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Simple Summary: Breast cancer is one of the foremost causes of cancer-related mortality in women.
It is curable and controllable only if detected early. Microcalcifications in breast tissue are essential
predictors for radiologists to detect early-stage breast cancer. This study proposes a method for
detecting and classifying microcalcifications in mammogram images to predict breast lesions, using
machine learning coupled with an interpretable radiomics approach. The method was evaluated
using a publicly accessible dataset, which may aid radiologists and clinicians in identifying breast
cancer in their regular clinical practices. This study contributes to the field of predictive modeling
in healthcare.

Abstract: Microcalcifications in breast tissue can be an early sign of breast cancer, and play a crucial
role in breast cancer screening. This study proposes a radiomics approach based on advanced ma-
chine learning algorithms for diagnosing pathological microcalcifications in mammogram images
and provides radiologists with a valuable decision support system (in regard to diagnosing patients).
An adaptive enhancement method based on the contourlet transform is proposed to enhance micro-
calcifications and effectively suppress background and noise. Textural and statistical features are
extracted from each wavelet layer’s high-frequency coefficients to detect microcalcification regions.
The top-hat morphological operator and wavelet transform segment microcalcifications, implying
their exact locations. Finally, the proposed radiomic fusion algorithm is employed to classify the
selected features into benign and malignant. The proposed model’s diagnostic performance was
evaluated on the MIAS dataset and compared with traditional machine learning models, such as
the support vector machine, K-nearest neighbor, and random forest, using different evaluation
parameters. Our proposed approach outperformed existing models in diagnosing microcalcification
by achieving an 0.90 area under the curve, 0.98 sensitivity, and 0.98 accuracy. The experimental
findings concur with expert observations, indicating that the proposed approach is most effective and
practical for early diagnosing breast microcalcifications, substantially improving the work efficiency
of physicians.

Keywords: microcalcification; radiomics approach; support vector machine; data-augmentation;
computer aided diagnosis
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1. Introduction

Breast cancer is the most common malignancy in women across the globe [1]. Different
medical imaging modalities, primarily mammograms, are the preferred diagnostic tools
for early breast cancer screening, and have been proven to decrease the mortality rate
by up to 30% [2]. Mammography detects about up to 80–90% of breast cancer patients
without symptoms at an initial stage [3]. The Breast Imaging Reporting and Data System
(BI-RADS) lexicon characterizes mammogram features by breast density, mass, calcification,
asymmetry, lesion location, and related findings [4]. A mammogram distinguishes the
breast density based on the recommended lexicon: fatty, scattered, heterogeneously dense,
and highly dense. On a mammogram, benign calcifications are often classified as a large
rod, vascular, coarse, and popcorn. In comparison, suspicious calcifications in the breast
are characterized as diffuse regional, linear, clustered, amorphous, and segmental [5]. The
BI-RADS lexicon distinguishes calcifications as benign or malignant based on their shape,
density, and distribution inside the breast, particularly the location to the nipple region.

Breast microcalcification (MC) is an indicator of potential carcinoma; it has been the
only detectable sign of nonpalpable breast cancer during screening (25–43% clinically;
62–98% ductal carcinoma in situ (DCIS)) [6]. MCs are small glandular bright calcium
deposits that typically range between 0.01 and 0.1 mm in size, and appear as a collection of
regionalized high-intensity areas on radiology film [7]. Clinical studies indicate that there
are 5 or more MC points per centimeter [8]. MC is, most likely, intramammary, and located
within and around ducts, lobules, and vascular structures [9]. Size, morphology, number,
the pattern of distribution, locality, and density, among other characteristics, contribute
to determining pathology [10]. Radiologists interpret mammograms to recognize benign
breast calcifications that do not need a biopsy, and to avoid unnecessary treatments, and
reduce patient anxiety. Mammogram anomalies with radiological scores of 4 on the BI-
RADS are considered “highly dubious” for malignancy. Thus, a pathological investigation
is required to confirm the results as either benign or malignant for further surgical or
non-invasive plans. On the other hand, real-world clinical statistics indicate that about
35% of malignant MCs required mastectomies, among all of the biopsied specimens that
subsequently developed breast cancer [11,12].

According to the BI-RADS lexicon, a biopsy is strongly advised for suspected MC,
categorized as BI-RADS category 4, to ascertain its pathological nature [13]. Moreover, the
doctor examines a large volume of medical images regularly, resulting in visual fatigue [14].
Double reading mammograms have improved diagnostic sensitivity and detection of breast
lesions by 3 to 15%, but exacerbated the current shortage of skilled radiologists performing
large-scale routine screenings [15,16]. Thus, a more precise and unbiased approach for the
BI-RADS 4 mammographic MC assessment is required to predict cancerous growths for
prompt treatment, or benign prediction, for a potential downgrading classification and
observed up-approach.

Several studies have reported on various approaches to detect and classify MC in
digital mammograms, i.e., as benign or malignant [17,18]. Although many methods for
identifying MC points have been proposed, each has a high incidence of false positives [19].
Radiomics is a novel image analysis technique that enables the quantitative detection of
complex features in radiographic images that represent the heterogeneity of the texture,
shape, and size of various tissue phenotypes associated with multiple clinical outcomes [12].
The radiomics approach was proven to render automated computer-aided classifiers of
radiological images coupled with machine learning algorithms. Radiomics analyses have
attracted much attention in clinical applications in the last few years, showing convincing
results in clinical decision support methods and advancing fully customized therapeutic
decision-making (i.e., regarding prognosis and prediction) [20]. Radiomics analysis of a
mammogram is assumed to capture and quantify the morphological and textural hetero-
geneity features of MC, invisible to the radiologist’s eyes [21]. Texture analysis has proven
helpful in detecting and categorizing lesions by employing a set of local statistical features
of pixel intensity. Radiomics potentially overcomes the identified problems, and enhances
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breast cancer diagnosis performance in patients recalled for screening after calcifications
are detected during a diagnostic mammogram.

Thus, this study proposes a radiomics approach based on advanced machine learning
algorithms for quick and precise diagnosing of MC regions in mammogram images. First,
each image was denoised and enhanced using various techniques to eliminate background
noise, artifacts, and to improve image quality. Afterward, the top-hat morphologic operator
and wavelet transform were employed to recognize the seed points and determine the
suspicious region. Suspected textural and statistical features of MCs were retrieved using
the wavelet analysis and the mathematical morphology approach in the mammogram
images. Finally, we combined the aggregate features and fed them into a proposed model
and a support vector machine (SVM) to train and classify the extracted regions of interest
(ROIs) of the mammogram images. The radiomic model’s diagnostic performance was
tested and compared with conventional algorithms, such as the SVM [22], K-nearest
neighbor (K-NN) [23], and random forest (RF) [24], using various evaluation parameters.
The finding is congruent with the perceptions of doctors, indicating that the proposed
approach detects MC more precisely and realistically than earlier techniques. It enables
physicians to work more efficiently by collaborating with a computer-aided diagnostics
system that assists clinicians in early recognition and improves effectiveness.

The paper is structured as follows: Section 2 reviews the available literature associated
with diagnostic mammography. The proposed methodology, image preprocessing, and MC
ROI detection and classification approaches are presented in Section 3. The experimental
findings of the proposed work, using various performance parameters, are compared
and shown in Section 4. Section 5 discusses the experimental results. Finally, Section 6
concludes the study’s findings.

2. Related Works

Machine learning, particularly deep learning (DL), is receiving more interest due to
its ability to perform automated image analysis, and improve breast cancer screening,
prediction accuracy, and efficiency. Consequently, researchers have made significant contri-
butions to the development and improvement of computer-aided design systems. Doctors
employ computer-aided diagnostic (CAD) systems to identify breast cancer; these systems
boost accuracy by more than 10% despite the system’s limited capacity to detect dense
breast tumors [25].

2.1. Mammography Characterization through Conventional Machine Learning Models

Several machine learning techniques were employed to categorize MC spots to di-
agnose breast cancer, including SVM, K-NN, Naive Bayes, and RF. Manual feature ex-
traction approaches are computationally inefficient and decrease the model performance
of machine learning-based CAD systems. Martins et al. [26] designed a technique for
diagnosing breast lesions using mammogram images. Segmentation of breast lesions was
conducted using the K-means algorithm; textural features were then extracted from the
segmented images. The obtained features were categorized employing the SVM algorithm,
which achieved an accuracy of 0.85 on the digital database for screening mammogram
(DDSM). Loizidou et al. [27] obtained 0.99 accuracy in automatically identifying and cate-
gorizing the MC cluster using a temporally sequential subtraction strategy based on SVM.
Gaikwad et al. [28] used SVM to detect MC by combining linear kernel functions and
polynomial kernels. Chakraborty et al. [29] provided a model for detecting and classifying
breast masses by incorporating Bayesian, artificial neural network, and low- to high-level in-
tensity thresholding. Liu et al. [30] presented a unique technique coupled with a simulated
annealing genetic algorithm for feature selection; a constraint-sensitive SVM for classifi-
cation resulted in a 0.95 accuracy and a 2.2 misdiagnosis rate. Elmoufidi et al. [31] built a
fully automatic CAD system to segment and classify the mammogram’s ROI as malignant
or benign using multiple-instance learning (MIL) algorithms and achieved 0.95 sensitivity,
at a false-positive per image (FPi) 2.6 on DDSM, and 0.94 sensitivity at an FPi 2.9 on MIAS,
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which is beneficial for decision sustenance of radiologists. Beham et al. [23] used wavelet
transform to extract local binary patterns. The K-NN algorithm classified the collected
features into benign and malignant classes with an accuracy of 0.73. Obaidullah et al. [24]
developed an image descriptor that outperformed the histogram of oriented gradient and a
convolutional neural network for breast lesion classification with a 0.98 AUC value without
employing clinical information.

2.2. Mammography Characterization through Conventional Deep Learning Models

The research community has made various attempts to improve the clinical perfor-
mances of radiologists by developing CAD systems based on deep learning to identify
breast masses detected during mammogram screening. Numerous investigations have led
to the development of various mammogram-based detection systems, which are briefly
discussed. Cai et al. [18] developed a deep CNN model for automated characterization
of microcalcification and classified them based on the extracted automatic and handmade
features. The proposed model attained an accuracy of 0.89 and a sensitivity of 0.86 using
749 private mammogram images. Wang et al. [32] designed a fused network comprised
of deep neural networks, and extreme learning machines (ELMs) was employed to iden-
tify and classify breast cancers based on fused properties, such as morphology, texture,
and density, with a classification accuracy of 0.80. Soulami et al. [33] demonstrated an
excellent approach for removing pectoral muscle using entropy thresholding and an ROI
segmentation using particle swarm optimization (PSO). SVM algorithms perform better
with an accuracy of 0.83 in categorizing the extracted ROI into normal and abnormal
properties. Guan et al. [34] employed an ROI-based technique in combination with an
N-Net deep convolutional neural network to identify asymmetry patterns related to breast
cancer diagnosis in digital mammograms.

Rouhi et al. [35] proposed two hybrid algorithms for breast tumor identification that
incorporate region-based, contour-based, and clustering segmentation techniques. Differ-
ent classifiers, such as SVM, K-NN, multilayer perceptron (MLP), and linear discriminant
analysis (LDA), were used to classify tumors as benign or malignant with sensitivity and
accuracy, of 0.83 and 0.89, respectively. Rizzi et al. [36]—two-level wavelet decomposition
was used to automate identification and localization of MC clusters. Singularity points
were extracted from the reconstructed image using another wavelet, and each level of
decomposition was handled using hard thresholds. Yu et al. [37] developed a CAD system,
which contained two phases for automatic detection of MC clusters using neural network
classifiers. In the first phase, mixed features segregated probable MC pixels, and in the
second phase, 31 statistical characteristics validated potential objects. The findings indicate
that the combination of model-based and statistical textural features effectively classify
MC, with a detection rate of 0.94, and an FPi of 1.0 per image. Papadopoulosa et al. [38]
implemented morphological filtering and neural networks for automatic ROI extraction.
The proposed method can effectively get ROI; however, morphological filtering and thresh-
olding may ignore smaller regions of interest. Elter et al. [39] applied an independent
component analysis to ROI feature extraction and used an artificial neural network to
classify the model to identify the ROI.

There is a need for an approach that uses textural indicators to detect and differentiate
clustered MC from normal breast tissue while minimizing bias. Our study proposes a
strategy for identifying the MC region based on wavelet feature architecture. We evaluated
and verified using feature vectors generated by morphological top-hat filters. Moreover,
this research used a radiomics analysis strategy to classify MC areas, surpassing existing
approaches with a 0.98 accuracy, 0.90 AUC, and 0.98 sensitivity, with 1.2 FPi.

3. Materials and Methods

Early diagnosis of microcalcification increases a patient’s survival chances and helps
doctors discriminate benign and malignant tissues during the curing process. The raw
mammogram images influenced by inherent noise and illumination imperfections require
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extensive clarity, denoising, and normalization. This study focuses on MC diagnosing,
which uses radiomics analysis concepts to evaluate the input features of a particular ROI.
Our suggested study pertains to four steps: mammogram preprocessing and data aug-
mentation, suspicious region detection and extraction, ROI feature learning, and training
and testing of deep learning and machine learning approaches to classify the MC cluster.
Initially, all images were preprocessed to remove noise and enhance image quality using
various image denoising filters and enhancement algorithms. Afterward, ROI was defined
for feature extraction using mathematical morphology and wavelet analysis. Wavelet
transformations effectively evaluate the original image by reducing the gap between the
least mean square error and the noise in the predicted and input images. The proposed
architecture of our model for mammogram classification based on MC detection regions is
explanted in Figure 1.

Figure 1. Step-wise illustration of the proposed classification framework consists of mammogram preprocessing, MC
ROI detection, lesion segmentations, training of machine learning classifier to distinguish MC ROI into benign and
malignant classes.

The significant contribution of this study is:

• We created an efficient strategy for identifying and categorizing MC mammograms
using a radiomics analysis approach. It is easy to implement, convincing, well-defined,
and overcomes small and large feature search space optimization issues.

• The optimum feature collections from the input data were achieved using wavelet
analysis, which suppresses redundant and superfluous characteristics and prioritizes
feature significance.

• This study combined wavelet transform and the top-hat operator to filter out seed
regions of calcification spots, resulting in a significant reduction in false detection and
improved detection accuracy.

• The effectiveness of the proposed feature learning model is compared to that of
existing strategies. The mammogram dataset was validated using well-established
clinical validation techniques.
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3.1. Dataset

Due to confidentiality concerns, obtaining real-time mammogram images for research
purposes is challenging. Each image used in this study was obtained from the Mammo-
graphic Image Analysis Society (MIAS [40]) database to evaluate the proposed model’s
effectiveness. Due to many missing data points, noise, and variable image sizes, the re-
sulting dataset contained low-quality images with a high proportion of false-positives
and -negatives. The MIAS dataset contained 322 digital mammograms of 161 patients,
including many breast views and correct annotations evaluated for breast anomalies by
a radiologist. Four mammograms were collected for every patient in the mediolateral
oblique (MLO) view and craniocaudal (CC) view.

Each breast has two projections (left and right), one for each instance, as illustrated
in Figure 2a. The obtained dataset includes 54 malignant cases, 67 benign cases, and
201 normal cases, validated and diagnosed using the ground truth data of doctors. All
images are grayscale and have 1024 × 1024 pixels, and a 200 × 200 mm resolution in PGM
format, including calcification anomalies and pathologic ground truth concerning diagnosis.
Each image was reduced to a predetermined scale of 224 × 224 using nearest-neighbor
integration to train and validate the proposed model for MC classification. The proposed
study used 968 images split into training and validation sets, as described in Table 1. The
training set contained 775 images (80% of the dataset), and the validation set comprised
193 images (20 % of the dataset) to assess the trained model’s accuracy. The retrieved
properties are used to construct algorithms for benign and malignant tumor classification.

Figure 2. Represents the image preprocessing process to enhancement the image contrast and remove the noise, label,
and unnecessary edges, (a) original raw mammogram image with calcification, (b) adaptive unsharp masking, (c) image
enhancement (CLAHE), (d) dilation, (e) erosion.
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Table 1. Experimental description of the training and validation dataset.

Data Category Benign Images Malignant Images Total Images

Images 536 432 968
Training set 429 346 775
Validation set 107 86 193

3.2. Image Preprocessing and Data Augmentation

Image preprocessing improves image quality, making it more acceptable for visual
features used by human and computer recognition systems. The type of noise observed is
background noise, tape artifacts, high-intensity rectangular label, edge shadowing effect,
and low-intensity label in mammogram images, which may impair the identification’s
efficacy. The mammographic image has low contrast due to the intricacy and heterogeneity
of breast tissue; yet, the doctor analyzes the breast image for limited information [41].
Even experienced physicians have difficulty detecting concealed MC, resulting in misdi-
agnoses [3,42]. In this study, we employed distinct preprocessing paradigms to improve
the appearance of breast images by smoothing, brightening, denoising, and detecting
edges [43]. We used noise reduction methods, such as adaptive median, Gaussian, and
bilateral filtering to efficiently reduce noise while retaining sharp edges. They efficiently
suppress impulse noise, speckle noise, and salt and pepper noise. After denoising, the
artifact and pectoral muscle were removed, which occupied 70% of the mammogram’s
surface, with the remaining 30% of the cover devoted solely to the breast. In the non-breast
area, tissue density was strongly linked, which may influence subsequent mammogram
analysis [44].

This study employed image enhancement approaches based on adaptive unsharp
masking, contrast limited adaptive histogram equalization (CLAHE), and wavelet analysis,
to improve the image’s quality and smoothness, as shown in Figure 2a–e. The proposed
techniques emphasize MC points while reducing the redundant background informa-
tion and enhancing the image’s weak edges and calcification areas. The suitable image
enhancement methods are selected according to the actual needs to boost the image’s
contrast and achieve the mammogram image enhancement effect. This study used the
contrast improvement index (CII) for accurate evaluation, reflecting the effect of image
edge enhancement and the peak signal-to-noise ratio (PSNR) value, indicating the image’s
denoising to verify the method’s effectiveness. Moreover, we measured the CII and PSNR
of 20 mammogram images to evaluate their enhanced performance. The higher the PSNR
and CII values, signifying a more significant denoising and enhancement impact. The
adaptive unsharp masking and CLAHE techniques are ineffective at improving MC ar-
eas. Figure 3a,b shows that the combined method, based on the morphological top-hat
operator (MOR) and wavelet reconstruction (WR), performs better than unsharp masking
and CLAHE.

Furthermore, in this study, we artificially inflated the dataset using distinctive data
augmentation paradigms [45], such as scaling, flipping, contrast, and rotation to improve
robustness and detection accuracy, as shown in Table 2. The mammogram images are
rotated in different degrees to increase the dataset’s size and mitigate overfitting across
each training epoch. As a result, this study augmented 968 mammogram images, which
included 536 benign and 346 malignant instances.
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(a) (b)

Figure 3. The figures represent: (a) the peak signal-to-noise ratio reflects the denoising effect of the mammogram. The
higher the value, the more effective the denoising impact. (b) The image contrast enhancement index quantifies the degree
to which the edges of a mammogram have been improved. The higher the value, the more effective the augmentation of
the mammogram.

Table 2. Different data augmentation techniques used to increase the data sample.

Sr Augmentation Techniques Performance Values

1 Rotation 45◦, 90◦, 135◦, 180◦, 270◦, 360◦

2 Sharpen (lightness value) 0.5, 1, 1.5, 2
3 Crop and Pad 0.25
4 Shear (axis value) 10◦ (X-axis and Y-axis)
5 Flipping Top, Bottom, Left, Right
6 Gaussian Blur (Sigma value) 0.25, 0.5, 1, 2
7 Horizontal and Vertical Shift 0.2

3.3. Wavelet Analysis

The image’s calcification points are discrete points interspersed in the low-frequency
background, and extremely high-frequency noise in the image [46]. In this study, we
used the wavelet analysis to localize and extract the MC ROI from the calcium regions in
the mammogram, as shown in Figure 4a–e. Moreover, the wavelet transform eliminates
low-frequency noise from the image, revealing only high-frequency information, such
as calcification patches. The wavelet transform and the high-frequency coefficients of
each layer’s wavelet are used to extract the radiomic texture feature, using the gray level
co-occurrence matrix approach (GLCM), morphological feature, and intensity histogram
features. The different layers of wavelet coefficients are illustrated in Equation (1).

g = D + Vi
k (1)

In Equation (1), Vi
k depicts the high-frequency coefficient of each layer obtained

by decomposition; D depicts the low-frequency coefficient obtained by decomposition;
k = 1, 2, 3, 4 are the different decomposition layers; i are the different decomposition
directions, which are horizontal, vertical, and diagonal. The results indicate that the
microcalcification point coefficients are dispersed mainly on the second and third layer
high-frequency wavelet decomposition coefficients selected for reconstruction, resulting in
a noise-free breast image. The aspects used to evaluate a wavelet function’s quality include
orthogonality, support, symmetry, vanishing moment, and regularity.
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3.4. Mathematical Morphology

Mathematical morphology has achieved great success in visual inspection, robot
vision, and medical image processing applications. The core idea of mathematical mor-
phology is to segment the weak and tiny calcification points using specific morphological
structural components [47,48]. However, this study employed mathematical morphology
to detect calcified spots and segments from the mammogram background. Furthermore,
this study used the region growing approach, which interprets neighboring pixels as new
seed points by combining them with a sequence of seed pixels. The appropriate seed points
were selected automatically based on regional shape, regional gray distribution rules, and
regional gray differences.

3.5. Top-Hat Algorithm

This study proposed a top-hat algorithm to integrate the fundamental operations of
grayscale mathematical morphology [49]. It conducts coarse segmentation of the image’s
MC points and extracts of micro-calcification. The top-hat operator has high-pass filtering
features, enabling the target to be extracted from a complex background by selecting
appropriate structural elements, as depicted in Figure 4c. The primary function of the
top-hat operator is to increase visual contrast by emphasizing edge information and reduce
noise [50]. Equation (2) depicts the definition of the top-hot operator.

th(K) = g − g ◦ f (2)

where g◦ f is an open operation in morphology that eliminates small image elements in the
mammogram and smooths the boundaries to achieve edge enhancement. By subtracting
the original image g from the image processed by g◦ f , most of the image’s background
feature is removed, retaining the tiny image area with a high application value. The
definition of the closed top-hat operator is shown as Equation (3).

th(B) = g − g • f (3)

where g• f is a closed operation in morphology. It smooths the image’s borders and
eliminates the majority of the image.

3.6. Radiomics Based Proposed Method

This study develops a method for detecting and classifying MC in mammogram
images to predict breast lesions using machine learning and an interpretable radiomics
approach. It combines the abstraction capabilities of deep convolutional neural networks
with the performance of an extreme learning machine (DC-ELM) [51,52]. The proposed
architecture comprises an input layer, an output layer, and several hidden layers that
configure alternately, as one convolution layer supported by one pooling layer [18,33].
The convolution layer is constructed from a collection of feature maps that are connected
through convolution nodes. The data weights of identical feature maps are shared while
remaining unique across maps.

The proposed model yields higher features, layer-by-layer, throughout the convolution
feature abstracting training phase. Multiple hidden convolutions and pooling layers
effectively extract the high-level characteristics required for classification tasks. The node‘s
feature map with the convolution layer is combined with all other feature maps. In contrast,
the node‘s feature map with the pooling layer is connected to a single corresponding feature
map in the preceding convolution layer. The final pooling layer employs stochastic pooling,
which significantly mitigates the feature map‘s size, providing the full connection with the
output layer. Afterward, the model is trained using an arbitrary weight distribution for
each hidden node. The weight values are changed by using the optimization method. The
model’s generalization characteristic relies on the input weights and bias, and the random
initialization of these parameters presents significant challenges. The generality of the
model is enhanced because the hidden layer biases and input weights may be adjusted
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freely if the activation function is separable arbitrarily. Finally, the output weight and
ground truth labels of MC ROI images may be computed to perform the training.

Figure 4. An illustrative example, conferring segmentation of suspected MCs on mammogram images of the right and left
breasts with fibrocystic anomalies. (a) Original image with calcification; (b) concentrated MC (denoted by a circle) seems
weak compared to the thick background in the MLO and CC view; (c) top-hat transform; (d) enlarged view of the suspected
MC region; (e) segmented MC mask detected is used to classify the characteristics.

3.7. Standard Classifiers

SVM is a machine learning method based on the structural risk minimization theory,
which has an advantage in pattern recognition, regression analysis, and other fields [53].
SVM classifiers aim to construct a hyperplane to offer an efficient and accurate method
for diagnosing and categorizing mammogram images. It is often employed when training
datasets that are inadequate, to obtain more generalization and to overcome linear and
non-linear constraints on separating data points of each class [22,33,35]. It makes an effort
to minimize the percentage of nonzero weights and problems with overfitting. The basic
idea of an SVM is to map inseparable vectors to one high-dimensional feature space and
find the optimal classification hyperplane in the high-dimensional feature space. To verify
our suggested strategy, we executed a classification task, using a support vector machine
algorithm. A radiomics analysis approach was performed to detect microcalcification ROIs
and extract features to provide input for SVM and other machine learning algorithms. We
classify MC ROIs using the support vector machine algorithm’s non-linear kernel function.
It is observed that the support vector machine classifier provides more inclusive results on
a limited number of datasets.
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In this research, we used K-NN supervised machine learning algorithms for binary
classification to examine and assess the achievement of our framework [35]. The microcalci-
fication ROI detection and image segmentation methods used in this work are the same as
employed in the SVM algorithm. We set the maximum k value with an optimal error rate to
avoid the K-NN classifier from overfitting. Ali et al. [54] used wavelet transformations to
extract features from a mammogram image and classified the extracted features into benign
and malignant instances using the K-NN algorithm. The findings indicate that the K-NN
classifier’s performance was insufficient for classifying breast cancer microcalcification ROI
using a mammogram image.

Random forest is a kind of supervised machine learning model employed in this study
to categorize microcalcification regions. The RF algorithm uses a majority vote to perform
classification problems. Random forest performance was compared to other suggested
approaches, and it was determined that random forest performed well. Fadil et al. [55]
developed a computer-based automated approach for detecting and segmenting the MC
regions in mammogram images using the discrete wavelet transform and random forest.
The results suggest that RF achieved an accuracy of 0.83 and a sensitivity of 0.78.

3.8. Performance Measures

Our proposed scheme improved model accuracy significantly by classifying detected
MC ROIs into malignant and benign instances. The suggested method’s performance was
measured using the public MIAS database. Evaluation metrics, such as accuracy, F-score,
recall, precision, sensitivity, specificity, and area under the curve (AUC), were used to
analyze the presented model’s performance. The following formulas are used to calculate
the performance parameter.

Accuracy is defined as the ratio of correctly identified images to total images.

ACC(%) =
Tp + Tn

Tp + Fp + Fn + Tn
(4)

In Equation (4), Tpis true positive, Tn is true negative, Fp is false positive, and Fn is
false negative rates.

F-score is the harmonic mean of precision and recall as shown in Equation (5), which
is used independently to determine the correctness of test datasets.

F − score(%) = 2 ×
TP

TP+FP × TP
TP+FN

TP
TP+FP + TP

TP+FN
(5)

Recall is the amount of positive factors that were captured by the model, and is
calculated after its labeling (true positive) as in Equation (6).

Recall(%) =
Tp

Tp + Fn
(6)

The Equation (7) is used to assess sensitivity.

Sensitivity(%) =
TP

TP + FN
(7)

We determined the overall effectiveness of our proposed model using the receiver op-
erating characteristic curve (true-positive and false-positive rate) and AUC with confidence
interval (CI).

4. Results and Analysis

The proposed method for mammogram-based breast MC prediction was developed
using scientific methods. The mammogram images were obtained from the publicly
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available MIAS database to train and validate the proposed models. Each image was
preprocessed to remove noise and enhance image quality. Each experimental test was
carried out using Intel(R) Core I7 , CPU 2.80 GHz and 2.80 GHz, 32 GB memory, NVIDIA
GTX 1050Ti graphics card. The computation time for training and testing the proposed
model was 33 minutes. Furthermore, this study employed Keras’ ImageDataGenerator [56]
library and the OpenCV method to create batches of mammogram images with real-time
data augmentation and preprocessing.

We used an Adam optimizer to train the proposed models, using an initial learning
rate of 0.001 and a momentum constant of 0.9. Throughout the optimization phase, the
momentum parameter, learning rate, and hidden layer neurons were modified from 0 to 1.
The algorithm was trained throughout 90 epochs at a rate of 100 steps per epoch. The
hyperparameters used for training are described in Table 3.

Table 3. Hyperparameter configurations.

Configuration Values

Batch Size 32
Learning Rate 0.001
Epochs 90
Steps per epochs 100
Weight Decay 0.00005
Dropout 0.5
Momentum 0.9
Optimization function Adam

4.1. Microcalcification-Based ROI Detection and Segmentation

Automatic detection and extraction of MC ROI from a mammogram is a challeng-
ing task for the CAD system [53]. Previously, most clinicians extracted ROI manually,
and artificial factors, such as fatigue and extensive mammogram interpretation, reduced
ROI diagnostic accuracy [57]. As a result, machine learning approaches have attained
significant interest in mammogram interpretation and automatic extraction of calcification
areas [58]. Due to the mammogram’s low contrast and intricate breast anatomy, clinicians
can observe only a small amount of information. Hence, we used image improvement
techniques, such as adaptive unsharp masking [59], CLAHE, and the wavelet enhancement
to emphasize the MC point while deleting irrelevant background information. This study
employed three distinct strategies used for MC detection: wavelet transform, top-hat, and
the combined method. The combined method based on the top-hat morphology operator
and wavelet reconstruction is proposed to detect seed points to minimize false-positive
rates and segmenting calcification. This study primarily employed the ROC curve, detec-
tion rate, and the average number of false detections to evaluate the microcalcification
detection approach.

First, the wavelet transform eliminates the image’s low-frequency background infor-
mation, only retaining the high-frequency calcification spots. After detecting microcalcifica-
tion regions, different radiomic features, such as texture features, morphological, intensity
histogram, and GLCM features from ROI are extracted using the wavelet transform. The
wavelet reconstruction image is the thresholded using the variance method; seed points
containing MC and noise are filtered out. Afterward, the top-hat operator conducts a
coarse segmentation of the MC patches. The bulk of the image’s background information
is removed during the ROI processing while maintaining calcification spots. After several
experiments, a flat disc-shaped structural element with a radius of 5 is chosen to process
the image. Figure 4a–e shows how the image’s background is effectively suppressed while
the microcalcification locations are highlighted.

Detection rate and false detection rate are important indicators for evaluating ROI
extraction for breast MC points. The findings reveal that the proposed approach is beneficial
for MC patches detection with a detection rate of 98.7% and a false-positive detection rate
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of 1.2. Contrary to this, the standard methods, such as adaptive unsharp masking, wavelet
transform, and top-hat method, yielded detection rates 78.6%, 82.9%, and 93.5% and false
detection 11.7%, 4.3%, and 2.9%, respectively, for predicting MC patches. Thus, the fusion
of morphological top-hat operator and wavelet reconstruction efficiently suppress the
image background and decrease the false positive detection rate for detecting MC patches
in mammograms. By decreasing noise and strengthening weak image edges, the suggested
strategy beats previous techniques in terms of detection accuracy. Despite the fact that
the detection rate of the proposed approach has consistently increased, the false positive
detection rate has been lowered to 1.2. Moreover, the overall performance of four proposed
algorithms, based on wavelet analysis, top-hat analysis, and combined detecting approach,
is plotted in Figure 5a–d.

(a) (b)

(c) (d)

Figure 5. The suggested method’s performance is compared with state-of-the-art techniques in terms of (a) accuracy,
(b) cross-entropy loss, (c) sensitivity, and (d) F-Score. The curves reveal that MC ROI classification through DC-ELM is
excellent, which attained accuracy of 0.98, sensitivity of 0.98, and F-measure of 0.97.

4.2. Microcalcification-Based Feature Extraction and Classification

The current study proposed a state-of-the-art computer-aided diagnostic system using
DC-ELM, K-NN, RF, and SVM to detect and classify MC ROIs from digital mammograms.
The empirical results indicate that the proposed approach performs better than other
models. The model’s accuracy and loss performance are shown in Figure 6a,b, which
depict that the model’s accuracy increased continuously over iterations than the training
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loss, indicating our model trained perfectly. After the 31st epoch, the validation accuracy
was constant, and the validation loss declined, revealing that our proposed approach
performed well and the model was well-fitted.

(a) (b)

(c)

Figure 6. The figures represent the training and testing accuracy, cross-entropy loss, and AUC of proposed algorithm for
MC classification against the 90 epochs. (a) DC-ELM, (b) SVM, (c) comparing the discriminative competencies of DC-ELM
and SVM algorithms based on MC regions using AUC.

Classification accuracy is measured as the ratio of correctly classified images to the
total number collected for classification. As a result, the proposed approach has the benefit
of enabling effective and precise accuracy for MC diagnosis. The training and validation
curves (accuracy and cross-entropy loss) were computed after 90 iterations. Our proposed
approach outperformed the SVM model and other models, achieving a training accuracy
of 0.98 and a validation accuracy of 0.94, as plotted in Figure 6a to classify MC ROI. In
comparison, the SVM model yielded a training accuracy of 0.93 and a validation accuracy
of 0.88, as depicted in Figure 6b. Furthermore, other well-defined K-NN and RF algorithms
achieved training and validation accuracies of 0.79, 0.83, and 0.76, 0.81, respectively. Thus,
based on statistical evaluations of the accuracy indicator, the proposed model surpassed
SVM, K-NN, and RF by 5%, 19%, and 15%, respectively. The overall accuracy performance
of all models based on MC detection and segmentation methods is shown in Figure 5a.
The generalization difference (accuracy and loss) within training and validation should be
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modest to avoid overfitting the model. The weight values are changed to reduce the error
function and increase classification accuracy in our suggested approach.

Figure 6a illustrates the proposed model’s training and validation loss. The proposed
model’s training loss decreases with each epoch, eventually reaching a minimum of 0.06 for
training and 0.20 for validation at the final epoch. In contrast, SVM achieved an error rate
of 0.08 for training and 0.41 for validation loss. The overall error rate of all models based on
proposed MC detection methods is shown in Figure 5b. On the other hand, the proposed
strategy outperforms SVM in classifying the detected MC ROI using the fusion method,
with a sensitivity of 0.98 with FPi 1.2. In comparison, SVM, K-NN, and RF achieved 0.93,
0.79, and 0.83 sensitivity, respectively.

The AUC value was used to measure the accuracy of clinical diagnostic methods by
comparing true-(positive and negative) and false-(positive and negative) predictions. The
variations of true-positive and false-positive results of the proposed diagnostic methods
and SVM classifier are illustrated in Figure 6c. The proposed model yielded the best AUC
value of 0.90, comparing the 0.85, 0.83, and 0.79 achieved by the SVM, K-NN, and RF
algorithms. Our model achieved a promising AUC value and significantly reduced the
number of false-(positives and negatives) while creating massive true positives. The AUC
curves show that the proposed model works better with fusion detection schemes because
MC has higher spatial frequencies and prefers to extract high-frequency information using
wavelet composition.

Table 4 compares the F-score, sensitivity, specificity, accuracy, and AUC of each ap-
proach. Figure 5c,d, illustrates that the proposed model attained F-scores of 0.98, sensitivity
of 0.98, and specificity of 0.93. It was observed that our proposed model’s sensitivity,
F-score, and specificity values are significantly larger than those of other models by 5%,
7%, and 2%, respectively. The projected DC-ELM approach is more competent than other
state-of-the-art techniques, enabling pathologists to apply and select the quickest way with
the best decisions.

All of the above in-depth assessments show that the performance of our suggested
strategy was superior.

Table 4. Performance evaluation comparison of proposed model with SVM, RF, and K-NN.

Classifiers Accuracy Loss F-Score Recall Precision Specificity Sensitivity AUC

RF 0.83 0.37 0.85 0.81 0.82 0.78 0.83 0.83 (CI = 75–90)
K-NN 0.79 0.38 0.77 0.73 0.79 0.76 0.79 0.79 (CI = 71–86)
SVM 0.93 0.08 0.91 0.90 0.93 0.91 0.93 0.85 (CI = 78–91)
Proposed Method 0.98 0.06 0.98 0.93 0.94 0.97 0.98 0.90 (CI = 84–95)

4.3. Comparative Analysis with Conventional Studies

To evaluate our CAD system, we compared it to earlier research using the publicly
available MIAS dataset. Table 5 depicts that our technique performs much better than
previous studies in detecting and classifying MC, with 0.98 accuracy and 0.98 sensitivity at
a 1.2 FPi. Yang et al. [60] used the context-sensitivity technique for MC detection train on
188,521 mammograms, achieving a sensitivity of 0.87 at a 1.10 FPi. Wang et al. [22] used
a deep MC detection approach and obtained a 0.87 accuracy and 0.93 sensitivity using
1000 mammograms from the private dataset. Caballero et al. [19] use an independent
component analysis (ICA) to detect the MC cluster of breast cancers and obtain a sensitivity
of 0.81 at 2.55 FPi by training on 200 mammogram images of DDSM datasets. Sun et al. [25]
trained a deep CNN to identify breast cancer and achieved 0.50 sensitivity using 1980
breast images. Shrivastava et al. [48] proposed a seeded region growing (SRG) technique
that used seed point extraction and threshold computation to extract the ROI from a
mammogram image automatically. After locating the breast masses effectively, it was
classified as benign or malignant and achieved 0.91 classification accuracy. Chen et al. [10]
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employed pre-trained DCNN ResNet architecture by fine-tuning to automatic classification
using 2620 DDSM images and achieved 0.93 sensitivity.

Our model achieves a 0.98 accuracy and 0.98 sensitivity at a 1.2 FPi on 968 MIAS
dataset images, which was more dominant than previous works. We found that our model
is more effective than the summarized study with a high sensitivity of 0.91 [48] on MIAS,
0.93 [22] on private and 0.93 [10] on DDSM datasets, confirming that our modal performed
remarkably better.

Table 5. Comparison of the proposed model finding with existing studies.

Authors Challenges Approaches Used Database ACC SEN

[10] Automatic MC classification ResNet DDSM 0.931 0.938
[18] Characterization of MC cluster Deep CNN Private 0.89 0.86
[19] Detection of MC cluster ICA DDSM N/A 0.81
[22] MC segmentation and classification SVM, KNN Private 0.87 0.93
[25] Detection of breast cancer Deep CNN Private 0.82 0.50
[31] MC’s ROI segmentation and classification MIL MIAS N/A 0.94
[35] Recognize and segment the breast tumor MLP, SVM MIAS 0.89 0.83
[39] Mass detection and diagnosis SVM MIAS 0.93 N/A
[48] Automatic segmentation of MC SGR DDSM 0.91 N/A
[60] MC detection based on surround tissue Context-Sensitive DNN FFDM N/A 0.87
Proposed Detection and classification of MC DC-ELM, SVM MIAS 0.98 0.98

5. Discussions

The purpose of this study was to determine whether the presence of malignant cal-
cifications had a predictive ability and could aid in surgical decision-making in potential
therapeutic settings. It is crucial to have an accurate and well-defined method for predict-
ing tumor response and evaluating the degree of tumor recurrence to inform the surgeon
and patient about the optimal surgical approach and timing of surgery to minimize disease
recurrence. Referring to the fourth BI-RADS classification, the most frequently encountered
and identifying features on mammograms are MC, indicating malignant breast cancer. Cal-
cification points were evaluated in terms of their morphology, distribution, range, density,
and diameter. They were dispersed randomly and were not all associated with adjacent
tissues. Radiologists analyze mammograms to identify benign breast calcification that do
not need a biopsy, avoid unnecessary curing, overcome patient anxiety, and increase the
patient’s survival rate. Thus, we conclude from the findings that a standard mammogram
analysis before the biopsy is sufficient, and this interpretation is diagnostically helpful and
critical for surgical decision-making.

This study proposes a radiomics analysis approach for detecting and classifying MC
ROI in digital mammograms as benign or malignant. The proposed framework consists
of four phases: preprocessing and data enhancement, MC ROI segmentation, feature
extraction, and ROI classification. The model’s performance was evaluated using the MIAS
dataset, which was randomly divided into training and validation sets in ratios of 80% and
20%. The input image was preprocessed applying different image filters and enhancement
paradigms for ROI segmentation as depicted in Figure 4a–f. The wavelet reconstruction
method increases the intensity of the calcification and blood vessels, making it easier
for clinicians to observe and diagnose. Finally, the number of false-positive instances is
decreased by implementing morphological calcification.

To achieve the best MC classification outcomes, we employed the optimal hyperparam-
eter settings in our methods, which included a 32 batch size, 0.001 learning rate, a dropout
of 0.5, 0.9 momenta constant, and 90 epochs, as presented in Table 3. The experimental
findings reveal that the proposed model significantly outperformed with 0.98 sensitivity at
a 1.2 FPi compared to other RF, K-NN, and SVM studies. As observed in Table 4, our model
outperformed the SVM, K-NN, and RF models by 5% in sensitivity and AUC. The findings
reveal that our radiomics analysis approach exceeds existing investigation [10,31] in MC
prediction sensitivity and accuracy. Wang et al. [60] designed a context-sensitive method
based on deep learning for MC detection with the sensitivity of 0.87 at a 1.10 false-positive
rate. Cai et al. [18] designed a deep CNN model for automated MC classification that
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achieved an accuracy of 0.89 and a sensitivity of 0.86 using automatic and manual feature
extraction. Another deep microcalcification detection strategy [22] obtained 0.87 accuracy
and 0.93 sensitivity using 1000 mammogram images of the private dataset.

The proposed investigation can diagnose MC with accurate results and enable radi-
ologists to detect breast cancer timely to save patients’ lives. It automatically extracts the
multiscale features, such as texture, morphological, and intensity histogram features, boost-
ing the cancer diagnosis rate and evaluation performance. The proposed model achieves a
remarkable improvement in the MC cluster’s localization and true-positives using three
feature vectors generated by wavelet analysis, top-hat, and combination compared to SVM,
RF, and K-NN models. Our model performed significantly better than the summarized
study with a highest sensitivity of 0.91 [48] on MIAS, 0.93 [22] on private and 0.93 [10]
on DDSM datasets. Despite this, in the future, we will study identifying specific MCs
using DCNN pre-trained architectures and classifying individual MCs on a large dataset.
Moreover, we will examine our approach to increase classification accuracy on 2D and 3D
mammograms.

6. Conclusions and Future Work

Microcalcification is a biomarker for early-stage breast cancer. Moreover, the breast’s
dense anatomy and poor contrast makes it challenging to recognize MC areas, which the
clinician will invariably misdiagnose. A problematic issue in the automating detection
of MC clustered is the frequent appearance of false positives generated by local visual
patterns that mimic MCs. We proposed a radiomics approach for automatic segmentation
and classification of MC ROIs to overcome this problem. This study employed the wavelet
transform and top-hat operator methods to detect and localize microcalcification localities
in mammogram images. As a result, the proposed study effectively suppresses the image’s
background and reduces false-positive diagnosis by combining the morphological top-hat
operator with the wavelet reconstruction method. The findings indicate that the proposed
classifier categorizes MC patches with high accuracy of 0.98 and sensitivity of 0.98 with a
1.2 FPi, supporting radiologists in making the proper diagnostic decisions and eliminating
needless biopsies. In th future, we will focus on enhancing the mammogram’s many
different characteristics and its further classification. It would be very beneficial if detection
could be performed in real-time throughout the screening process.
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