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Abstract

In view of the growing industrial use of Bacterial cellulose (BC), and taking into account that it might become air-

borne and be inhaled after industrial processing, assessing its potential pulmonary toxic effects assumes high rele-

vance. In this work, the murine model was used to assess the effects of exposure to respirable BC nanofibrils

(nBC), obtained by disintegration of BC produced by Komagataeibacter hansenii. Murine bone marrow-derived

macrophages (BMMΦ) were treated with different doses of nBC (0.02 and 0.2 mg/mL, respectively 1 and 10 μg

of fibrils) in absence or presence of 0.2% Carboxymethyl Cellulose (nBCMC). Furthermore, mice were instilled

intratracheally with nBC or nBCMC at different concentrations and at different time-points and analyzed up to 6

months after treatments. Microcrystaline Avicel-plus® CM 2159, a plant-derived cellulose, was used for compari-

son. Markers of cellular damage (lactate dehydrogenase release and total protein) and oxidative stress (hydrogen

peroxidase, reduced glutathione, lipid peroxidation and glutathione peroxidase activity) as well presence of
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inflammatory cells were evaluated in brochoalveolar lavage (BAL) fluids. Histological analysis of lungs, heart and

liver tissues was also performed. BAL analysis showed that exposure to nBCMC or CMC did not induce major

alterations in the assessed markers of cell damage, oxidative stress or inflammatory cell numbers in BAL fluid

over time, even following cumulative treatments. Avicel-plus® CM 2159 significantly increased LDH release,

detected 3 months after 4 weekly administrations. However, histological results revealed a chronic inflammatory

response and tissue alterations, being hypertrophy of pulmonary arteries (observed 3 months after nBCMC treat-

ment) of particular concern. These histological alterations remained after 6 months in animals treated with nBC,

possibly due to foreign body reaction and the organism’s inability to remove the fibers. Overall, despite being a

safe and biocompatible biomaterial, BC-derived nanofibrils inhalation may lead to lung pathology and pose signif-

icant health risks.
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INTRODUCTION

Cellulose-based materials have been extensively used

by humans over the centuries (1). In fact, cellulose is the

most abundant renewable and naturally occurring biopoly-

mer on earth (2). It is best known as the main constituent

of plant cell walls and is commonly extracted from vege-

tal resources (2,3). Nevertheless, this biomaterial can also

be produced by some bacteria as an extracellular polymer

(4). The main differences between these two types of cel-

lulose - bacterial vs plant - are that bacterial cellulose (BC)

is obtained in a pure state (free of lignin, pectin or hemi-

cellulose) and is made up of ribbons with nanometric size,

which determines its very high surface area and ability to

absorb large amounts of water (5). Moreover, BC is pro-

duced through a relatively simple fermentation process,

while plant cellulose is isolated using hazardous chemi-

cals (2).

Plant cellulose fibers have found their way into many

products, such as widely used paper and textiles (6). BC,

on the other hand, has been studied for various biomedi-

cal applications including wound dressings (7), artificial

skin (8), blood vessels (9-11) and as a scaffold for tissue

engineering (4,12,13), due to its morphology, high purity,

water-holding capacity, tensile strength, malleability (4,5,

14) and biocompatibility. Mostly, these applications have

focused on BC as a stand-alone polymer, exploiting the

use of the naturally occurring BC membranes with mini-

mal manipulation of structural features. However, several

studies have also looked at the potential of BC nanofibrils

as additives to increase the mechanical strength and struc-

tural integrity of other polymeric networks, forming novel

and improved composite and nanocomposite materials

(3,15-18). Despite being the most available natural poly-

mer on earth, only recently cellulose has gained prominence

as a nanostructured material, in the form of nanocrystals

and nano/microfibrillar cellulose (19). Various methods

for the production of nanocrystals (or “nanowhiskers”)

and nano/microfibrillar BC have been described, such as

acid hydrolysis (using sulphuric and hydrochloric acids),

enzymatic hydrolysis and mechanical disintegration (20-

23). Specifically, the mechanical processes used for nano-

fibrillar cellulose manufacturing include shearing, grind-

ing and/or high-pressure homogenization of pulp (24). The

end-product of all these chemical and mechanical pro-

cesses usually consists of needle-like nanoparticles, which

assemble as a fine powder that can easily become air-

borne and be inhaled (19,20,25).

Production of nanocellulose from plant sources has until

now been performed on the laboratory scale, in up to kilo-

gram sized batches. However, a number of manufacturing

facilities around the world are now scaling up the produc-

tion, aiming to produce multiple tons per day. Among these

are CelluForce, Inventia, BioVision Technology, Borre-

gaard ChemCell, Melodia, Daicel Corporation, Seiko PMC

Corporation, along with several companies in Asia (26).

The production of cellulose nanocrystals (CNCs) is con-

sidered environmentally safe, being the first nanomaterial

that was considered as “non-toxic” and accepted on the

Canada’s Domestic Substance list (27). In fact, Kovacs et

al. (28) performed an ecotoxicological characterization of

CNCs in different aquatic species and showed that this

material has low toxicological potential and environmen-

tal risk at this level.

Cellulose has been described as having a low intrinsic

cellular toxicity in vitro, regardless of its origin (21,29,

30). However, the biological effects of inhaled plant cellu-

lose fibers have already been studied and have been shown

to cause cell damage and elevate the risk of developing

granulomas and fibrosis (1,31-34). The pulmonary effects

of inhaled BC nanofibrils, a more pristine biomaterial (com-

pared to plant cellulose), remains undetermined. With the

emergence of nanocellulose as a new industrial product

and considering the plethora of potential applications for

BC nano- and micro-whiskers, the assessment of the toxi-

cological effects and risks of airborne BC nanofibers

assumes particular relevance.

In this work, we investigated putative harmful effects

of BC nanofibrils in mouse lungs. BC nanofibrils were

administered intratracheally to mice and several toxicity-

associated parameters were evaluated in the lungs and

bronchoalveolar lavage fluids (BAL) collected at different
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time-points, up to 6 months. To our knowledge, this work

represents the first toxicological assessment of inhaled BC

nanofibrils, thus assuming particular relevance to the

industry of BC manufacturing and processing.

MATERIALS AND METHODS

Reagents. Bacteriological agar, casein peptone, and

yeast extract powder were purchased from Becton Dickin-

son (Franklin Lakes, NJ, USA). Citric acid hydrate, D-(+)-

glucose anhydrous, sodium dodecyl sulfate (SDS), sodium

dihydrogen phosphate anhydrous, sodium hydroxide, 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) and carboxymethyl cellulose (CMC, C5678) were

purchased from Sigma-Aldrich (St. Louis, MO, USA).

Avicel-plus® CM 2159 was obtained from FMC Biopoly-

mers, USA. Roswell Park Memorial Institute (RPMI) 1640

medium, fetal bovine serum (FBS) and penicillin-strepto-

mycin was obtained from Merck Millipore (Burlington,

VT, USA).

Preparation of bacterial cellulose nanofibrils.
Komagataeibacter hansenii (ATCC 53582) was activated

in mannitol broth and cultured statically at 30oC for 2

days. The culture was propagated at 30oC, under stirring,

for 24 hr, by the inoculation of 3% (v/v) from mannitol

broth to Hestrin-Schramm (HS) medium (35). Fresh HS

medium was then added to the culture, 500 mL were

transferred to glass plates (20 × 30 cm2) and incubated

statically at 30oC, for additional 10 days. The resulting BC

membranes were cut into small cubes, placed for 2 days in

4% (w/v) NaOH solution and then washed with distilled

water for 7 days. BC was then placed in 500 mL of 2%

(w/v) SDS solution for 12 hr for endotoxin removal. This

step was repeated and then BC cubes were washed with

distilled water for 2 days. Before use, BC cubes were

autoclaved (121oC, 15 min) and stored at 4oC.

BC nanofibrils were obtained by disintegration of the

BC cubes using a laboratory blender Vitamix (Vita Prep 3,

Bras Sulamericana) operated at 24 000 rpm for 30 min.

The fibrillated suspension with a fiber content of 4.77 mg/

mL was diluted to a concentration of 2 mg/mL and then

processed again with the Vitamix blend during 30 min with

(nBCMC) or without (nBC) 0.2% (w/v) carboxymethyl

cellulose (CMC). The nBCMC suspensions were auto-

claved at 121oC for 15 min while nBC suspensions were

sterilized by γ irradiation (25 kGy for 3 days, correspond-

ing to 0.35 kGy/hr), since the nanofibers without CMC

were not colloidally stable at higher temperature.

Endotoxin quantification. Endotoxin concentration

(EU/mL) in the samples was determined with the Pierce

LAL Chromogenic Endotoxin Quantitation Kit (Thermo

Fisher Scientific, Waltham, MA, USA) according to the

manufacturer’s instructions. Bacterial endotoxin catalyses

the activation of a proenzyme in the modified Limulus

Amebocyte Lysate (LAL) which catalyses the splitting of

p-Nitroaniline (pNA) from the colorless substrate. The

released pNA was photometrically measured at 410 nm.

Characterization of bacterial cellulose nanofibrils.
• Transmission electron microscopy (TEM): The

colloidal suspension of cellulose nanofibrils was spread in

a 300-mesh grid for 10 min. Then, the sample excess was

removed carefully with a filter paper and thereafter, one drop

of a 1% (w/v) phosphotungstic acid solution was added.

After 30 sec, the excess was removed with filter paper and

the samples were analyzed with a Scanning Electron Micro-

scope (SEM) (Vega3, Tescan, Brno, Czech Republic)

equipped with a Scanning Transmission Electron Micros-

copy detector (STEM) (Tescan).

• Zeta potential: The zeta potential of cellulose nano-

fibrils suspensions was estimated by Dynamic Light Scat-

tering (DLS) using a Zetasizer NanoZS, (Malvern Instru-

ments Ltd., Worcestershire, UK). Three measurements of

each suspension were performed and the zeta potential

values were determined using Henry’s equation (36).

• X-ray diffraction (XRD): XRD patterns of the lyo-

philized cellulose nanofibrils samples were performed in

an X-ray diffractometer (D/MAX-B, Rigaku Americas

Corporation, The Woodlands, TX, USA), using a copper

(Cu) tube and Ka radiation. Samples were examined with

a scanning angle of 2θ values from 5o to 50o at a rate of

0.5o/min. The crystalline index was determined using the

method described by (37).

In vitro assays.
• Culture of murine bone marrow-derived macro-

phages: Mouse bone marrow-derived cells (BMMΦ)

were differentiated in vitro according to previous reported

methods with some modifications (38). C57BL/6 mice

were anesthetized using a CO2 chamber and euthanized by

cervical dislocation. Femurs and tibias were removed and

cleaned in aseptic conditions. Bones were disconnected by

the articulations and then flushed using 5 mL of Roswell

Park Memorial Institute (RPMI) 1640 Medium (Merck

Millipore, Burlington, VT, USA) supplemented with 10%

fetal bovine serum (FBS) and 1% Penicillin-Streptomycin

(complete media). The obtained cell suspension of bone

marrow cells was centrifuged (300 g, 10 min) and the pellet

re-suspended in 10 mL of complete RPMI supplemented

with 20% L929-cell conditioned medium (LCCM). Cells

were allowed to differentiate into macrophages for 7 days,

at 37oC in a 5% CO2 atmosphere, in 6-well plates, at a den-

sity of 1 × 106 cells/mL. At day 4, culture media were

removed and replaced with fresh complete differentiation

medium. At day 7, differentiated cells were scraped and

seeded at the desired concentration in 96-well plates.
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• MTT reduction assay: BMMΦ and mouse fibro-

blast L929 cells were seeded in 96-well plates at a density

of 5 × 105 and 2 × 105 cells/well, respectively, and allowed

to adhere overnight at 37oC in a 5% CO2 atmosphere.

Then, cells were incubated for 24 hr in the presence 0.02

and 0.2 mg/mL (1 and 10 μg, respectively) of nBC, nBCMC

in a final volume of 200 μL/well. Phosphate-buffered saline

(PBS, pH 7.4) was added to the negative control. Cells were

also exposed to equal doses of microcrystals obtained from

Avicel-plus® CM 2159 (FMC Corporation, Philadelphia,

PA, USA), a plant-derived cellulose, used for comparison.

On the following day, cell culture media was removed and

cells’ metabolic viability was assessed by measuring the

reduction of the tetrazolium salt MTT. Briefly, 50 μL of

1 mg/mL MTT (Sigma-Aldrich) was added per well and the

plate was further incubated for 2 hr at 37oC protected for

light. In the end, MTT solution was removed and isopro-

panol added (100 μL/well) to solubilize formazan. Absorp-

tion was then determined spectrophotometrically at 570

nm in a Bio-Rad Model 680 (Bio-Rad laboratories, Hercu-

les, CA, USA) microplate reader and metabolic activity

expressed as percentage relative to the negative control.

In vivo assays. Female C57BL/6 mice were acquired

from Charles River Laboratories (Barcelona, Spain) and,

upon arrival at the animal facility of Biomedical Sciences

Institute Abel Salazar, separated randomly into groups.

Mice were housed in individually-ventilated cages and

handled in a laminar flow hood cabinet. Each mouse group

was given food and water ad libitum. Prior to treatment

administration, each mouse was anesthetized with an intra-

peritoneal (i.p.) injection of ketamine (100 mg/kg) (Merial,

Lyon, France) and xylazine (10 mg/kg) (Bayer, Leverkusen,

Germany). Three groups of animals (5 mice per group)

were exposed to 50 μL of nBCMC at the following doses:

0.04, 0.4 and 4 mg/kg (equivalent to 1, 10 and 100 μg of

fibers, respectively) via intratracheal administration using a

Microsprayer® Aerosolizer system (Microsprayer® Aero-

solizer-Model IA-1C, Penn Century, Wyndmoor, PA, USA)

coupled to an FMJ-250 High Pressure Syringe (Penn Cen-

tury, Wyndmoor, PA, USA). The different doses of nBCMC

used in this study were selected since we intended to assess

the effect of the fibers in the lungs using from very small

(0.02 mg/mL, 1 μg) up to very high (2 mg/mL, 100 μg) con-

centrations.

Fifty microliters of PBS or 0.2% CMC (referred as CMC100

and representing an amount of 100 μg) were administered

to two groups of animals used as controls. After different

time points, animals were euthanized by i.p. administra-

tion of a lethal dose of ketamine and xilazine and broncho-

alveolar lavage (BAL) collected as detailed in subsection

2.6. For pulmonary toxicity assessment, mice were divided

into different treatments groups, represented in supple-

mentary Table 1. Fig. 1 shows the treatment strategy. Ani-

mals were administered with 50 μL of either 100 μg of

nBCMC (nBCMC100), 100 μg of Avicel-plus® CM 2159

Fig. 1. Scheme of intratracheally instillations of C57BL/6 mice with nBCMC, nBC, CMC and Avicel-plus® CM 2159 and respective
group sacrifice/analysis time points.
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(Avicel100) or 100 μg of nBC (nBC100). Control groups

comprising mice treated with 50 μL of PBS or CMC100

were also performed. All the procedures involving mice

were performed according to the European Convention for

the Protection of Vertebrate Animals used for Experimen-

tal and Other Scientific Purposes (ETS 123) and directive

2010/63/EU of the European parliament and of the council

of 22 September 2010 on the protection of the animals used

for scientific purposes, and Portuguese rules (DL 113/2013).

Experiments were approved by the institutional board respon-

sible for animal welfare at ICBAS (109/2015) and by the

competent national board authority, Directorate-General of

Food and Veterinary Medicine (0421/000/000/2015).

Collection of bronchoalveolar lavage fluids (BAL).
At defined time-points, mice were euthanized, the trachea

was exposed and a small incision made below the larynx.

A catheter was inserted and secured with a suture thread

and the tissue washed three times with 500 μL of PBS.

The efficacy of the BAL fluid collection ranged from 80

to 90% of total volume injected. The first two lavages were

centrifuged at 2000 rpm (Eppendorf Centrifuge 5430 R)

for 10 min at 4oC. The supernatant was later aliquoted and

stored at −20oC for marker analysis and the recovered cells

were counted and used for flow cytometry analysis. Sam-

ples presenting blood contamination were rejected.

Flow cytometry. Flow cytometry analysis of BAL

recovered cells was performed by suspending the cells in

PBS containing 1% BSA and 10 mM sodium azide (FACS

buffer) and blocking unspecific antibody binding by pre-

incubation with anti-FcγR mAb. Cell staining was per-

formed by incubation with anti-mouse CD19 fluorescein

isothiocyanate-conjugate (clone 1D3), anti-mouse CD11b

Phycoerythrin-conjugate (clone M1/70) (both from BD

biosciences, San Diego, CA, USA), anti-mouse F4/80 Phyco-

erythrin-cychrome 5.5-conjugate (clone BM8) (eBioscience,

San Diego, CA, USA) and anti-mouse Ly6G Allophycocy-

anin-conjugate (clone 1A8), anti-mouse CD11c brilliant

violet 421-conjugate (clone N418) and anti-mouse CD3

brilliant violet 510-conjugate (clone 17A2) (all from Bio-

legend, San Diego, CA, USA) mAb. Dead cells were

excluded from the analysis following staining with fix-

able viability dye Allophycocyanin-eflour 780-conjugate

(eBioscience). Antibody-labelled cells were detected in an

FACS Canto II using FACS Diva software (BD biosciences,

San Diego, CA, USA). At least 100 000 events were acquired

per sample. The collected data files were analyzed using

FlowJo X 10.0.7r2 (Tree Star inc., Ashland, OR, USA).

Cytotoxic and oxidative stress marker analysis in
BAL fluids.

• Protein quantification: Total protein concentration

in the BAL was determined using a microBCA Protein

Assay kit (Pierce, Rockford, IL, USA), according to the

manufacturer’s instructions. Briefly, samples were diluted

in micro BCA working reagent and incubated at 37oC for

2 hr. Absorbance was measured at 562 nm and protein

concentration expressed as μg/mL. Increase in the protein

concentration in BAL fluid is considered a measure of

increased permeability of alveolar-capillary barriers.

• Lactate dehydrogenase (LDH) release: Pulmonary

damage following treatment was assessed by measure-

ment of LDH release. LDH is a strictly intracellular enzyme,

and its presence outside of cells indicates compromised

cell membrane and consequently cell death. Quantifica-

tion of LDH release was performed in BAL using Pierce

LDH Cytotoxicity Assay Kit (Thermo Fisher Scientific)

following the manufacturer’s instructions. Samples were

diluted in an assay buffer and combined with NAD+, lac-

tic acid, tetrazolium salt, and diaphorase. Briefly, extracel-

lular LDH catalyzes the conversion of lactate to pyruvate

via NAD+ reduction to NADH. Diaphorase then uses

NADH to reduce a tetrazolium salt to a red formazan

product. Absorbance was read at 490 nm and results

expressed as percentage of LDH release relatively to con-

trol after subtracting the absorbance values at 680 nm

(background signal).

• Hydrogen peroxide (H2O2) quantification: Levels

of H2O2, a reactive oxygen species that contributes to oxi-

dative stress and therefore cell damage when produced

abnormally, were measured using the Fluorimetric hydro-

gen Peroxide assay kit (Sigma-Aldrich) following the

manufacturer’s instructions. Briefly, BAL samples were

diluted in assay buffer combined with horseradish peroxi-

dase and peroxidase. The peroxidase substrate generates an

infra-red fluorescent product after reaction with hydrogen

peroxidase. Fluorescence intensity was measured at

λex = 640/λem = 680 and H2O2 concentration, expressed as

µM, calculated after interpolating the samples’ fluores-

cence values from a standard calibration curve.

• Quantification of total glutathione (GSH): Glu-

tathione (GSH), a tripeptide (γ-glutamylcysteinylglycine)

that is an essential electron donor to glutathione peroxi-

dase in the reduction of hydroperoxides was determined in

BAL using the biochemical assay Glutathione assay kit

(Cayman Chemical, Ann Arbor, MI, USA) according to

the manufacturer’s instructions. Briefly, GSH was ana-

lyzed following a 1 : 1 dilution of the BAL fluid sample in

MES buffer (2×) [0.4 M 2-(N-morpholino)ethanesulfonic

acid, 0.1 M phosphate, and 2 mM EDTA (pH 6.0)] con-

taining NADP+, glucose-6-phosphatase, glutathione reduc-

tase, glucose-6-phosphate dehydrogenase and 5,5'-dithio-

bis-(2-nitrobenzoic acid) (DTNB). The sulfhydryl group

of GSH reacts with DTNB leading to the production of a

yellow colored 5-thio-2-nitrobenzoic acid (TNB). The

mixed disulfide GSTNB (between GSH and TNB) formed

is reduced by glutathione reductase to GSH, a reaction that
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produce more TNB. The rate of TNB production is directly

proportional to this recycling reaction, which in turn is

directly proportional to the concentration of GSH in the

sample. GSH concentration, expressed as μM, was deter-

mined after measuring the absorbance of the samples at

405 nm and interpolation from a standard calibration curve.

• Glutathione peroxidase (GPx) activity: Activity of

GPx, an antioxidant enzyme that catalyses the reduction of

hydroperoxides by reduced glutathione, was determined in

BAL using the Glutathione Peroxidase Assay Kit (Cay-

man Chemical) through an indirect coupled reaction with

glutathione reductase. Oxidized gluta- thione produced

upon reduction of hydroperoxide by GPx is recycled to its

reduced state by glutathione reductase and NADPH.

Absorbance was measured at 340 nm and a decrease in the

absorbance is directly proportional to the GPx activity

(expressed as nmol/min/mL) in the sample.

• Lipid peroxidation: Lipid peroxidation, an indica-

tor of cellular damage and oxidative stress, was measured

using the TBARS Assay Kit (Cayman Chemical) according

to manufacturer’s instructions. Specifically, levels of thio-

barbituric acid reactive substances (TBARS) were quanti-

fied by measuring the absorbance of malondialdehyde-

thiobarbituric acid (MDA-TBA) adducts in BAL fluid

samples at 532 nm. The MDA-TBA adducts were formed

by the reaction of MDA and TBA under high temperature

(100oC) via acid hydrolysis.

• Myeloperoxidase activity: Myeloperoxidase (MPO)

is an enzyme that is released upon neutrophils stimulation

and therefore serves as an index of neutrophil infiltration

(39). MPO was quantified in BAL using the Neutrophil

Myeloperoxidase Activity Assay Kit (Cayman Chemical)

according to the manufacturer’s instructions. Briefly, sam-

ples were diluted in assay buffer and 3,3',5,5'-tetramethyl-

benzidine (TMB), which reacts with MPO yielding a blue

color detectable by its absorbance at 650 nm. Plate was

incubated for 10 min at room temperature and then absor-

bance was read.

Tissue sample and histopathological analysis. The

lungs, heart and liver were fixated in 10% neutral buff-

ered formalin and routinely processed. Slides were H&E-

stained for histological analysis, following the International

Harmonization of Nomenclature and Diagnostic Criteria

for Lesions in Rats and Mice (INHAND) guidelines for

respiratory tract lesions (40).

Statistical analysis. Statistical analysis was performed

using GraphPad Prism 5 (GraphPad Software, San Diego,

CA, USA). Results were expressed as mean ± SD. Nor-

mality of the distributions was examined prior to each

analysis using Kolmogorov-Smirnov normality tests, and

taking into account the acceptability of skewness and kur-

tosis values. According to the results from the normality

tests, one-way ANOVA, followed by Bonferroni’s multi-

ple comparison post-test or Dunnett’s Multiple Compari-

son Test was performed wherever appropriate.

RESULTS

Characterization of cellulose nanofibrils suspension.
As shown in Table 1, BC nanofibrils obtained by the

blending process herein described have a negative surface

charge (−9.8 mV). This result is in agreement with previ-

ous reports that described a zeta potential of −16.9 mV for

fibrillated BC (41). Following sterilization by autoclaving,

agglomeration of the nanofibrils in suspension occurred.

This is an expected effect since the BC nanofibrils suspen-

sion presents a fairly low surface charge (<|30 mV|) and

therefore poor colloidal stability (42). To obtain a stable

and homogeneous solution after autoclaving, 0.2% CMC

was added to the BC nanofibrils. As observed in Table 1,

nBCMC presented an even more negative surface charge

(−62.8 mV), compared to nBC. After sterilization, the

nBCMC nanofibrils suspension indeed remained stable

and homogeneous.

The crystallinity analysis of nBC presented the charac-

teristic diffraction pattern of cellulose I, similar to those

reported in the literature for BC (43), corresponding to a

crystallinity index (CI) of 75% (Table 1). nBCMC pre-

sented a slightly lower CI (69%) (Table 1). Regarding

nanofibrils morphology, results showed that nBC has an

average width of 43.0 ± 16.5 nm (Fig. 2A, Table 1). The

nBCMC nanofibrils presented a width of 47.0 ± 19.5 nm

(Fig. 2B, Table 1), which was not significantly different

from nBC.

Endotoxin quantification. The potential presence of

endotoxins, which include lipid A, a glucosamine-based

phospholipid found in the outer monolayer of the outer

membranes of most Gram-negative (44), is one of the main

concerns when using materials of microbial origin for bio-

medical applications. Indeed, the presence of bacterial endo-

toxins in biomedical products may produce  fever, septic

shock and even death (45,46). The endotoxin quantifica-

tion obtained in the LAL test is shown in Table 2.

In vitro cytotoxicity caused by the cellulose nanofibers.
The in vitro cytotoxicity of different concentrations of cel-

Table 1. Carboxymethyl cellulose and bacterial cellulose sus-
pension properties (crystallinity, zeta potential and nanofibrils
width)

Crystallinity

(%)

Zeta potential

(mV)

Nanofibrils width

(nm)

nBC 75 0−9.8 ± 0.4 43 ± 16.5

nBCMC 69 −62.8 ± 1.5 47 ± 19.5
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lulosic materials was evaluated by measuring the meta-

bolic viability of BMMΦ from C57BL/6 mice. Results in

Fig. 3 show that neither nBC nor nBCMC affected the

Fig. 2. TEM micrograph of (A) nBC and (B) nBCMC after thermal sterilization. The red arrow indicates nanofibrils bundles that were
not observed in the presence of CMC100.

Table 2. Endotoxin levels measured in CMC, nBCMC, nBC and
a cellulose sample from vegetable origin

Material [Endotoxins] (EU/mL)

nBC 0.05

nBCMC* 0.70

Avicel-plus® CM 2159 0.50

*nBCMC is nBC containing 0.2% CMC. Endotoxin level of CMC
was 0.8 EU/mL.

Fig. 3. Metabolic viability of the (A) BMMΦ and (B) L929 cells after treatment with different cellulosic materials assessed by MTT
assay. BMMΦ and L929 cells were exposed to increasing doses of nBC, nBCMC and Avicel (1 and 10μg) for 24 hr. In addition, cells
were treated with PBS (control). Data is expressed as percentage relative to the control and presented as mean ± SD of three inde-
pendent experiments. All the treatment conditions were compared with the control using the Dunnett’s Multiple Comparison Test.
*p < 0.05 and **p < 0.01, compared to control (non-treated cells).

metabolic activity, after 24 hr exposure. A significant

increase in metabolic viability was obtained after treat-

ment with 10 μg of nBC and 1 μg of nBCMC, an effect

that was previously observed by others when exposing

macrophages to plant cellulose (47,48).

Assessment of acute toxicity. Bacterial cellulose is

normally regarded as a “biocompatible” material (49).

However, dose-dependent cytotoxic effects and pulmo-

nary damage were observed in mice treated with cellulose

nanocrystals of plant origin (34). To assess putative toxic

effects of nBCMC, mice were exposed to different doses

of this material via intratracheal administration and pul-
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monary damage or inflammation was assessed by quanti-

fying soluble markers in the BAL or by lung histological

analysis. Dysfunction of the air-blood barrier has been

identified as a sign of acute lung injury (50) and can be

assessed by the total protein measurement in BAL as

increased permeability or damage of the air-blood barrier

may cause transudation of serum proteins into the fluid of

the lungs (51). As shown in Fig. 4A, no significant differ-

ences in BAL total protein content were found between

control and treated groups or among the different treated

groups, 24 hr after instillation. Moreover, as shown in Fig.

4B, the different treatment dosages did not increase lac-

Fig. 4. Quantification of (A) total protein and (B) LDH release in the BAL samples after 24 hr treatment with different dosages of
nBCMC. *p < 0.05 comparing CMC100 and nBCMC 100μg to control.

Fig. 5. Mice lung sections after CMC100 and nBCMC1, 10 and 100 treatments during 24 hr (40x magnification, scale bar = 200 μm).
Treated groups presented mild diffuse degeneration of terminal bronchioles and mild multifocal to coalescing acute bronchioloal-
veolar inflammation, composed of neutrophils and macrophages that surround terminal bronchioles and occupy adjacent alveoli
(arrows). Control groups presented normal lung histology.

tate dehydrogenase (LDH) release to the BAL, an indica-

tor of acute toxicity to lung cells promoted by inhaled

substances (52). Actually, LDH levels in BAL fluids of

mice treated with CMC100 or nBCMC100 were lower than

in the control group. Despite indicators of inflammation

were not detected elevated in the BAL, histological analy-

sis of the lungs nevertheless showed that mice exposed to

1, 10 and 100 μg of nBCMC and CMC presented a mild

diffuse degeneration of terminal bronchioles, character-

ized by epithelial blabbing and cytoplasmic vacuolization,

and a mild multifocal to coalescing acute bronchioalveo-

lar inflammation (Fig. 5). The inflammatory infiltrate was
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composed of neutrophils and macrophages that infiltrate

the terminal bronchiolar walls. Scattered neutrophils and

macrophages were present in bronchiolar lumina, alveolar

ducts and alveoli. These results altogether indicate that a

single intratracheal challenge with nBCMC or CMC induced

mild inflammatory effects in the mouse lungs.

Assessment of nBCMC pulmonary cytotoxicity and
oxidative stress. The lungs are the principal route into

the human body for airborne particles often described as

Fig. 6. Assessment of lung damage and oxidative stress responses in BAL fluid of C57BL/6 mice intratracheally instilled with
CMC100, nBCMC100 and Avicel100 over time. (A) air-blood barrier damage was evaluated by total protein quantification, **p < 0.01,
###p < 0.001 and &p < 0.05 comparing Avicel100 (3 months, 4 adm.) with control and with CMC100 (3 months, 4 adm.) and nBCMC100 (3
months, 4 adm.), respectively. The quantification was performed by using calibration curves obtained with the appropriate stan-
dards. (B) lung cellular damage was evaluated by LDH release quantification and oxidative stress was measured as (C) H2O2, (D)
total GSH, (E) GPx activity and (F) MDA quantification. Bars correspond to means ± SD (n = 3 or 5 mice per group).
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inducers of lung damage and oxidative stress (1,34,53,54).

Mice were treated according to Fig. 1 and Supplementary

Table 1, which includes groups treated with a single dose

(100 μg/mouse) analyzed after 24 hr and 1 month, and

groups treated weekly with 4 cumulative doses (400 μg/

mouse) analyzed 1, 3 and 6 months after the first treat-

ment.

Total protein quantification and LDH released into the

BAL (Fig. 6A, 6B) showed no significant differences

between the nBCMC100, CMC100 treatment groups and the

control, further indicating that exposure to these materials

do not severely damage the air-blood barrier. However,

multiple treatments with Avicel100 induced a significantly

increased release of LDH comparatively to control, CMC100

and nBCMC100 treatments, as detected 3 months upon the

first treatment. This data confirms that the cumulative

exposure to the tested plant cellulose nanofibrils promotes

cellular damage in the mice lungs, which is in accordance

with previous observations made by others (1,34,55,56).

Moreover, no treatment induced significant changes in any

of the oxidative stress biomarkers tested (Fig. 6C-6F).

One month after treatment with nBCMC100 mice exhib-

ited identical phenomena as observed 24 hr after exposure,

although these also presented multifocal medial hypertro-

phy of pulmonary arteries (present in 1/6 animals exposed

to a single dose and in 3/6 animals exposed to 4 doses),

characterized by hypertrophy of smooth muscle in the

tunica media, increased connective tissue in the adventitia,

presence of visible internal elastic lamina and increased

ration of thickness of media/total diameter of intra-acinar

arteries (40). After 3 months, CMC100 and Avicel100 groups

presented mild diffuse degeneration of terminal bronchi-

oles and mild multifocal chronic bronchioloalveolar inflam-

mation, composed of macrophages, lymphocytes and plasma

cells, whereas nBCMC100 group showed moderate diffuse

degeneration of terminal bronchioles, moderate multifo-

cal to coalescing chronic bronchioloalveolar inflamma-

tion, with higher numbers of infiltrating leukocytes and

Fig. 7. Mice lung sections after CMC100, nBCMC100 and Avicel100 treatments during 3 months (40x magnification, scale bar = 200μm).
CMC100 and Avicel100 groups presented mild diffuse degeneration of terminal bronchioles and mild multifocal chronic bronchioloal-
veolar inflammation, composed of macrophages, lymphocytes and plasma cells, whereas nBCMC100 group showed moderate dif-
fuse degeneration of terminal bronchioles, moderate multifocal to coalescing chronic bronchioloalveolar inflammation, with higher
numbers of infiltrating leukocytes and also multifocal medial hypertrophy of pulmonary arteries (marked with an arrow). Control
groups presented normal lung histology.
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also multifocal medial hypertrophy of pulmonary arteries

(Fig. 7). Animals exposed to multiple Avicel100 treatments

showed 3 months after the first treatment a mild diffuse

degeneration of terminal bronchioles. The presence of

multifocal medial hypertrophy of pulmonary arteries (3/6

animals) was still observed in mice treated with 4 doses of

nBCMC100 (Fig. 7).

Since CMC alone caused mild diffuse degeneration of

terminal bronchioles, which could possibly explain the nega-

tive effect induced by nBCMC, we performed another

assay in which mice were exposed to 4 doses of BC fibers

without CMC (nBC100) and analyzed 6 months after the

first treatment. The extended time point allowed assessing

putative cardiac or hepatic hypertension-related lesions.

As shown in Fig. 8, animals exposed to nBC also pre-

sented moderate diffuse degeneration of terminal bronchi-

oles and, as observed in the previous assay, the presence

of multifocal medial hypertrophy of pulmonary arteries (4/

5 animals) was still observed. Mice treated with Avicel100

only showed mild diffuse degeneration of terminal bron-

chioles, as observed in the previous in vivo assay. Table 3

summarizes the histological findings referred above. Mice

of the different groups showed no cardiac or hepatic

lesions. These results, observed 3 and 6 months after treat-

ment, may be due to the multifocal (rather than diffuse)

distribution of the hypertrophy of pulmonary arteries (in

the case of the nBCMC100 and nBC100 group), or because

the animal’s coping ability was not overcome during the

incubation periods. Moreover, none of the treatments induced

measurable systemic repercussions over time, since no

alterations in the weight of the removed organs was ob-

served. Altogether, the histological results confirmed the

hazardous effect of BC nanofibrils inhalation.

Effect of the BC nanofibrils in the recruitment of
inflammatory cells to lungs. To assess the effect of BC

nanofibrils exposure in promoting cell recruitment to the

broncoalveolar space, the number and proportions of dif-

ferent leukocyte cell populations present in the BAL flu-

ids were assessed by flow cytometry using the gating

strategies defined in the Supplementary Fig. 1, in the sup-

plementary material. As shown in Fig. 9A, 9B, higher

numbers of neutrophils (Ly6G+CD11bhigh cells) and mac-

rophages (F4/80+CD11c+CD11bint cells) were detected in

Fig. 8. Mouse lung sections after nBC100 and Avicel100 treatments during 6 months (400x magnification, scale = 20μm). nBC100

group presented moderate diffuse degeneration of terminal bronchioles, multifocal medial hypertrophy of pulmonary arteries
(marked with an arrow) and moderate multifocal to coalescing chronic bronchioloalveolar inflammation, composed of macro-
phages, lymphocytes and plasma cells, whereas Avicel100 group showed mild diffuse degeneration of terminal bronchioles and mild
multifocal chronic bronchioloalveolar inflammation with inflammatory infiltrates similar to those observed with nBC100.

Table 3. Summary of the histological alterations observed after the different treatments

Histological findings

Treatments

3 months 6 months

CMC100 nBCMC100 Avicel100 nBC100 Avicel100

Diffuse degeneration of terminal bronchioles mild moderate mild moderate mild

Chronic bronchioloalveolar inflammation mild

moderate

multifocal to

coalescing

mild

moderate

multifocal to

coalescing

mild

Multifocal medial hypertrophy of pulmonary arteries - - -
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the BAL of mice treated with single or repeated doses of

CMC100 and nBCMC100 as compared to control samples (no

treatment). However, this increase in cell numbers did not

reach statistical significance, mostly due to the high vari-

ability in the number of inflammatory cell numbers of

those populations recovered in the BAL fluids among indi-

viduals within each group. The F4/80+CD11c+CD11bint cell

population was the predominant one at all assessed time

points and treatments (Supplementary Fig. 2). Further-

more, MPO activity was quantified in BAL fluid as a fur-

ther indicator of neutrophil inflammation. As shown in

Fig. 10, no significant alterations were observed between

control and treatment groups in MPO activity, in agree-

ment with the flow cytometry results. Presence of lympho-

cytes in BAL fluid in this study was also assessed, 1 and 3

months after treatments, since these cells are responsible

for the adaptive immune response that becomes only

noticeable after the early phase of the inflammatory pro-

cess (57). Fig. 9C and D shows that B cell (CD19+) and T

cell (CD3+) numbers detected in BAL fluids recovered

from the mice treated with CMC100 or nBCMC100, only

slightly vary from those of controls. Nevertheless, and

although not reaching statistical differences, mean values

of T cell numbers for all assessed groups were well above

the one of the control. The BAL fluids of Avicel100 treated

mice, recovered 3 months after the first of four weekly

treatments, presented the highest numbers of inflamma-

tory cells (Fig. 9A-9D), that were predominantly of mono-

nuclear character. At this time point nBCMC100 and

Avicel100 similarly induced the recruitment of T cells.

However, the latter treatment was the one inducing the

highest accumulation of B cells in the BAL fluid, which

Fig. 9. Cell profiles in BAL fluid of C57BL/6 mice 24 hr, 1 month and 3 months post-exposure to one or four doses of CMC100, nBCMC100

and Avicel100. The number of (A) macrophages, (B) neutrophils, (C) B cells and (D) T cells was assessed by flow cytometry. Means ±
SD (n = 3 or 5 mice per group). ***p < 0.001 comparing nBCMC100 (1 month, 1 adm.) with CMC100 (1 month, 1 adm.).
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was consistent with the presence of lymphocytes and

plasma cells detected by histology analysis in the lung tis-

sue. Altogether, these results further indicate that inflam-

matory effects of nanofibers inhalation are non-negligible.

DISCUSSION

Many applications for cellulose nanofibers have been

proposed and the trend is for the number of patents to con-

tinue rising (19). BC presents a very attractive alternative

to plant cellulose in some of these applications, given its

purity. Independently of the production method used, BC

nanofibrils become airborne, and potentially inhalable,

upon drying. The production on an industrial scale of dif-

ferent nanoparticulate celluloses further emphasizes the

need to carefully evaluate the potential biological impact

of these materials.

Different molecules or polymers have been used to

enhance colloidal suspension/dispersion of the cellulose

fibers. CMC, a water soluble and linear anionic polysac-

charide derived from cellulose, is frequently used to reduce

fibers flocculation since it can reduce fiber-fiber interac-

tions (58). It was demonstrated that a concentration ratio

of CMC/BC nanocrystals above 0.05 increases the colloi-

dal stability/dispersion of BC nanocrystals obtained through

acid hydrolysis, which normally tends to aggregate due to

hydrogen bonds and van der Waals attraction (59). The

addition of CMC to the BC nanofibers significantly in-

creased the surface charge and improved the colloidal sta-

bility (60,61). Indeed, after thermal sterilization, the nano-

fibrils suspension remained stable and homogeneous.

However, since the presence of CMC was found to have

some biological impact in the in vivo trials, a suspension

of nBC was sterilized by gamma irradiation, yielding a

stable dispersion of the fibers at room temperature that

could be administrated in the mice. Thus, both nBCMC

and nBC were studied in vivo.

Crystallinity is a major factor that specifically influ-

ences the mechanical properties of materials. The crystal-

linity degree of BC membranes formed in static culture

was previously reported as ranging between 60-90% (13).

The high number of inter- and intra-hydrogen bonds

between adjacent chains of glucans creates a regular crys-

talline arrangement, resulting in the distinct diffraction pat-

tern, swelling, and reactivity of cellulose (62). We speculate

that the slight reduction of the crystallinity of the BC

nanofibers in the presence of CMC may arise from the sta-

bilization of the fibers, which upon drying reduce the

interfibers interaction, so impairing a slight crystallinity

increase related to the aggregation of the fibers and its

tight interaction.

The width of the nanofibrils in the nBC and nBCMC

samples is not significantly different and is in agreement

with data from the literature (13,63,64). In addition, no

significant formation of nanofibrils bundles were observed

in the presence of CMC, confirming the efficacy of the

dispersing agent. These results showed that CMC dispersed

well the nBC and maintained the suspension stable after

autoclaving. Furthermore, the presence of CMC during the

homogenization did not cause an additional defibrillation

of the bacterial cellulose nanofibrils. It is worth noting that

a simple deconstruction process using a laboratory blender

was able to separate nanofibrils from the complex 3D net-

work of BC cubes into a suspension of individual nanofi-

brils. However, the high standard deviations associated to

the average width of the BC nanofibrils indicate that the

homogenization process introduces a relatively high het-

erogeneity to nanofibrils production. Nevertheless, other

complex processes of nanofibrils production described in

the literature, requiring higher energy and time, have also

failed to achieve homogeneity (64-66).

The presence of endotoxins in the outer membranes of

most Gram-negative bacteria (44), is one of the main con-

cerns when using materials of microbial origin for bio-

medical applications. The accepted maximum limit for

endotoxin set by the Food and Drug Administration (FDA)

for medical devices is 0.5 endotoxin units (EU)/mL (67).

The endotoxin levels in the BC nanofibers produced in this

work are very close to, or even below, the FDA approved

limit values (67). Furthermore, it was described that the

endotoxin limits for drugs used in vivo studies using mice

as preclinical research model are 1.5 and 3 EU/mL, depend-

ing on the used dose (0.100 or 0.050 mL/h, respectively)

(68).

Considering that, it is not expected that our material

should induce adverse reaction in vivo since the detected

Fig. 10. Pulmonary inflammation of C57BL/6 mice intratra-
cheally instilled with CMC100, nBCMC100 and Avicel100 over time
(up to 3 months) evaluated by the myeloperoxidase (MPO)
quantification in BAL fluid. Means ± SD (n = 3 or 5 mice per
group). No statistically significant differences were detected.
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endotoxin levels are below the ones reported in the litera-

ture for in vivo assays (68). Several studies addressed this

issue (69,70). Martinez Avila et al. (69) obtained BC sam-

ples with endotoxin levels of 0.1 EU/mL. Nevertheless,

the purification/depyrogenation method used in that work

is very complex and time consuming. The perfusion of the

BC cylinders with NaOH for 28 days was followed by the

perfusion with deionized water for 7 days and the wash-

ing of the densified bacterial nanocellulose hydrogel disks

in sterile and non-pyrogenic conditions for 14 days. Fur-

thermore, the authors performed the endotoxin quantifica-

tion after endotoxicity extraction with endotoxin-free water

(69). Comparatively, the approach used in this study,

adapted from Leitão et al. (71), is much faster and sim-

pler, yielding samples with low endotoxin levels.

The assessment of the in vitro and in vivo effect of cellu-

lose nanofibrils is an essential element of a toxicological

study. Overall, the in vitro results show that the cellulose

samples did not significantly alter metabolic activity lev-

els, up to 10 μg (0.2 mg/mL), after 24 hr exposure (Fig.

3). These results are in accordance to what is described in

the literature (47,48). In fact, Vartiainen et al. (47) showed

that microfibrillated cellulose does not cause a significant

decrease in the viability of the mouse macrophage cell line

RAW 264.7 after 24 hr exposure to three different fibers

concentrations (30, 100 and 300 μg/mL). Moreover, Lopes

et al. (48) showed that unmodified and modified nano-

fibrillated cellulose did not induce cytotoxicity in human

dermal fibroblasts (HDR), lung fibroblast (MRC-5) and

phorbol myristate acetate (PMA)-differentiated macro-

phage (THP-1) cell lines after exposure for 24 hr to differ-

ent doses (50, 100, 250 and 500 μg/mL). Regarding BC,

Moreira et al. (72) showed that the nanofibrils affected

fibroblast proliferation, by 15-20%, only after 72 hr.

Considering the in vivo results, the analysis of the BAL

fluid provided no evidence of acute lung toxicity or injury

and of air-blood barrier dysfunction. However, histologi-

cal analysis revealed a mild multifocal to coalescing acute

bronchioalveolar inflammation. It is intriguing that all

concentrations tested yielded a similar outcome, as no

dosage-dependent effects were noticed. On the other hand,

both CMC and nBCMC samples gave similar outcomes in

the histological analysis. In order to rule out an effect

exclusively associated to the CMC, we decided to include

in the following studies a group consisting of nBC with-

out CMC. In order to do so, the fibers were sterilized by

gamma irradiation, which did not compromise the colloi-

dal stability of the fibers (unlike thermal sterilization). We

opted to proceed using the higher concentrations, in order

to mimetize situations of heavier/chronic exposition, lead-

ing to the accumulation of higher amounts in the lungs,

such as may occur in workers of nanocellulose producing

plants.

In this study, a dose of 16 mg/kg of fibers was used,

which is equivalent to a cumulative dose of 400 μg/mouse

after four treatments (6.7 mg/m2, taking into consideration

the total alveolar surface area of mouse lung (0.06 m2)

(1)). Specifically, human equivalent exposure to a depos-

ited cumulative dose of 400 μg (6.7 mg/m2) of cellulose

can be achieved after ~71 days at allowable exposure lim-

its of 5 mg/m3 of cellulose, as defined by Occupational

Safety & Health Administration (OSHA) (29 CFR (73)

1910.1000, Table Z-1). These calculations were performed

as proposed by Yanamala et al. (74), considering an alveo-

lar lung surface areas of 102 m2 for human (75), a lung

ventilation of 9.6 m3/8 hr (76) and a pulmonary alveolar

deposition fraction of 20% (77). Thus, the cumulative dose

used in this work represents a relevant case-study consid-

ering the human exposure limits to cellulose particles.

The histological analysis revealed the medial hypertro-

phy of pulmonary arteries in the presence of CMC, nBCMC

and nBC, which is of particular concern. This lesion is

irreversible and associated with chronic pulmonary hyper-

tension (78). However, the animals showed no cardiac or

hepatic hypertension-related lesions.

Even if the treatment with BC nanofibrils did not cause

damage to the air-blood barrier nor promoted oxidative

stress, the histopathological analysis seems to be consis-

tent with some reports of in vitro and in vivo toxicity of

plant cellulose nanofibrils, which showed alterations in the

normal physiology of the lung tissues (1,34,55,56). Adamis

et al. (56) proved that intratracheal administration of cellu-

lose to rats induced fibrosis alveobronchiolitis, an increase

of LDH and acid phosphatase, as a result of cell damage,

and an increase in protein levels that was attributed to the

increased capillary permeability in the alveoli. Tátrai et

al. (79) showed that a single administration in rats cellu-

lose promoted fibrosing granulomatous alveobronchiolitis

and lead to the degradation of the alveolo-capillary mor-

phological functional unit. In fact, different studies con-

firmed the formation of pulmonary fibrosis after cellulose

nanoparticles inhalation (1,31,32,80). A more recent study

also showed that wood pulp-derived cellulose nanocrys-

tals elicit in mice lungs a dose-dependent oxidative stress,

by increasing the formation of two oxidative protein modi-

fications, 4-hydroxynonenal (4-HNE), a common byprod-

uct of lipid peroxidation, and protein carbonyl, a product

of protein oxidation, and acute pulmonary damage by the

increasing the LDH release (34). Additionally, Shvedova

et al. (1) confirmed that exposure to respirable cellulose

nanocrystals impaired pulmonary functions, an effect that

was more pronounced in female mice. The treatment caused

pulmonary damage, evaluated by a significant increase in

the levels of LDH and total protein content, and induced

oxidative stress leading to the increase levels of protein

carbonyl. Likewise Yanamala et al. (34), Clift et al. (55)

observed that paper-derived cellulose nanocrystals pro-

mote a dose-dependent cell damage by the release of LDH
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in the human bronchial epithelial cell-line 16HBE14o- in

the triple cell co-culture model. This hazardous effect

described in the literature could be mainly mediated by the

elongated shape of the nanofibrils, which makes clear-

ance difficult and causes tissue damage due to frustrated

phagocytosis (32). Moreover a report has shown that in

mice intraperitoneally injected BC nanofibrils are non-

toxic to endothelial cells (81). In this study, BC nanofi-

brils did not induce alterations in the tested biochemical

parameters, in the normal behavior of the mice or in the

physiological/macroscopic post-mortem parameters (81).

However, while generally considered safe and biocompat-

ible, BC nanofibers can lead to complications and health

risks, if breathable, by affecting the lungs, as suggested by

the here shown results. Due to its fibrous nature (microns

in length despite de nanometric cross-section), cellulose

clearance half-time can be up to hundreds of days to years

(82,83), which potentiates the negative impact for the

lungs. Cellulose nanofibers intra- and inter-chain hydro-

gen bonding network make this polymer relatively stable

and strong, not easily degradable (82). In fact, it was reported

by Stefaniak et al. (83) that the macrophages phagolyso-

some’s acidic pH is far from sufficient for cellulose degra-

dation. Moreover, as it is known mammals lack the

enzymatic machinery to degrade cellulose (84).

Alveolar macrophages play in the air-exposed lung an

important role in the recognition, processing and clear-

ance of particulates (34). Furthermore, during the immune

reaction to inhaled particulates and associated with im-

pairment of pulmonary clearance, neutrophils are recruited

and activated (32,85). When the phagocytes are unable to

degrade foreign particles, this can lead to cell damage due

to a reduction in motility (53) and formation of giant cells,

leading to foreign body reaction and a chronic inflamma-

tory process. Consequently, these events stimulate an adap-

tive immune response that is mediated by lymphocyte

cells (85).

Despite the analysis of BAL did not show a significant

increase in lung immune cells, histopathology analysis

seems consistent with the literature concerning the lung

effect of inhalable vegetable cellulose nanofibrils (1,32-

34) since it confirms that BC nanofibrils induce an acute/

chronic bronchoalveolar inflammation in mouse lungs.

Particulate matter in the lungs is mostly cleared via

phagocytosis in the alveoli. When the clearance capacity

of phagocytes is unable to degrade foreign particles this

can lead to cell damage (53) and cause acute/chronic

inflammation in the lungs by the recruitment of phago-

cytic cells, like monocyte/macrophages and neutrophils,

and lymphocytes into the alveolar region (32).

Endes et al. (86) showed, using a 3D co-culture system

of the human epithelial airway barrier, that longer nano-

crystalline cellulose exhibit a lower cell clearance than the

shorter one, an effect the authors attributed to stronger

fiber-fiber interaction. Furthermore, no significant cyto-

toxicity was observed by the use of this aerosolized cellu-

losic material. Cullen et al. (31,32) showed that inhalation

of processed wood cellulose nanofibrils of various sizes

caused a marked but transient inflammatory response

characterized by neutrophils recruitment, which did not

progress after a recovery period of 28 days. In fact, at the

bifurcations of the terminal and respiratory bronchioles,

aggregation of macrophages and adjacent epithelial cells

was observed, as well as small solid lesions formed by

interstitialization of macrophages and fibroblasts that had

the appearance of microgranulomas (31,32). A more recent

study demonstrated that bolus administration of respirable

plant cellulose nanocrystals caused an acute inflammatory

response by accelerating the recruitment of neutrophil,

lymphocytes and eosinophils to the mice lung after 24 hr

post-exposure (34). Furthermore, it was demonstrated that

these effects were markedly more pronounced in females

compared to male mice (1), since exposure to plant cellu-

lose nanocrystals promoted up-regulation of IL-17A, respon-

sible to induce the neutrophil production and recruitment.

Furthermore, histological sections of the lungs after 3

months’ exposure revealed chronic peribronchial and peri-

vascular inflammation and numerous alveolar macro-

phages, including multi-nucleated giant cells, which is a

sign of chronic inflammation. The presence of these cells

was more pronounced in female mice, which overexpress

both IL-4 and IL-13 (1). Catalán et al. (33) showed that

nanofibrillated cellulose administered at low doses induced

a significant increase in the macrophages and lympho-

cytes number in mice lungs whereas high doses signifi-

cantly increased neutrophils and eosinophils. The histological

examination of the lungs at higher doses showed neutro-

phils around the small and large bronchi as well as neutro-

philic accumulation in the alveoli (33). Although BAL

samples collected at 3 months exposure to both nBCMC100

and Avicel100 contained elevated numbers of T cells, Avi-

cel100 was more potent in inducing B-cell accumulation.

The microcristaline vs nanofibrous nature of the materials

may justify the disparate effects on the chronic inflamma-

tory profile.

The results obtained in this study suggest that the pres-

ence of BC nanofibrils in the lungs may pose serious

health risks. As referred, the inherent inability to digest the

BC nanofibrils, due to the lack of the enzymatic machin-

ery, can explain the persistence of cellulose in the lungs

and therefore the observed damage and inflammation.

Nevertheless, the accessibility and lung deposition of inhal-

able particles strongly depends on its size. For instance,

microparticles (1 μm < particle < 5 μm) are considerably

more effective in penetrating deeper into the lungs than

larger particles (87). Considering that BC nanofibrils pos-

sess some micrometers of length (in particular, powdered

BC formulations are likely to present a few tenth or hun-
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dred micrometers), their inhalation through aerosol and

consequent deposition in deep areas of the lungs will be

expectedly difficult, decreasing its potential negative impact.
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