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Abstract
Feeding schedules entrain circadian clocks in multiple brain regions and
most peripheral organs and tissues, thereby synchronizing daily rhythms of
foraging behavior and physiology with times of day when food is most likely
to be found. Entrainment of peripheral clocks to mealtime is accomplished
by multiple feeding-related signals, including absorbed nutrients and
metabolic hormones, acting in parallel or in series in a tissue-specific
fashion. Less is known about the signals that synchronize circadian clocks
in the brain with feeding time, some of which are presumed to generate the
circadian rhythms of food-anticipatory activity that emerge when food is
restricted to a fixed daily mealtime. In this commentary, I consider the
possibility that food-anticipatory activity rhythms are driven or entrained by
circulating ghrelin, ketone bodies or insulin. While evidence supports the
potential of these signals to participate in the induction or amount of
food-anticipatory behavior, it falls short of establishing either a necessary or
sufficient role or accounting for circadian properties of anticipatory rhythms.
The availability of multiple, circulating signals by which circadian oscillators
in many brain regions might entrain to mealtime has supported a view that
food-anticipatory rhythms of behavior are mediated by a broadly distributed
system of clocks. The evidence, however, does not rule out the possibility
that multiple peripheral and central food-entrained oscillators and
feeding-related signals converge on circadian oscillators in a defined
location which ultimately set the phase and gate the expression of
anticipatory activity rhythms. A candidate location is the dorsal striatum, a
core component of the neural system which mediates reward, motivation
and action and which contains circadian oscillators entrainable by food and
dopaminergic drugs. Systemic metabolic signals, such as ghrelin, ketones
and insulin, may participate in circadian food anticipation to the extent that
they modulate dopamine afferents to circadian clocks in this area.
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Overview
In this article, I describe how regularly scheduled meals induce 
daily rhythms of food-anticipatory behavior by entrainment of  
circadian clocks. I then consider evidence that these clocks may 
be located in peripheral organs, such as the stomach, liver or  
pancreas, or may be entrained by metabolic hormones (ghrelin 
and insulin) or fuels (ketone bodies) released by these tissues  
under control of circadian clock genes or in direct response 
to daily cycles of feeding and fasting. A primary objective is 
to evaluate how well the evidence accounts for established  
circadian properties of food-anticipatory rhythms. In review-
ing relevant studies, I focus on those experiments that have 
behavioral endpoints, as these must stand on their own mer-
its, independent of companion experiments that have cellular or  
molecular endpoints. I conclude with a reminder that animals can  
anticipate daily rewards other than food, including water, salt, sex 
and psychomotor stimulants. Evidence for food- and dopamine 
(DA)-entrainable circadian clocks in the brain’s reward system  
suggests a common mechanism for anticipation of any salient 
reward stimulus that recurs at predictable times of day.

Daily rhythms as circadian clock output
Circadian (~24-hour) rhythms and the clocks that time them are 
a biosignature of life on earth, an adaptation that enables most  
organisms to anticipate the regular alternation between day and 
night and to segregate cellular, systems and behavioral functions 
in accordance with a diurnal or nocturnal temporal niche. The 
mechanism of the circadian clock is intracellular and employs  
interlocking transcription-translation feedback loops (TTFLs) 
through which the expression of clock genes is activated or 
repressed by clock proteins1. In mammals, the clock genes  
Bmal1 and Clock encode proteins that form dimers that bind 
to enhancer boxes and drive expression of other clock genes,  
including Period (Per1, Per2 and Per3), Cryptochrome (Cry1 
and Cry2), Reverbα and Ror genes. PER and CRY proteins 
accumulate in the cytoplasm, form dimers, translocate, interfere 
with BMAL1-CLOCK binding and thereby terminate their own  
expression. Bmal1 expression is activated by RORs and 
repressed by REV-ERBs. Post-translational modifications target  
PER and CRY proteins for removal, permitting BMAL1-CLOCK 
to initiate the next cycle of transcription. Post-translational  
modifications also regulate the period of the cycle2. Clock  
proteins act as transcription factors for other clock-controlled  
output genes and thereby propagate circadian cycles through 
the genome and the functions of the cell3,4. Cellular inputs that  
acutely alter clock gene expression or proteins can shift clock 
phase and enable entrainment to periodic environmental stimuli  
(Zeitgebers), such as the light–dark (LD) cycle5. The specific  
clock genes differ across life kingdoms, but the autoregulatory 
TTFL is a common mechanism. The discovery of clock genes 
and the TTFL in the fruit fly was celebrated by a Nobel Prize in 
20176,7.

In mammals, clock genes exhibit robust circadian cycling in the 
suprachiasmatic nucleus (SCN), a retinorecipient cell cluster in 
the basomedial hypothalamus that is essential for entrainment to 
LD cycles and for circadian organization (that is, “free-running” 

rhythmicity) in constant environmental conditions5,8. Clock 
genes also exhibit circadian expression in other brain regions 
and in most organs and cell tissues outside of the brain.  
Bioluminescent gene reporter assays show that clock gene 
cycling in the SCN and in most non-neural cells and tissues can 
persist for many cycles, if not indefinitely, in vitro9–14. This has 
also been established for some other brain regions. Mammalian  
circadian rhythms therefore reflect the operation of a distributed,  
multioscillatory circadian system, in which a master clock in 
the SCN is entrained by LD cycles and drives daily rhythms  
either directly or by coordinating circadian clocks that control  
local functions in other brain regions and organs.

Feeding rhythm as circadian clock input
SCN outputs have a relatively restricted, predominantly hypoth-
alamic, projection field15. Cell groups in these target areas  
control autonomic and endocrine functions and link the SCN 
pacemaker to physiology and behavior16. Circadian cycling is  
further propagated and reinforced by the consequences of  
behavior. The daily rhythm of feeding and fasting appears to be 
of special significance10,17. Circadian clocks in most peripheral 
organs can be shifted by one or more stimuli associated with  
feeding rhythms or food intake, including glucose18, cell meta-
bolic sensors (for example, AMP-activated protein kinase19,  
SIRT120,21 and PARP-122) and metabolic and gut hormones (for 
example, corticosterone23, insulin24–27 and oxyntomodulin28).  
Some peripheral clock inputs may be universal, and others  
tissue-specific.

The distributed design of this system is clearly adaptive; retinal 
inputs entrain the SCN pacemaker to local time, the SCN  
determines when animals will eat (assuming food availability 
is unrestricted), and food intake controls peripheral clocks,  
ensuring that the organism is physiologically prepared to 
ingest, digest, absorb, distribute and store nutrients during its  
waking hours. An interesting feature of this design is that if 
food availability is restricted to a particular time of day or night,  
peripheral clocks shift their phase to preserve alignment with 
mealtime, whereas the SCN pacemaker remains synchronized 
to LD29–31. The circadian physiological program is therefore  
flexible to the extent that it can accommodate even a reversed 
feeding cycle without forcing the SCN pacemaker out of phase  
with the LD cycle, thereby potentially preserving SCN-based 
encoding of daylength32.

For circadian reprogramming of physiology to be useful, mealtime 
must also control behavior, so that animals are awake and  
motivated to seek and ingest food when it is most likely to be 
found. If the SCN pacemaker controls the sleep–wake cycle but 
does not appreciably change its phase in LD despite inversion  
of the feeding cycle, then it should oppose foraging activity. 
There are two possible solutions: either SCN outputs repre-
senting circadian phase can be used as discriminative cues that 
acquire incentive properties when regularly paired with food (an  
interoceptive “bell” for Pavlov’s hungry dog) or there is another 
timing device that regulates foraging activity and supersedes  
SCN output when the two devices send conflicting messages.
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Separate clocks for food- and light-entrained behavior
Long before the word “circadian” was coined and the concept of 
the circadian clock was firmly established, the biopsychologist  
Curt P. Richter showed that rats maintained in constant light 
for many days and fed for only 25 minutes at a fixed time each 
day exhibited a daily rhythm of locomotor activity that rose to a  
peak at the scheduled mealtime33. He called this food anticipa-
tion. The activity rhythm persisted (albeit weakly) for a few  
days of total food deprivation, suggesting that anticipation was 
timed in a “clock-like” fashion and was not merely a reflection 
of accumulating hunger since the last feeding. Decades later,  
biopsychologist Robert C. Bolles and colleagues demonstrated 
that the anticipation rhythm also emerges in rats entrained 
to LD and fed in the middle of either the day or the night. 
The authors confirmed that the rhythm persists during total  
food deprivation34–36, and most importantly, showed that the  
anticipation rhythm does not emerge if the feeding schedule is 
very different from 24 hours (for example, 19 or 29 hours)35,36.  
The mechanism was inherently “bound up with the 24-hour  
cycle”. Two groups37–39 then showed that the mechanism did 
not require the SCN pacemaker; rats made arrhythmic by SCN  
ablation, and maintained in constant dark or light, exhibited  
robust daily rhythms of food-anticipatory activity (FAA) if fed 
once daily. Analysis of the formal properties of the rhythm were  
consistent with control by a circadian clock entrained by food, a 
so-called “food-entrainable oscillator” (FEO); the rhythm had 
circadian “limits to entrainment”, shifted gradually rather than  
immediately following meal shifts, and persisted for as many 
24-hour cycles of food deprivation as could be safely tested40–44.  
Bolles and Moot had also shown that rats could anticipate 
two daily meals separated by 6 hours34; Stephan confirmed 
this in SCN-ablated rats and provided suggestive evidence for  
concurrent anticipation of two daily meals: one recurring every  
24 hours and the other every 25 hours44,45. This is not unlike  
activity rhythms driven by the SCN pacemaker, which can also  
split into two oscillating components that, under some condi-
tions, can free-run separately and may normally couple to sunset 
and sunrise (communicating daylength by their phase angle  
difference)46,47.

These results have been widely interpreted as evidence that  
mammalian behavior is regulated by two circadian clocks—one 
(the SCN) specialized for entrainment to LD cycles and the other  
(somewhere else) for entrainment to daily feeding cycles—and 
that both clocks are composed of multiple clock cells that can be  
configured into at least two stable, entrainable groups. Given that 
the SCN is in the hypothalamus and receives light information  
directly from the retina, a reasonable (by analogy) working  
hypothesis is that FEOs for behavior would also be hypotha-
lamic, but located within those cell groups that respond to 
peripheral metabolic signals and regulate feeding and metabo-
lism. Some hypothalamic lesions and gene knockouts (KOs), 
targeting defined brain regions, cell types, or receptors in the 
hypothalamus, are associated with an altered food anticipation 
phenotype, most often characterized by a lower-level or slower 
emergence of anticipatory activity or, in some cases, by enhanced 
anticipation48–51. Similar phenotypes may follow lesions or KOs  
targeting brainstem and forebrain areas52–54.

Interpreting these phenotypes is challenging. The site of action 
could be upstream or downstream from the clock mechanism, 
as many factors (sensory, motor and motivational) determine 
the level of activity, independent of circadian timing. A fair  
summary is that there is no agreement on a single locus in the 
brain where FEOs necessary and sufficient for food-anticipatory  
rhythms reside. A default position is that many loci are capable 
of driving FAA55–57. In his first report on food-anticipatory  
rhythms, Stephan37 cautioned that “if many oscillators exist 
which are entrainable by food restriction schedules, it may not be  
possible to abolish anticipatory activity by selective removal, 
or interference with, specific organ systems”. That may prove 
to be true. But the absence of evidence for a defined area analo-
gous to the SCN is not yet sufficiently exhaustive to constitute  
evidence of absence.

By using the word organ rather than brain, Stephan intended to 
include peripheral, non-neural tissues as potential mediators of 
behavioral rhythms. In the very first report of food anticipation, 
Richter33 included data on gastric contractions and proposed that 
“anticipation may be explained by the clock-like functioning of 
the (stomach)”. In that tradition, Stephan and colleagues targeted 
the duodenum, autonomic nerves and first-order brainstem nuclei 
as potential sites of FEOs driving behavior. These efforts were 
instructive and necessary but ultimately not successful43,48. The 
subsequent discovery that bona fide circadian FEOs (cells that  
express clock gene rhythms that are entrained by daily feeding 
schedules) are found throughout the body10,17, combined with a  
lack of success in defining critical neural loci, has renewed  
interest in peripheral organs and their outputs as sources of timing 
information for food-anticipatory behavior.

Food anticipation and gastric ghrelin
Richter would no doubt have been excited by the discovery of  
ghrelin, a hormone derived from preproghrelin secreted by 
gastric oxyntic cells58. Gastric ghrelin secretion is suppressed  
by food intake and stimulated by fasting and, in its acylated  
form, binds to the growth hormone secretagogue receptor 1a 
on cells located in the hypothalamus, substantia nigra, and other 
brain sites59. It is weakly orexigenic following systemic injection60. 
In mice, oxyntic cells express circadian cycles of clock gene 
expression synchronized to mealtime61; ghrelin-secreting cells 
are therefore FEOs. If these cells, via acyl-ghrelin, provide 
time signals critical for food anticipation, then ghrelin ligand or  
receptor KO should eliminate food anticipation. Several groups 
have conducted this experiment, and the results range from a  
reduction in the duration of food anticipation61, to a reduced  
amount of anticipatory activity with no change in duration62, 
to no significant effect63,64. The varying results across studies 
have not been reconciled but could relate to differences 
in behavioral measures (for example, running wheels and  
electroencephalogram-based sleep–wake recordings) or other 
procedural variables. Collectively, the results indicate that  
ghrelin derived from gastric FEOs is not required for FAA.

A role for ghrelin in initiating food-anticipatory rhythms is also 
challenged by dissociations between acyl-ghrelin or the gastric 
clock and FAA during food deprivation and following ad libitum 
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food access. Once established, FAA rises and falls with 
expected mealtime, across multiple days of fasting38,39,42. This 
is a critical, defining attribute of a clock-controlled process.  
Plasma acyl-ghrelin does not; it rises prior to the next mealtime 
and then gradually decreases without further cycling65,66. When  
food is provided ad libitum, rats and mice previously fed in the  
middle of the light period revert to nocturnal feeding, and  
daytime FAA rapidly dissipates. Within a few days, the gastric  
clock has also reset to a nocturnal alignment67. If the animal is 
then food-deprived, activity reappears at the original scheduled 
mealtime. This occurs in intact rats in LD or dark–dark (DD) 
and in SCN-ablated rats, indicating that it is not a “memory” 
of SCN phase. During food deprivation, gastric clock gene  
rhythms (expressed by oxyntic ghrelin-secreting cells) remain 
nocturnally phased67. Finally, rats can anticipate two daily meals; 
if one is in the light period and the other at night, peripheral 
clocks assume an intermediate phase or maintain a nocturnal 
alignment, depending on the relative meal sizes, intermeal  
interval, and timing within the day67–69.

These dissociations make clear that ghrelin secreted by  
gastric FEOs does not directly initiate FAA, but the results do 
not rule out a role for ghrelin as a participant in phase control of  
FEOs for behavior which are located elsewhere in the body or 
brain. This could be explored by measuring the timing of food  
anticipation on days after a bolus of ghrelin is administered  
systemically, a number of hours before or after the usual  
feeding time. If ghrelin can shift FEOs driving FAA, then 
at one or more phases of these FEOs, an artificial spike of  
ghrelin should induce a behavioral shift, indicated by a change 
in the onset of FAA the next day. Injections repeated at the 
same time each day might induce anticipation, especially if the  
animal is fasted during those days. Note that experiments that 
require more than one day of fasting can be carried out only 
by using adult rats, which, unlike mice, can be food-deprived  
safely for 3 to 4 days.

Food anticipation and liver ketone bodies
A large portion of the transcriptome in liver cells exhibits  
24 hour rhythmicity3. The timing of these rhythms is controlled 
by circadian clock genes, which are food-entrainable, and also 
by direct effects of feeding and fasting cycles independent of  
clock genes17,22–25. Hepatocytes are therefore FEOs, and signals 
emitted by the liver could propagate food entrainment to other  
tissues, including the brain. Chavan and colleagues70 reported 
that global or liver-specific Per2 KO, but not a neuron-specific  
Per2 KO, eliminated daily rhythms of food anticipation in mice 
fed for 8 hours per day, beginning 4 hours into the daily 12-hour  
light period. Food anticipation was rescued in liver-specific Per2 
KO mice, but not in global Per2 KO mice, by virus-mediated 
constitutive overexpression of Per2 in the liver. Per2 KO reduced 
expression of genes encoding enzymes important for synthesis 
of ketone bodies by liver cells, and plasma levels of the ketone  
body β-hydroxybutyrate (βOHB) were reduced during restricted 
feeding. Ketones provide energy for neurons during fasting, 
and a daily rhythm of ketone production induced by a feeding  
schedule could elicit food anticipation if ketone levels regulate  
neural output71 or clock gene cycling72. Chavan and colleagues70 
confirmed that plasma βOHB increases prior to mealtime in 

day-fed mice and tested a role in food anticipation by using  
subcutaneous minipumps programmed to release βOHB prior 
to mealtime in liver-specific and global Per2 KO mice. This  
treatment partially rescued FAA. The results were interpreted as 
evidence that FAA requires Per2 expression in the liver (although 
it does not have to be rhythmic) and in one other location (to 
explain the failure of βOHB to rescue FAA in global Per2 KO  
mice) and that βOHB provides timing signals to brain circuits that 
drive FAA.

Although the combined demonstration of loss and rescue of  
function makes a compelling narrative, the loss of function  
requires further study. To induce robust food anticipation, meal 
durations are conventionally set in the 4- to 6-hour range, or a  
limited amount of food is provided, to reduce body weight by  
10 to 20%73. In the study by Chavan and colleagues, an 8-hour  
meal duration was used. LeSauter and colleagues74 recently  
showed that mice overexpressing dopamine 2 receptors (D2Rs) 
in the striatum fail to anticipate mealtime if food is provided for 
8 hours but show robust levels of anticipation, comparable to  
those of wild-type mice, if the meal duration is 4 or 6 hours. 
Wild-type mice also showed weak anticipation to the 8-hour  
duration. Lack of anticipation to the 8-hour meal in D2R- 
overexpressing mice was attributed to a motivational rather 
than a clock deficit, which is consistent with other evidence 
for motivational deficits in these mice. This serves as a caution-
ary tale that if food anticipation is weak or absent at long meal 
durations, then the feeding window needs to be narrowed to  
fully interpret the results.

The dissociations noted between FAA and circulating acyl- 
ghrelin levels also apply to liver ketones. During extended  
fasting (in rats), FAA persists with a 24-hour periodicity while 
plasma ketone levels rise and by the second day remain high75.  
Therefore, circulating ketones cannot explain the timing of 
FAA during fasting. Nonetheless, ketones, like ghrelin, could 
play a role in setting the phase of FEOs in the brain. If so, acute  
manipulations of ketone levels, at some phases of the food  
anticipation rhythm, would be expected to shift its timing. Ketone 
pulses should also be able to shift clock gene cycles in at least 
some tissues in vitro. Chavan and colleagues noted that βOHB  
did not induce Per2 expression in the liver, but whether it  
affects clock gene cycles in other tissues, including neurons, 
remains to be determined.

An unresolved issue is that, in many studies, contrary to the  
results reported by Chavan and others70 , Per2 KO alone or in 
combination with KO of Per1 and Per3 did not eliminate food  
anticipation rhythms76–78. This could be attributable to differ-
ences in the mouse lines, or in some methodological details, 
despite what appear to be similar procedures (meal duration 
being a notable exception). It would be useful to see mouse lines  
exchanged across labs and tested using lab-specific procedures.

Food anticipation and pancreatic insulin
Insulin is secreted by the pancreas in response to glucose  
ingestion and absorption. Clock gene rhythms in the pancreas 
entrain to daily meals27,79. The pancreas thus contains FEOs 
and emits a hormone that reports mealtime and that has near  
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universal access to cells in the brain and body. A recent study 
proposed that insulin and insulin-like growth factor-1 (IGF-1)  
may be universal Zeitgebers for FEOs27. If so, then the pancreas 
may participate in control of FEOs responsible for  
food-anticipatory behavioral rhythms27. The study confirmed 
earlier work that insulin can shift circadian clocks in vitro and  
extended this to an in vivo model. In vitro, high doses of  
insulin rapidly increased PER2 levels and shifted the rhythm 
of PER2::LUC expression in fibroblasts, dissociated cortical  
neurons, and explants of liver and kidney. In PER2::LUC 
mice, systemic injections of insulin and glucose induced and  
shifted the whole organism bioluminescence rhythm. The acute 
effect of insulin on PER2 levels was mediated by activation  
of target of rapamycin (TOR), increased phosphoinositide  
signaling, and microRNA downregulation27.

Two additional findings of note were that, in vitro, insulin did 
not shift the SCN clock but did induce PER2 in fibroblasts  
lacking Cry1/Cry2 or Bmal1. These observations are consist-
ent with the lack of shifting of SCN clock gene rhythms in  
food-restricted mice entrained to LD10,29 and with the failure of 
Cry1/Cry2 or Bmal1 KO to eliminate food anticipation rhythms 
despite eliminating circadian rhythms when food is available  
ad libitum80–83. A number of studies have documented the resil-
ience of circadian food anticipation to loss of clock genes 
in various combinations78. Crosby and colleagues27 propose  
that feeding cycles, via insulin, can directly drive PER2 
cycling in clock gene KO mice. This potentially explains the  
continued appearance of FAA in clock gene KO mice.

Although the persistence of food-anticipatory rhythms in 
clock gene KO mice may suggest an entirely novel clock  
mechanism, changes in circadian properties of FAA in these models 
do indicate a role for canonical clock genes. For example, FAA 
in mice lacking Bmal1 have an expanded (unlimited?) range of  
entrainment82 (raising the question, if there is no limit, should 
we call it entrainment or would interval timing be more  
accurate?). FAA in mice lacking all three Per genes appears 
to have a shortened period of oscillation and entrains best to  
feeding cycles normally outside of the range of entrainment  
(for example, 21 hours)84. FAA may be weak or absent in 
Rev-erbα KO mice85. Conceivably, FEOs in mice lacking  
Per genes may cycle because of effects of feeding-related  
signals on remaining clock genes, including Bmal1 and  
Rev-erbα.

Crosby and colleagues establish a case for insulin signaling as a 
potential universal resetting stimulus for FEOs. It is therefore  
reasonable to infer that this would include FEOs that gener-
ate food-anticipatory behavioral rhythms. Genetic ablation 
of insulin and IGF-1 signaling induces profound metabolic  
deficits, but pharmacological block is possible using the com-
pound BMS-754807. The authors reasoned that “If insulin and 
IGF-1 signaling communicates feeding time to cellular circadian  
clocks throughout the brain and body, then chronic application 
of BMS-754807 via drinking water should impair entrainment  
of both molecular and behavioral circadian rhythms to feed-fast 
cycles in vivo”27. To test this, mice entrained to LD with food  
available ad libitum were released into constant light, and food 

was restricted to the first 8 hours of what was the previous light  
period, for 8 days, after which food was again provided ad  
libitum. In constant light, LD-entrained activity rhythms free-
run with a periodicity usually greater than 24 hours, as shown by 
the ad libitum–fed control group (Figure 7C)27. Food-restricted  
mice receiving BMS-754807 in drinking water or drinking 
water alone (vehicle group) also showed a long-period (phase- 
delaying) activity rhythm. Notably, both vehicle and  
BMS-754807–treated mice showed substantial activity imme-
diately preceding the mealtime. One interpretation of these 
data is that insulin does not control the phase of FEOs that drive 
FAA, but it is also possible that premeal activity was part of  
the free-running activity rhythm and not the output of FEOs.  
To examine this further, the chronic BMS-754807 experiment 
could be repeated on mice (or rats) entrained to LD with food lim-
ited to the middle of the light period, when there can be a clear 
separation between food-anticipatory and nocturnal activity. If  
BMS-754807–treated mice exhibit a delay in the emergence 
of FAA or a difference in FAA duration (timing), that would  
suggest a role for insulin in control of the FEOs that drive behav-
ioral anticipation. It would also be informative to determine  
whether the rhythm of FAA, once established, can be acutely 
shifted by a bolus injection of insulin and glucose outside  
of the usual mealtime.

Is there a final common clock for circadian 
anticipation?
Mealtiming exerts a profound influence on circadian clocks  
throughout the body and brain, some of which control  
behavior, ensuring that animals can exploit temporal regularities 
in food availability even when these conflict with a “preferred”  
chronotype defined when food is available ad libitum. The 
studies highlighted here have identified specific metabolic  
signals (ghrelin, ketone bodies and insulin) that may participate 
in the induction of food-anticipatory behavioral rhythms. The  
available evidence falls short of assigning a necessary or  
sufficient role for these signals on either the input side or the  
output side of the food anticipation timing system. It is possible 
that phase control of this system is multiply determined. Indeed,  
additional nutrient signaling pathways by which daily cycles 
of feeding and fasting can regulate clock gene expression 
have been identified in various cell types17–22. Synchronization 
of circadian clocks by food thus appears to involve multiple,  
tissue-specific or universal input signals acting in parallel or in  
series to align circadian physiology with mealtimes. Which 
and how many of these participate in control of behavioral  
rhythms remain open questions.

The availability of widely broadcast systemic time cues for food 
entrainment has been taken to suggest that food-anticipatory 
behavioral rhythms are driven by FEOs distributed across 
multiple brain circuits that collectively regulate appetitive  
behavior27,55–57,86,87. There certainly are many FEOs, in both 
the brain and the body, but that does not rule out the possibility 
that there is a “final common” circadian clock that integrates  
multiple time cues and ultimately sets the phase and period of  
anticipatory behavioral rhythms. There is ample evidence that  
animals can anticipate restricted access to other appetitive  
stimuli, including highly palatable snacks88,89, water90,91, salt92, 
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reproductively receptive mates93, and addictive, psychomotor 
stimulant drugs54,94–96. By contrast, scheduled arousal by sleep  
deprivation, time-restricted running-wheel access, forced  
running or swimming does not induce anticipatory activity97,98.  
Anticipation of water, sex and drugs has been experimentally  
separated from effects of these schedules on food intake, ruling 
out spurious food entrainment91,93,95. These appetitive stimuli 
share with food ingestion the ability to strongly activate DA  
signaling in neural circuits that mediate reward processing,  
reinforcement learning and habit formation99. Circadian clock 
genes oscillate in the major components of this system, includ-
ing the dorsal and ventral striatum, and the timing of these  
oscillations is shifted by feeding schedules86,100–102. In the dorsal 
striatum, clock gene rhythms are also regulated by DA recep-
tor signaling101. DA-deficient mice do not exhibit appetitive  
behavior103,104, but restoring DA signaling selectively in the  
dorsal striatum is sufficient to rescue these behaviors104–106,  
including circadian FAA54. FAA is diminished by DA  
antagonists107,108 and by DA receptor 1 KO54 and can be shifted  
by a DA receptor 2 agonist109. Gastric acyl-ghrelin, pancreatic 
insulin and hepatic ketone bodies modulate neural activity in mid-
brain DA neurons and thus converge on DA-receptive circadian 
oscillators distributed diffusively in striatal reward circuits110. 
Such oscillators could mediate anticipation of other rewards and, 
depending on how they are coupled, potentially enable  
anticipation of more than one daily mealtime or other reward 
(for example, anticipation of both water and food91 or drug and  
food95 provided at different times of day).

The concept of a “master”, multioscillatory, DA-responsive 
circadian clock system for reward anticipation is consistent  
with the available evidence and makes testable predictions. 
If DA signaling sets the phase of oscillators that control FAA  
timing, then it should be possible to shift FAA onset by timed  
activation of midbrain DA neurons or DA-receptive neurons 
using chemogenetic or optogenetic tools. It should also be  
possible to reproduce FAA rhythm phenotypes (for example, loss 
of limits to entrainment, shortened rhythm period, or failure to  
emerge) associated with global clock gene KOs (for example, 

Bmal1, Per1/Per2 and Rev-Erbα) by KOs specific to dopaminergic 
or DA-receptive cell populations in the striatum.

Concluding thoughts
This article has served as a vehicle to highlight some unresolved 
issues in mammalian circadian biology, including the formal  
structure, molecular and cellular substrates and input pathways 
of the circadian timing system that synchronizes appetitive  
behavior with daily rhythms in the availability of food or  
other strong rewards. I conclude with two lines of evidence that  
link FAA rhythms with ultradian activity rhythms and DA- 
responsive clocks with psychopathology.

The utility of a circadian system for adjusting rest–activity  
cycles to times of day most favorable for resource acquisition 
is self-evident, but it is not unreasonable to speculate that  
clock entrainment could support addictive behaviors. If episodes  
of drug, alcohol or junk food consumption are concentrated  
at a particular time of day (for example, evenings), circadian  
entrainment processes that serve to reinforce successful 
daily patterns of reward acquisition could contribute to the  
emergence, maintenance and relapse of compulsive eating, 
drinking or drug taking111–113. Another line of work suggests that  
ultradian oscillators can induce behavioral rhythms at circadian 
or longer intervals, depending on DA tone (manipulated, for  
example, by chronic methamphetamine consumption) and striatal 
DA levels114. This has been proposed as an animal model of 
rapid cycling bipolar disorder114. Circadian activity rhythms  
induced by chronic methamphetamine share several proper-
ties with food-anticipatory circadian rhythms, including per-
sistence in rats or mice following SCN ablation or clock gene  
KOs84,115–117. Ultradian rhythms in at least one species, the vole, 
share with food-anticipatory rhythms in rats the property of 
being resistant to rhythm period lengthening by chronic con-
sumption of D

2
O in place of H

2
O118,119. These converging nar-

ratives invite speculation that a common pool of DA-regulated 
oscillators may underlie behavioral rhythmicity in the ultradian 
and circadian range and behavioral disorders associated with  
hyperdopaminergic states.
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