formulations as a strategy to strengthen their clinical
development, which will enable the use of ZOL for the treatment of GBM. Moreover, the
possibility to replace an aqueous solution of Tf with a freeze-dried Tf further contributes
to the stabilization of the formulation, making the storage of the starting components
less challenging. These in vivo preliminary results confirm the efficacy of the new SANP
formulation, thus supporting its potential use for the treatment of GBM.
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Figure 3. Cell viability assay on GBM cell line after treatment with the different formulations. T98G
cells were seeded at a density of 2.0 × 103 cells/well in 96-well plates in serum-containing media.
After 24 h incubation at 37 ◦C, cells were treated with increasing concentrations (1.6–200 µM) of
the two different formulations SANP 1 (after preparation) and SANP 2 and the respective plain
SANPs (used as reference compounds) for 72 h. MTT assay was performed as described in Section 3.
The overlapping concentration points in the graph have the same percentage values of cell viability.
Experiments were performed in triplicate. Data were expressed as mean value ± the standard
deviation calculated for at least three repeats.
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Figure 4. Antitumor efficacy of SANP formulation on orthotopic GBM xenograft model. U373-MG
(Uppsala) LUC cells were injected into the brain of male nude mice. Real-time tumor growth was
monitored using the IVIS imaging system 200 series (PerkinElmer). (A) Quantitative analysis of
luciferase activity in vivo at various time points. Luminescent signals are expressed as mean ± SD of
total flux of photons/s/cm2/steradian (p/s/cm2/sr). p values were calculated using an unpaired
two-tailed t-test. * p < 0.05; n = 6. (B) Representative images of mice analyzed before administration
of compounds (day 0) and during treatments on days 10, 23, 30 and 38. Mice with stable disease (SD)
or complete response (CR) after SANPs 1 or SANPs 2-L treatment are shown. Data were acquired
and analyzed using the Living Image software version 4.3 (PerkinElmer).

Table 4. Antitumor efficacy of SANP formulations against orthotopic GBM.

In Vivo Antitumoral Effect of SANPs

Treatment Groups * Tumor Volume
Inhibition & Stable Disease § Complete Response $

SANPs 1 58 3/6 1/6

SANPs 2-L 50 3/6 1/6

* Following U373-MG (Uppsala) LUC orthotopic injection, mice were treated with SANPs 1 or SANPs 2 iv at 20
µg/mouse/day for three days a week for three total weeks. & Tumor volume inhibition was calculated as the
nadir of the effect (day 30) by the following formula: (photons treated mice/photons untreated mice -1) × 100.
Standard deviation (SD) was calculated on day 30 referring to the numbers of photons. (SDs of SANPs 1 and
SANP 2-L were 7.8 × 104 and 9.7 × 104, respectively). § Stable disease was the observation of the same level of
bioluminescent signal for two weeks. $ Complete response was defined as mice with observed disappearance of
bioluminescent signal for at least four weeks after treatment start.

3. Materials and Methods
3.1. Materials

Zoledronic acid (ZOL), trehalose, mannitol and sucrose were kindly provided by
Lisapharma S.p.A. (Erba, Italy). 1,2-Dioleoyl-3-trimethylammonium-propane chloride
(DOTAP) was kindly provided by Lipoid GmbH (Ludwigshafen, Germany); cholesterol
(CHOL) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene
glycol)-2000] (DSPE-PEG2000) were purchased from Avanti Polar (Alabaster, AL, USA).
Sodium chloride, sodium hydroxide (NaOH), calcium chloride (CaCl2), sodium phosphate
dibasic (Na2HPO4), potassium chloride and human transferrin (Tf), were purchased from
Sigma-Aldrich Co. (Milan, Italy).

T98G cells were purchased from the American Type Culture Collection (ATCC). The
T98G cells were cultured at 37 ◦C in a 5% CO2 atmosphere in Eagle’s Minimum Essential
Medium (EMEM) containing L-glutamine (Gibco, Life Technologies, Carlsbad, CA, USA)
with the addition of 10% fetal bovine serum (FBS) decomplemented in the bath at 56 ◦C for
20 min (Lonza Group Ltd., Switzerland) and 1% solution of penicillin and streptomycin
(Gibco, Life Technologies Italy, Monza (MB), Italy).
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U373-MG (Uppsala) cells were purchased from ECACC and maintained in EMEM
(EBSS) medium (EuroClone, Pero (MI), Italy), 2 mM glutamine, 1% nonessential amino
acids (NEAAs), 1 mM sodium pyruvate (NaP) and 10% fetal bovine serum (FBS) (Gibco,
Life Technologies Italy, Monza (MB), Italy). Cells were infected with lentiviral luciferase
vector pRRLSIN.cPPT.RFPL4b.Luciferase (Addgene, Watertown (MA), USA), which allows
stable expression of luciferase for in vivo tumor growth monitoring.

3.2. Methods
3.2.1. Preparation of Freeze-Dried SANPs

PEGylated cationic liposomes (PL) (2.5 mg/mL) (DOTAP/chol/DSPE-PEG2000 1:1:0.5
weight ratio) were prepared by hydration of a thin lipid film, followed by extrusion. 1 mL
of PLs was mixed with 5 mg/mL of Tf dissolved in buffer solution at pH 8, at room
temperature for 15 min, thus obtaining a colloidal dispersion here named PL-Tf. Then,
calcium phosphate nanoparticles (CaP NPs) were prepared and complexed with zoledronic
acid (ZOL). Briefly, an aqueous solution of dibasic hydrogen phosphate (10.8 mM) was
added dropwise to an aqueous solution of calcium chloride (18 mM) under continuous
magnetic stirring. After 10 min of reaction, the resulting dispersion was filtered twice
through a 0.22 µm filter (Sartorius). CaP encapsulating ZOL (CaPZ) were prepared by
mixing 500 µL of CaP with 91 µL (0.4 mg) of an aqueous ZOL solution (0.125 M) in
phosphate buffer at pH 9.5 for 15 min. Finally, SANPs were obtained by mixing the PL-Tf
complex with CaPZ at room temperature for 15 min. The final product was then filtered
through a 0.22 µm filter. SANPs were prepared in the presence and in the absence of
cryoprotectants. Thus, in the case of freeze-dried SANPs, mannitol, trehalose or sucrose
were added at 5% w/w with respect to the theoretical solid component of SANPs.

3.2.2. Differential Scanning Calorimetric Analysis (DSC)

Thermoanalytical tests were carried out using a TA Q20 differential scanning calorime-
ter (TA Instruments, USA) on cryoprotectant solutions (5% w/w). Experiments were carried
out on sucrose, trehalose and mannitol solutions (5% w/w with respect to the theoretical
solid mass of SANPs). For each experiment, 15 µL of each solution was placed in a hermeti-
cally sealed DSC pan. The scans were performed under an inert nitrogen atmosphere (flow
rate: 50 mL/min) using the following steps: (i) samples were equilibrated at 40 ◦C and
cooled to −60 ◦C at 2 ◦C/min; (ii) an isotherm for 10 min was imposed; (iii) samples were
heated to 60 ◦C. Heating and cooling rates were 2 ◦C/min. Onset and peak temperatures,
along with variations in enthalpy (∆H), were observed. Deionized water was used as a
control. DSC traces were taken on at least three replicas.

3.2.3. Lyophilization

Before lyophilization, the samples were filtered on 0.2 µm acetate cellulose filters
(Sartorius) and frozen using liquid nitrogen to ensure the annealing of amorphous water
prior to lyophilization. Subsequently, aliquots (1.7 mL) of the product were poured into
separate vials. The lyophilization process was carried out at a pressure of 0.13–0.2 mbar
and with a temperature between −80 and −50 ◦C, for 24 h (Lyovapor L-200 Pro, Büchi
Italia s.r.l).

3.2.4. Particle Size Determination and Superficial Charge

The mean diameter, polydispersity index (PI) and zeta potential (ζ) of SANPs before
and after freeze-drying and reconstitution with water were determined using a Zetasizer
Ultra (Malvern Panalytical, Malvern, UK). Results were averaged over three measurements
from independent batches.

3.2.5. Cell Proliferation Assay

MTT assays were performed to assess cell viability. In detail, cells were plated at the
density of 2.0 × 103 cells/well in 96-well microtiter plates. After 24 h, cells were exposed to
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various concentrations of different formulations of SANPs to test their cytotoxicity. After
72 h, 10 µL of MTT (1 mg·mL−1) in 200 µL of medium was added to the cells in each well.
After 3 h incubation at 37 ◦C, the medium was withdrawn, and then the formazan crystals
were solubilized by adding 100 µL of DMSO and by mixing in an orbital shaker for 20 min.
Absorbance at 570 nm was measured using a plate reader. Experiments were performed in
triplicate. Data were expressed as mean value ± the standard deviation calculated for at
least three repeats.

3.2.6. In Vivo Study

Male nude (nu/nu) mice, 6 weeks old and weighing 24–26 g, were purchased from
Envigo S. Pietro al Natisone (Udine). All animal experimentation procedures were ap-
proved by the Italian Ministry of Health (authorization No. 386/2020-PR, released date
30/04/2020) and followed national and international directives (D.L. March 4, 2014, No. 26;
directive 2010/63/EU of the European Parliament and European Council; Guide for the
Care and Use of Laboratory Animals, United States National Research Council, 2011).

Mice were anesthetized and injected intracranially with 2.5 × 105 U373-MG UPPSALA
LUC glioblastoma cells/mouse, through the center-middle area of the frontal bone to a 2-
mm depth, using a 0.1 mL glass microsyringe and a 27-gauge disposable needle [18]. After
intracranial implantation, the drinking water was supplemented with Metacam (meloxicam)
to control postoperative pain and inflammation. After 7 days, mice were imaged using the
IVIS imaging system 200 series (Caliper Life Sciences, Hopkinton, MA, USA). Briefly, mice
were anesthetized with a combination of tiletamine–zolazepam (Telazol, Virbac, Carros,
France) and xylazine (xylazine/Rompun BAYER) given intramuscularly at 2 mg/kg. Then
mice were injected intraperitoneally with 150 mg/kg D-luciferin (PerkinElmer) and imaged
in the supine position 10 min after luciferin injection. On day 8, mice were randomized and
divided into three groups (untreated, SANPs and lyophilized SANPs) and the treatment
was started. Mice were treated intravenously (i.v.) at 20 µg ZOL/mouse/day with SANPs
three times a week for 3 consecutive weeks.

Imaging was performed at baseline (day of tumor cell injection) and several times
during the experiment. Data were acquired and analyzed using the Living Image software
version 4.3 (PerkinElmer Italy S.p.A., Milan, Italy).

Tumor growth was monitored by photon analysis. Complete tumor regression was
defined as an undetectable bioluminescent signal in the brain of mice, lasting for at least
four weeks. Animals were closely monitored by visual inspection and weighed daily
from the start of treatment and sacrificed when evident signs of tumor burden appeared
(especially weight loss >20% and severe neurological dysfunction).

4. Conclusions

This study explored an additional evolution of the SANP technology, with the aim of
reducing the complexity of the preparation protocol and at the same time increasing the
stability of the starting components. In particular, the purpose of the study was to provide
a ready-for-use formulation starting from a freeze-dried powder to be reconstituted by the
addition of the solvent immediately before administration. DSC studies, performed on
different cryoprotectants, indicated that sucrose is the most suitable excipient and provides
satisfactory protection of the formulation during lyophilization. This study also shed light
on the pivotal freeze-drying setup parameters. Newly designed SANPs showed a high
ability to deliver ZOL in GBM cells, as suggested by the significant inhibition of cell growth
even at very low concentrations. In addition, the outcomes of experiments performed in
an orthotopic model of GBM clearly indicate that the newly developed SANP formulation
maintained its ability to induce tumor growth inhibition, stabilization of the disease and,
more importantly, tumor regression in 1/6 mice. Taken together, results showed that
the modified SANP formulation displayed a promising therapeutic efficacy, paving the
way for additional studies devoted to the optimization of the production process from an
industrial standpoint.
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