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Abstract: This article presents the influence of machining conditions on typical process performance
indicators, namely cutting force, specific cutting energy, cutting temperature, tool wear, and fine
dust emission during dry milling of CFRPs. The main goal is to determine the machining process
window for obtaining quality parts with acceptable tool performance and limited dust emission. For
achieving this, the cutting temperature was examined using analytical and empirical models, and
systematic cutting experiments were conducted to assess the reliability of the theoretical predictions.
A full factorial design was used for the experimental design. The experiments were conducted on
a CNC milling machine with cutting speeds of 10,000, 15,000, and 20,000 rpm and feed rates of 2,
4, and 6 µm/tooth. Based on the results, it was ascertained that spindle speed significantly affects
the cutting temperature and fine particle emission while cutting force, specific cutting energy, and
tool wear are influenced by the feed rate. The optimal conditions for cutting force and tool wear
were observed at a cutting speed of 10,000 rpm. The cutting temperature did not exceed the glass
transition temperature for the cutting speeds tested and feed rates used. The fine particles emitted
ranged from 0.5 to 10 µm aerodynamic diameters with a maximum concentration of 2776.6 particles
for those of 0.5 µm diameters. Finally, results of the experimental optimization are presented, and
the model is validated. The results obtained may be used to better understand specific phenomena
associated with the milling of CFRPs and provide the means to select effective milling parameters to
improve the technology and economics of the process.

Keywords: CFRP; machining; temperature; cutting forces; dust emission; tool wear

1. Introduction

The use of a carbon fiber reinforced polymer (CFRP) has considerably increased in the
last few years. The aerospace and automotive industries especially are concerned about
these materials, due to the fact that (i) CFRPs are relatively easy to manufacture using
several automated lamination techniques; (ii) they feature excellent unique mechanical
properties as well as good chemical and dimensional stability; and (iii) their corrosion and
heat resistance are also outstanding [1–3]. The main attraction of these materials is the low
density compared to the traditional engineering materials such as steel or aluminum [4].
These characteristics allow for a reduction in costs [5,6], which is an important requirement
in any kind of industry. However, due to the multiphase and inhomogeneous nature of the
material, various types of damage, e.g., fiber breakage and pullout, fuzzing, delamination,
resin degradation, etc., are easily induced [7,8]. In addition, the highly abrasive nature of
the carbon fibers and the low thermal conductivity of the resin matrix lead to rapid tool
wear; the laminated structure of the CFRP facilitates delamination as plies are subject to
separation by cutting forces during machining [9,10].
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Despite the fact that CFRPs are mostly produced near net shape, machining is often
required in order to bring the component into dimensional requirements and prepare it for
assembly. Milling operation remains essential and necessary to achieve the required geom-
etry, tolerance level, and edge quality in CFRPs, which are important for assembly [11,12].
Significant progress has been made to understand the effects of fiber materials and matrix
types [13,14], fiber volume fraction and orientations, [15], tool materials and geometries [16],
and machining parameters [17,18]. Sheikh-Ahmad [19], for instance, demonstrated nu-
merous studies on the machining of a CFRP. It was shown that the machining quality or
machinability of CFRP materials relies on factors such as the fiber volume fraction, fiber
orientation, cutting parameters, and tool geometry. Davim and Reis [12] found that both
cutting speed and feed rate have a statistical and physical significance in the milling of a
CFRP. In a further study of the milling of a CFRP, Azmi et al. [20] observed that the feed
rate has the most dominant effect on surface roughness and machining force. Therefore,
machining has to be conducted with great care to obtain high quality.

CFRPs are normally machined under dry conditions, i.e., without using a coolant [21].
This is due to the fact that the moisture can degrade the mechanical properties of composites,
as seen by microcracking of the polymer matrix and chemical reaction of the polymer [22].
On the other hand, dry machining generates overheating. As a result, thermal damage to
composites [23] and tool life occur [24].

In addition to the above-mentioned cutting mechanics, the cutting temperature has
long been recognized as an important factor influencing the surface quality of milled
materials and the tool life. If the cutting temperature is higher than the thermosetting
matrix resin’s glass transition temperature, the resin will degrade within the machined
surface or surface layer. This critical temperature is around 180 ◦C for a typical epoxy-based
CFRP material. Degradation of the resin generates delamination and weakens the material,
resulting in significant flaws [25]. However, it is reported that cutting temperature is
significantly affected by the cutting speed, depth of cut, tool/workpiece material, feed rate,
and fiber orientations [21].

In order to investigate the CFRP cutting temperature, various techniques have been
used to measure temperature while milling CFRP, such as a thermal camera [26], a K-type
thermocouple, and a tool-work thermocouple [27]. Chen [25] installed a thermocouple
in the flank surface of a drill and performed the temperature measurement of the flank
surface using the thermocouple technique. The results showed that when the cutting
speed was increased from 40 to 200 m/min at a fixed feed rate of 0.05 mm/rev, the
average flank surface temperature increased from 120 to 300 ◦C. When the feed rate was
increased from 0.05 to 0.4 mm/rev at a fixed cutting speed of 21.5 m/min, the average
flank surface temperature decreased from 120 to 70 ◦C. To detect the temperature of the
milling operation, Kerrigan et al. [28] inserted a thermocouple in the cutting tool and
created a wireless telemetric system within the rotary cutting tool. They concluded that in
high-speed milling, responsiveness is insufficient to quantify dynamic change. Weinert and
Kempmann [23] reported that the cutting temperature reaches its maximum when there is
friction between the tool tip and the workpiece. They added that in this case, fibers are not
cut but pressed out by the tool that generates its wear. In another study, Yashiro et al. [27]
measured the cutting temperature during machining of a CFRP composite laminate and
the temperature distribution through the laminate thickness during machining. They
used the following three measurement methods: one with an infrared camera, a second
one with a tool–workpiece thermocouple, and a third with thermocouples embedded
between the layers of the composite. Their analysis indicated that the temperature at the
tool–workpiece contact point reached 180 ◦C (Tg) at a cutting speed of 25 m/min and
subsequently climbed to 300 ◦C at a cutting speed of 50 m/min. When the cutting speed
was increased further, the cutting temperature tended to stabilize and remain consistent.
Even at high cutting rates (300 m/min), the cutting temperature in the workpiece material
was comparatively low (104 ◦C) compared to the tool–workpiece contact point. In recent
research, Liu et al. [29] investigated the workpiece temperature variation in helical milling
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of CFRP. They concluded that the workpiece temperature increases with an increasing
spindle speed and axial cutting depth. They also reported that the axial cutting depth has
more influence on the temperature variation of the workpiece than the spindle speed, while
the influence of feed per tooth is less than the other factors.

To date, measuring cutting tool temperature is a significant challenge in milling oper-
ations due to tool rotation and complicated set-up. Therefore, numerical and analytical
models have been proposed, widely considered, and used until now. Lin et al. [30] devel-
oped a model to predict the cutting temperature of the workpiece during the end milling
process while considering the flank face wear. The model’s accuracy exceeds that of an
analytical model, and its prediction efficiency exceeds that of the finite element approach,
which can be used to optimize cutting parameters. Wang et al. [31] investigated the rela-
tionship between the cutting parameters, cutting temperature, and cutting force in CFRP
milling using response surface methodology (RSM), and indicated that the cutting speed
has a significant impact on the cutting temperature. Sheng et al. [32] suggested a modelling
coupling equation of cutting parameters based on the ideal cutting temperature to optimize
tool life.

In addition to all the exposed issues of composite machining, dry machining of CFRP
composites leads to the generation of significant amounts of airborne dust particles. These
particles can be inhaled and can even penetrate the skin or the eye, which is a direct cause
of a health hazard. Moreover, the dust generated from machining CFRP is harmful to
the machine tool as well [33]. Carbon fibers are electrically conductive, and due to the
small size of the dust particles and the fibers, and their ability to become airborne, these
particles will likely penetrate tight spaces between machine components and into the
machine control box [34]. Numerous works have been conducted to identify the main
factors responsible for the generation of dust particles in order to minimize the emission
of these dangerous particles during the machining of CFRP [35–37]. Boatman et al. [38]
conducted a study to identify the influence of the nature of composite materials on the
size and the number of harmful particles during the trimming process. CFRP and GFRP
materials were machined in this work. They found that harmful particles resulting from
GFRP composites have a higher number and longer lengths than those resulting from
CFRP composites.

On top of that, the number of harmful particles is almost equally distributed along
with particle size (0.5 to 8 µm). However, when machining a CFRP composite, the majority
of the harmful particles lie below 2 µm (almost 85%). It may be noticed that these studies
dealing with dust particles generated throughout machining composite materials do not
provide all the pertinent information on the influence of machining parameters on the
emission of harmful particles. Additionally, no information has been provided on the
tool geometry used. In another study, Haddad et al. [39] investigated the influence of
tool geometry and cutting conditions on surface defects and the dust generated during
CFRP milling. It was observed that an increase in the number of particles occurred with
an increasing cutting speed. The feed rate appeared to have less of an effect at a constant
cutting speed on the number of particles generated. On the other hand, a low cutting speed
and high feed rate supported the apparition of mechanical damages that are responsible
for the poor surface quality [19].

J. L. Miller [40] carried out a variety of tests on the machining of composite materials
and the different particulate sizes of the machined dust. The tests were conducted using uni-
directional and multi-directional laminates. He observed that the aerodynamic diameter of
particles obtained by machining the uni-directional composites was about 0.15 µm. He also
questioned the credibility of the measurement of the percentage of particles that are harmful
to alveoli by Haddad et al. [39]. Regarding the influence of the tool geometry, however,
it has been observed that the amount or number of harmful particles measured, when
using four flutes end mills, is 150 and 120% superior to those generated when trimming is
conducted with coated and uncoated burr tools [37]. These results have been attributed
to the fact that, once the burr tools are used, the temperature of machining is superior
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to the one generated when machining is conducted with four flutes end mills, and this
increases the adherence of the carbon and matrix dust in between the tool grooves of the
burr tools [39]. It should be mentioned that these burr tools have been initially designed by
the manufacturer of tools to minimize the cutting forces and also the delamination when
trimming or milling CFRP, and not for the decrease in the amount or number of harmful
particles. Thus, in our point of view, we can say that an optimal design of the cutting tool
groove may reduce the cutting forces and also the number of harmful particles.

Summarizing the previous work available on the machining of composites, numerous
studies have been conducted on the relationship between machining quality and cutting
force and tool wear. However, few investigations have focused on the interaction effect of
cutting force, cutting temperature, and dust emission in CFRP milling simultaneously.

The present work is primarily motivated by the need to focus on the interaction
effect of cutting parameters (cutting speed and feed rate) on the following machining
process performance indicators: cutting force, specific cutting energy, cutting temperature,
tool wear, and fine dust emission (in terms of number of particles) during dry milling
of CFRP. A complete experimental design has been developed with two factors (feed
speed and cutting speed), each with three levels in order to obtain nine combinations, for
milling of a multidirectional CFRP laminate. A chip breaker router type of end mill was
considered to investigate the effect of machining parameters on cutting force, tool wear,
cutting temperatures, and the dust generated. Down milling was deliberately chosen,
being the preferred method for finishing operations, while machining temperatures were
acquired using K-type thermocouples. Additionally, an analytical model was proposed
to predict the temperature and then, experimental tests were used to verify the results
obtained using the model. In this study, the relationships among milling temperature,
milling force, fine dust emission, and cutting parameters are analyzed using response
surface methodology (RSM), and the corresponding mathematical models are established
to optimize the cutting parameters. Finally, the effect of cutting parameters on the dust
generated while machining composite parts has also been investigated.

Section 2 proposes an analytical temperature field modeling method. Section 3 de-
scribes the material and outlines the experimental techniques for the testing of milling.
Section 4 covers the analysis and experimental validation of the proposed model, and
results. Conclusions are presented in Section 5.

2. Analytical Modeling of the Temperature and Specific Energy

The machining process performance is influenced by a large number of factors in-
cluding the temperature in the cutting zone, the chip formation, the cutting forces, and
the tool wear. All these factors are affected by the machining parameters, the cutting tool
geometry and material, and the machining conditions. For the machining of the CRFP, the
temperature is of great importance, as a high temperature could lead to matrix softening,
delamination, and consequently, deterioration of the CFRP. The cutting temperature, the
cutting energy, and the cutting and shearing forces also influence the dust emission dur-
ing machining. Some of this information can be determined experimentally, while other
information must be estimated indirectly.

An estimation of such critical factors could help selecting machining parameters that
guarantee the production of quality parts, good productivity, and an acceptable level of
dust emission.

Some analytical approaches were developed for the prediction of the cutting tem-
perature. For example, the input parameters of the temperature model can be calculated
according to the Nathan Cook model using experimental data to predict the cutting tem-
perature [41]. In this model, we assumed that the ambient temperature is Ta = 22 ◦C. The
cutting temperature (T) can be calculated as follows:

T = 0.4
U

ρ·C ·
(

V· fz

K

)0.333
(1)
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Ttotal = Ta + T (2)

where U is the specific energy of the material, ρ is the density the material, C is the
volumetric specific heat of the material (j/(mm3·◦C)), V is the cutting speed, fz is the feed
per tooth, and K is the material diffusivity.

The diffusivity K may be determined from the specific heat Cρ, the density ρ, and the
thermal conductivity α as follows [42,43]:

K =
α

ρ Cρ
(3)

It is known that the specific cutting energy is the amount of energy used in removing
a unit volume of the workpiece material per unit time during machining.

For conventional alloys, such as aluminum alloys and steels, the specific cutting
energy is well documented, but it is not the case for composites or for a CFRP. Meanwhile,
the other input parameters of the cutting temperature model can be calculated based on
the specific energy U, which can be calculated from the cutting force (Fc), the cutting speed
(V), and the metal removal rate (MRR) [41].

U =
Fc·V
MRR

=
Fc V
Ac V

=
Fc
Ac

(4)

where Ac is the undeformed chip area that is given by the following [44]:

Ac = ac + at (5)

where at is the thickness of the unidirectional laminate and ac is the chip thickness, which
varies continuously with the engagement angle ∅ of the tool, and is expressed as fol-
lows [45]:

ac = fz sin∅ (6)

where fz is the feed per tooth.
The cutting forces Fc can be measured or estimated from the shear angle (∅) as

follows [46]:
Fc = −Fx sin ∅+ Fy cos ∅ (7)

where Fx and Fy are forces to be measured using a table dynamometer.
Since the undeformed thickness of the chip is almost the same as the depth of cut used,

(given the brittle nature of the CFRP [19,47]), the shear angle ∅ can be estimated through
the tool rake angle (α) by the following [48]:

∅ ≈ tan−1
(

cosα

1− sinα

)
(8)

For this study, the cutting forces were measured, and the temperature was estimated
then validated using experimental machining data. The fine dust emission was sampled
during machining and the tool wear was estimated after a given number of machin-
ing passes.

3. Experimental Setup

Down milling experiments were carried out using a HURON-K2X10 3-axis CNC
machine tool with maximum spindle speed (N), 28,000 rpm; power (P), 50 kW; and torque
(T), 50 Nm. A dynamometer (type Kistler 9255B) was clamped on the machine table and
connected to the charge amplifiers (Kistler 5010) (Kistler Materials 2020, 13, 1181 5 of 22
Instrument Corporation, New York, NY, USA) that generated output signals, which were
transmitted to a data translation card (type DT 9836, Data Translation Inc., Marlborough,
MA, USA), linked to a personal computer. All signals, monitored independently, were
digitized and recorded using LabView software program in order to analyze force mea-
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surements. An Aerodynamic Particle Sizer (APS, model 3321, TSI Inc., Shoreview, MN,
USA) capable of measuring the aerodynamic size of particles from 0.5 to 20 microns. The
dust samples were sucked by a pump (1.5 L/min) through a 10-millimeter suction tube,
with the end of the tube placed near the machining area. The suction tube was connected
to the dust measurement system, which consisted of an aerodynamic particle sizer (APS)
spectrometer. The collected data were then analyzed using the TSI’s Aerosol Instrument
Manager software. The experimental scheme is illustrated in Figure 1. The dust sampling
was performed during the machining process (doors closed). The APS record signal was
initiated 3 s before the cutting process started and was completed, after the end of the
testing, when the dust measurement was near to zero.
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Figure 1. Photographs showing setup for machining CFRP and measurement system, and shape and
geometrical dimensions of workpiece used in this study.

3.1. CFRP Material and Tool Details

Multi-layer CFRP sheets of 1.56 mm (1/16 in) thickness were milled in each experiment.
Each CFRP sheet consists of four unidirectional tapes of equal thickness that are laid up
in (0F/90/0F/90/0F/90/0F/90) configuration. Figure 2a demonstrates the fabric prepreg
orientation scheme. The workpiece materials were cut into small sheets of 38 mm length ×
38 mm width. The total cutting length tested during experiments was Lc = 105 mm routing.
Normally, the use of cutting fluid is not allowed in the secondary process of aircraft CFRP
part machining; therefore, dry cutting was employed in this part of the study. Table 1
shows the mechanical and physical properties of the workpiece as obtained from the CFRP
supplier (McMaster-Carr, Elmhurst, IL, USA).
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Table 1. Mechanical and physical properties of CFRP used.

Property Value

Volume of fibers in each tape 54%

Young’s modulus of the fibers 225 GPa

Young’ modulus of the sheets 65 GPa

Density (ρ) 1.81 g/cm3

Heat capacity (c) 0.06 J/g·◦C
Thermal conductivity (α) 0.5 j/s-mm ◦C

A 3.175-millimeter diameter router end mill (ET-6-1250-F manufactured by Perfor-
mance Micro Tool, Janesville, WI, USA) with chip breaker and with reverse V-shaped ends
was used for milling operations, see Figure 2b. The edges are serrated to break up the
chips into smaller pieces and for fast removal of material during roughing. This router is
designed specially to produce profiling in composite materials. Fishtail ends with V-shaped
ends are suited to produce a flat surface at the bottom and improve chip removal from the
workpiece. The dimensions and the specifications of the end mill are shown in Figure 2
and Table 2.

Table 2. Specifications of the tool used in the experiments.

Cut Diameter
(mm)

Rake Angle
(Degrees)

Flute Length
(mm) No of Flutes Overall Length

(mm)

3.175 6 6.477 6 38.1

3.2. Temperature Measurement

Two K-type thermocouples (made from nickel–chromium wires each of 0.076 mm
diameter (0.003 in.)) were used for measuring the temperature during machining. The
characteristics of the thermocouples are presented in Table 3. Figure 3 shows a schematic
representation of the cutting temperature/forces measurement system used. The thermo-
couples were installed on the tool, 2.2 mm from the tool tip to ensure the performance of
temperature measurement. The thermocouple was held first by adhesive, then glued to the
tooth by cement (OMEGABOND® 400 # OB-400), which is an excellent thermal conductor.
The tool was then left for 24 h in the open air. Once baked, the cement was covered with
epoxy resin to protect it and ensure adhesion. The epoxy resin forms a sort of bridge
between two teeth and protects the cement, which is very brittle, from the flow of chips. In
all cases, the axial depth of cut was kept constant at 2 mm, such that the thermocouples
were located at a distance of 0.2 mm from the cutting area. The tool was then mounted in a
special holder (Type M-320, manufactured by Michigan Scientific Corporation, Charlevoix,
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MI, USA). It is equipped with connections for thermocouples and data were subsequently
relayed and recorded (simultaneously with cutting force traces).

Table 3. Characteristics of thermocouples.

Brand OMEGA®

Type K Reference

Red—Positive Chrome–Nickel CHROMEGA® TFAL-0.003 (Ø 0.076 mm)

Yellow—Negative Aluminum–Nickel ALOMEGA® TFCY-0.003 (Ø 0.076 mm)
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Figure 3. Schematic of cutting temperature measurement system. (Tool holder and tool with
thermocouples).

3.3. Dust Emission Measurement

Measurement of fine particles (diameter range 0.5–20 µm) was carried out using
an Aerodynamic Particle Sizer (APS, model 3321, TSI Inc., Shoreview, MN, USA). Dust
samples were sucked by a pump (1.5 L/min) through a suction tube, with the end of
the tube placed near the machining area. The suction tube was connected to the dust
measurement system, which consisted of the APS. The experimental scheme is illustrated
in Figure 1.

3.4. Machining Parameters and Design of Experiments

Machining parameters such as cutting speed, axial depth of cut, and feed per tooth
affect the cutting temperature. However, the cutting speed and feed per tooth are the
more crucial and dominating factors. Therefore, the milling experiments emphasized
on these two parameters, while the remaining parameters were set to be constants, e.g.,
the axial depth of cut was set as 2 mm. The two machining parameters that are studied
are (a) feed per tooth (fz) and (b) cutting speed (vc). Three feed per tooth levels (2, 4,
6 micrometer/tooth), and three speed levels (10,000, 15,000, and 20,000 rpm) were examined
in the experiments. To increase reliability and accuracy of the results, each test was repeated
two times. A full factorial design of experiments across the two factors of feed, speed, and
their corresponding levels requires a total of 32 = 9 experiments. The cutting parameters
and their levels are listed in Table 4.
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Table 4. Machining parameters and selected levels.

Factors Level 1 Level 2 Level 3

s: spindle speed (rpm) 10,000 15,000 20,000

fz: feed per tooth (µm) 2 4 6

Lc: cutting length (mm) 105

ap: axial depth of cut (mm) 2

4. Results and Discussions
4.1. Cutting Force

The bar diagram in Figure 4 shows the average of the measured cutting forces Fc
obtained from the cutting tests, with the error bars indicating standard deviation. Each
bar diagram shows the magnitude of the average cutting forces during milling of the
CFRP using a specific feed rate and spindle speed. From Figure 4, it can be seen that the
cutting forces increase proportionally as the feed rate (i.e., chip thickness) increases. This
phenomenon can be attributed to an increase in chip loads and volume of material removal
at a higher feed rate, leading to an increase in the magnitude of Fc.
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Our observation from Figure 4 is that under identical cutting conditions, cutting forces
increase as the spindle speed increases from 10,000 to 20,000 rpm. The rate of the increase in
cutting forces with cutting speed is believed to be associated with the cutting temperatures.
Our observation of the tool cutting temperature is described in Section 4.2 and confirms
the correlation between the increase in the cutting temperature and the cutting forces.
This result may be explained based on an article by D. Wang et al. [49], which states that
cutting speed has two opposing effects on the mechanics of chip formation. A higher
cutting speed raises the chip’s strain rate, potentially resulting in increasing the cutting
forces. At the same time, high-speed cutting generates more heat, which would soften the
material and minimize the forces. In a previous study [50] on a CFRP composite using
atomization-based cutting fluid sprays, it was reported that cutting forces decrease with an
increase in cutting speed when machining a CFRP. In the experiments conducted in this
work, however, we consistently observed higher forces at the higher (20,000 rpm) speed
than at the lower (10,000 rpm) speed. Therefore, it may be concluded here that depending
on the workpiece material, tool geometry, and cutting condition, either of these effects may
dominate the process and increase or decrease the cutting forces.
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4.2. Cutting Temperature

Figure 5 shows the evolution of the temperature registered during milling with respect
to spindle speeds of 10,000, 15,000, and 20,000 rpm (i.e., vc = 100, 150, and 200 m/min) at
the feed rates of 2, 4, and 6 µm/tooth, respectively, after machined distances Lc = 105 mm.
The machining temperatures range from 69 to 170 ◦C. It can be also seen from Figure 5
that the overall machining temperature increases with an increase in spindle speed from
10,000 to 20,000 rpm. This is could be due to the increase in the friction between the cutting
tool and the machined surface [27]. S. Gara et al. [51] measured the cutting temperature
during machining of a multidirectional CFRP laminate. The experiments were conducted
on a computer numerical control (CNC) machine with the cutting speed ranging from 80
to 200 m/min and the feed rate from 0.008 to 0.060 mm/tooth. The data were analyzed in
order to establish empirical models showing the dependence of cutting temperature on
tool geometry and cutting conditions. Based on the results, it was concluded that cutting
speed is the factor influencing cutting temperature the most.
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Considering the impact of feed rate, the cutting temperature decreased with an in-
crease in the feed rate. This is in agreement with the common knowledge that, at high
material removal rates (high feed per tooth), the largest share of heat is absorbed by the
chip [19]. In the case of low material removal rates (low feed per tooth), the heat is absorbed
equally by the chip and the tool. Further, with increasing material removal rates, the chip
transports much more heat from the active area, whereas at low material removal rates, the
portion of the heat conducted into the tool plays a more significant role [27]. This behavior
is clearly observed in Section 4.4 upon analysis of the specific cutting energy.

As Figure 5 reveals, the machining temperatures recorded are still far from the glass
transition temperature of the tested CFRP (Tg = 187 ◦C). In this case, it can be assumed
that there is no thermal damage. The present study found that the CFRP machined using
a spindle speed of 10,000 rpm (i.e., vc = 100 m/min) and 6 µm/tooth feed rate exhibited
a reduced cutting temperature during milling under dry conditions. Based on the above
analysis, it may be concluded that reduced chip thickness (lower feed rate/higher spindle
speed) generates the highest temperatures, resulting in increased thermal damage. In
contrast, increased chip thickness (higher feed rate/lower spindle speed) generates the
lowest temperatures.

4.3. Validation of Modeling Temperature Results

For validation purposes, a comparison between the cutting temperature measured by
the K-type thermocouple from the experimental tests and the predicted cutting temperature
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calculated based on the proposed model, Equation (1), under the same cutting conditions,
is performed. The results are displayed in Figure 6. It should be noted that the cutting
conditions for the milling experiments were presented in Section 3.4, while the model
was performed for material parameters of the CFRP cited from Ref. [41] and given in
Table 1. Figure 6 also illustrates the maximum temperature generated during milling with
respect to feed rate at spindle speeds of 10,000, 15,000, and 20,000 rpm (i.e., 100, 150, and
200 m/min). The simulated value of the temperature with respect to speed is found to rise
with an increase in spindle speed and is predicted to be minimum for the 10,000-rpm speed
(i.e., vc = 100 m/min). This agrees with the experimental results. A good agreement was
also observed between the experimental and predicted values of the temperature for the
feed rate, similar to Figure 6. The relative errors between the predicted and experimental
values of temperature are found to be about 7%. Nevertheless, because the temperatures
were measured at 0.2 mm from the axial depth of cut, ap, it could be argued that the
temperature is higher for the model than for the experiments. Consequently, it may be
summarized that the model can predict the temperature with a good degree of accuracy.
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4.4. Specific Cutting Energy

The experimental cutting forces data were used to estimate the energy involved in the
milling process (see Equation (4)).

Specific cutting energy (or specific cutting pressure), defined as the cutting force per
unit area of the uncut chip, was calculated based on Equation (4), as shown in Figure 7.
The chip thicknesses ac of each laminate ranged from 0.0023 to 0.0044 mm, corresponding
to the feed per tooth values of 2, 4, and 6 µm/tooth. It can be seen in Figure 7 that the
average specific cutting energy for the cutting force Fc decreased with an increase in feed
rate but increased when the spindle speed increased. This is due to the fact that specific
cutting energy is critically dependent on the feed rate (i.e., chip thickness), which is a
function of the cutting engagement angle, ϕ. Our observation of the specific cutting energy
is described in Section 2, Equation (6), which confirms the correlation between the increase
in the specific cutting energy and the feed rate (i.e., chip thickness). It also indicates that
the highest specific cutting energy recorded is 40.7 N/mm2 at 20,000 rpm (vc = 200 m/min)
and a feed rate of 2 µm/tooth (0.002 mm/rev) and the lowest specific cutting energy is
12.7 N/mm2 at 10,000 rpm (vc = 100 m/min) and a feed rate of 6 µm/tooth (0.006 mm/rev).
However, the specific cutting energy for CFRP composites is well below that of metals. The
comportment of specific cutting energy regarding cutting speed is similar to that of the
cutting force (Section 4.1), whereas it varies considerably with feed rate. A significantly
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higher specific cutting energy is required for removing small chips (small feed rate). For a
high cutting speed and large chip size, the specific cutting energy for the tested composite
tends to become constant. Therefore, from a material removal rate point of view, better
machinability of CFRPs can be achieved with high feed rates and cutting speeds.
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4.5. Study of Tool Wear

Dry machining of CFRP has an adverse impact on the operator as well as the environ-
ment in general. Therefore, a detailed study was undertaken to investigate tool wear under
dry conditions using a router end mill. Tool wear was measured quantitatively based on
the tool wear weight method, which is defined as the difference in tool weight before the
machining and tool weight after the machining and is usually expressed as a percentage.
Figure 8 illustrates the progression of tool wear (%) vs. the cutting conditions for a cutting
distance of Lc = 105 mm. It can be observed that the tool wear increases when the feed rate
(i.e., chip thickness) is increased. This can be directly related to the increase in the forces
required to remove the larger chip thickness. This result also explains the high cutting
force observed at 6µm/tooth feed rate in Section 4.1. Moreover, an increasing spindle
speed offers a wider contact surface between the tool and the workpiece, thus resulting
in superior surface contact and greater time consumption. As a result, an increase in tool
wear is observed [39]. One can also conclude from Figure 8 that a significant improvement
in the machinability of a CFRP in terms of tool wear can be achieved by decreasing the
feed rate and spindle speed.

4.6. Particle Emission during Milling

The maximum number of dust particles corresponding to different sizes as obtained in
the experiments performed are plotted in Figure 9, depicting the peak-to-peak magnitudes
for all cutting conditions. According to the collected data, the highest numbers of particles
were registered for particles in the range 0.5–1 µm, followed by those with sizes between 2
and 7.5 µm, indicating a decrease in the number of particles with an increase in the feed
rate, but an opposite effect with an increase in the spindle speed. Overall, the highest
numbers of particles are obtained at 20,000 rpm spindle speed with 2 µm/tooth feed
rate for 0.5–1 µm sized particles, as is also the case for the 1–7.5 µm sized particles. In
contrast, at a 10,000-rpm spindle speed with a 6 µm/tooth feed rate, minimum numbers of
particles are obtained. The following two important points were consistently noted in all
the experiments: firstly, regardless of the feed rate used or the highest number of particles,
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the size of particles increased with speed, ranging from 0.5 to 2.5 µm at 10,000 rpm, and
0.5 to 7.5 µm at 20,000 rpm. This is explained by the higher cutting temperatures, as
elaborated in Section 4.2 where an increase in the temperature was correlated with an
increase in the number of particles. The second observation was that regardless of the
spindle speed or the peak emission, the 2 and 4 µm/tooth feed rates displayed similar
highest number of particles at a 15,000-rpm speed. However, when using a feed rate of
2 µm/tooth, a second peak of particle emission appears for particle size ranging from 2.0
to 2.5 µm. Likewise, the 4 and 6 µm/tooth feed rates offered the same highest number of
particles at a 20,000-rpm speed. This observation is evident from the total particle number
concentration (see Figure 10). However, the feed rate seems to have a limited influence as
compared to that of speed. This is also observable in the analysis of variance (ANOVA)
presented in Table 5. The influences of spindle speed and feed rate can be explained by the
chip formation process during the machining of composites [38,52]. The shearing process,
the chip separation and deformation, and the frictions in the shearing zone and at the
chip–tool and tool–workpiece interfaces produce a lot of dust [53]. At low speeds, the chip
crack is controlled by its brittleness. Therefore, there is limited contact and friction between
its lips due to the crack opening [54]. A burr tool would generate a minimum number
of particles when compared to a flat (traditional) tool, as reported by Haddad et al. [39].
Thus, it can be concluded that tool geometry is an important factor in dust emission. One
can also conclude from Figures 9 and 10 that in order to reduce the dust emission at low
spindle speed, chip thickness should be increased by either decreasing the spindle speed
or increasing the feed rate.

4.7. Analysis of Variance (ANOVA)

The main purpose of ANOVA is to use a statistical method to appreciate the effects of
individual controlling parameters on the results obtained. The analysis was carried out at
a 5% significance level (i.e., 95% confidence level). The significance of control factors in
ANOVA is determined by comparing the F values of each control factor, as described in
Table 5. The factors that produced statistically significant effects were selected to develop
the experimental prediction model.
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According to (a) in Table 5, in the analysis of variance for the cutting force, for example,
two factors, namely feed rate and spindle speed, have p-values below 0.05, which makes
them statistically significant at the 95% confidence interval. The speed has the greatest
effect on the cutting force, followed by the feed. These factors were used to develop the
empirical model. It is also seen that the interactions f * f, s * s, and f * s are not statistically
significant for the cutting force, which was, therefore, not selected to develop the empirical
model. Similarly, calculations were applied for other factors in evaluating their significance,
as shown in (b–e) in Table 5.

(b) in Table 5 presents the analysis of variance for specific cutting energy, with two of
the factors displaying p-values less than 0.05, indicating their statistical significance at the
95% confidence level. The feed rate had the highest effect on the specific cutting energy.

With respect to temperature, (c) in Table 5 indicates that the speed was statistically
significant followed by the feed rate and interaction f * s, while the interactions f * f and
s * s had no influence.
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Table 5. Analysis of variance (ANOVA) for output factors.

(a) ANOVA for Cutting Force Fc

Source DF SS MS F-Ratio p-Value

f 1 967.74 967.74 254.87 0.001 *

s 1 1532.80 1532.80 403.69 0.000 **

f * f 1 33.62 33.62 8.85 0.059

s * s 1 13.00 13.00 3.43 0.161

f * s 1 13.32 13.32 3.51 0.158

Error 3 11.39 3.80 -

Total 8 2571.88 -

(b) ANOVA for Specific Cutting Energy U

f 1 509.682 509.682 385.69 0.000 **

s 1 117.042 117.042 88.57 0.003 *

f * f 1 27.134 27.134 20.53 0.020

s * s 1 0.161 0.161 0.12 0.750

f * s 1 33.640 33.640 25.46 0.015

Error 3 3.964 1.321 -

Total 8 691.622 -

(c) ANOVA for Temperature T

f 1 2777.80 2777.80 267.40 0.000 **

s 1 4428.17 4428.17 426.27 0.000 **

f * f 1 78.13 78.13 7.52 0.071

s * s 1 2.42 2.42 0.23 0.662

f * s 1 414.12 414.12 39.87 0.008 *

Error 3 31.16 10.39 -

Total 8 7731.80 -

(d) ANOVA for Tool Wear

f 1 52.8185 82.8185 153.80 0.001 **

s 1 9.4627 9.4627 27.55 0.013 *

f * f 1 2.7036 2.7036 7.87 0.068

s * s 1 0.4377 0.4377 1.27 0.341

f * s 1 4.1657 4.1657 12.31 0.040

Error 3 1.0303 0.3434 -

Total 8 70.6185 -

(e) ANOVA for Fine Particle Emission

f 1 219,984 219,984 21.68 0.019 *

s 1 4,345,614 4,345,614 428.28 0.000 **

f * f 1 8577 8577 0.85 0.426

s * s 1 222,814 222,814 21.96 0.018 *

f * s 1 31,134 35,134 3.46 0.160

Error 3 30,440 10,147 -

Total 8 4,862,563 -
**: most influent factor; * Second most influent factor.
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It can be seen from (d) in Table 5 that the feed rate had the greatest effect on tool wear,
with the spindle speed as the next most influent factor. The fine particle emission was
also analyzed. In this work, the fine particles studied have diameters ranging from 0.5 to
10 mm.

According to (e) in Table 5, the spindle speed (F-Ratio = 428.28) with a p-value of 0.000
is most significant, while the feed rate and interaction s * s are less significant at the 95%
confidence level. The observations of the fine particle emission as described in Section 4.6
confirm the relationship between the increase in the total number of particles emitted and
spindle speed.

The Pareto diagrams in Figure 11 illustrate the effect of the input parameters (feed and
speed) on the output parameters (cutting force, temperature, specific cutting energy, tool
wear, and dust emission). It can be seen from Figure 11 that the feed rate has a significant
influence on specific cutting energy and tool wear, while spindle speed was shown to be
the most effective factor with respect to the cutting force, temperature, and total particles
number.

4.7.1. Response Surface Methodology

The response surface methodology (RSM) establishes a mathematical relationship
between two sets of data [55] with one set being the independent variables, i.e., cutting
speed and feed rate, whereas the other set is the dependent variables or quality characteris-
tics, i.e., cutting force, specific cutting energy, temperature, tool wear, and dust emission.
This mathematical relation can be either first order (linear) or second order (quadratic).
In the present work, RSM models were applied using a statistical software Minitab®
20.3 to establish relationships between the input parameters (independent variables) and
the output responses (dependent variables). R-squared is a statistical measure of how
close the data are to the fitted regression line. Another correlation coefficient often used is
the adjusted R-squared, which is a modified version of R2 that has been adjusted for the
number of predictors in the model. While the adjusted R2 also indicates how well terms fit
a curve or line, it adjusts for the number of terms in a model and helps in determining if a
new term improves a model. The correlation coefficients R2 and R2 adjusted for output
parameters (cutting force, specific cutting energy, temperature, and total particle numbers)
are given in Table 6. The results obtained for the coefficients indicate that the model used is
quite adequate for prediction purposes. The predictive fit model equations for cutting force,
specific cutting energy, temperature, tool wear, and total particle numbers were obtained
as follows:

Fc(N) = 16.55 + 6.35 f +
(

3.2·10−3s
)

(9)

U
(

N
mm2

)
= 22.62− 7.63 f + 2.04·10−3s + 0.92· f 2 −

(
3·10−4 f ·s

)
(10)

T(◦C) = 7.3− 4.5 f +
(

9.5·10−3s
)
−

(
1.02·10−3 f ·s

)
(11)

Tool wear (%) = 8.3− 2.37 f −
(

1.57·10−4s
)
+ 0.3 f 2 + 10−4 f s (12)

TPn
(
6=

cm3

)
= 1900− 957 f − 0.23s +

(
1.36·10−4s2

)
(13)

where f (µm) is the feed per tooth, s (rpm) is the spindle speed, and TPn the total particles
number.
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Table 6. Correlation coefficients R2 and R2 adjusted for Equations (9)–(13).

Equation No. Output Parameters R2 R2 Adjusted

1 Cutting force 97.2% 96.3%

2 Specific cutting energy 99.4% 98.8%

3 Temperature 98.5% 97.7%

4 Tool wear 97.9% 95.8%

5 Total particle numbers (Tpn) 98.4% 97.5%

4.7.2. Response Surfaces and Contour Plots for Output Parameters

Three-dimensional (3D) response surfaces and the corresponding two-dimensional
(2D) contour plots were determined for the modeled parameters as a function of the
independent factors, feed per tooth, and spindle speed. The response surfaces due to the
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effects of these two factors on the cutting force, specific cutting energy, temperature, tool
wear, and dust emission are illustrated in Figure 12. The corresponding contour plots
are shown in Figure 13. As presented by Figure 12a,d, the cutting force and tool wear
increase for all three feed rates as the spindle speed increases from 10,000 to 20,000 rpm.
The obtained maximum cutting force (Fc) and tool wear are 110 N and 12%, respectively,
at a feed rate of 6 µm/tooth and a spindle speed of 20,000 rpm. On the other hand, from
Figure 12b,c, the specific cutting energy and the temperature decrease significantly for all
three feed rates and increase as the spindle speed increases from 10,000 to 20,000 rpm. The
obtained maximum specific cutting energy (U) and temperature (◦C) are 35 N/mm2 and
140 ◦C, respectively, at a feed rate of 2 µm/tooth and a spindle speed of 10,000. Figure 12e
shows that the total particles number increases significantly with the increase in spindle
speed from 10,000 to 20,000 rpm and decreases as the feed rate increases. The obtained
maximum total particles number is 20,000 cm3 at 20,000 rpm and a feed rate of 2 µm/tooth.
In addition, the elliptical nature of the contour lines in Figure 13d,e implies that there is
a significant interaction between the feed rate and the spindle speed. The interactions
between the independent variables in the contour plots have an important impact on the
response because high interactions mean the existence of maximum, minimum, or saddle
points in the response surface, which help in estimating the optimization process. On the
other hand, in the contour plots in Figure 13a–c, the nearly linear contour lines imply that
interaction between the feed rate and the spindle speed in the case of the corresponding
output parameters is weak.

4.7.3. Analysis of Responses

The values from the experiment and the predicted values obtained from the empirical
models (Equations (9)–(13)) are shown in Figure 14. Table 7 compares the values of the
optimum cutting parameters for output parameters and their predicted values (the optimal
spindle speed was 10,000 rpm). It is concluded that a low cutting speed and a low feed
rate are preferred to minimize the cutting force and the tool wear. In addition, in order to
maintain a low temperature, specific cutting energy, and dust emission levels, a low cutting
speed and a high feed rate are preferred. Such a combination would help in maintaining
an acceptable removal rate and thus render good productivity.

Table 7. Comparison between experimental data and predicted data for the recommended spin-
dle speed.

No. s (rpm) f (µm/Tooth) Responses

Variables Exp. Predicted

1 2 Force (N) 57.6 61.2

2 6 U (N/mm2) 12.7 8.92

3 6 T (◦C) 69.20 58.08

4 2 Tool wear 4.89 3.78

5 6 Total number of
particles (#/cm3) 432.3 438.03
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5. Conclusions

The present study attempted to investigate routing milling of CFRPs under dry
machining conditions. The effect of cutting parameters (feed rate, spindle speed) on the
cutting force, cutting temperature, tool wear, and dust emission was assessed. From the
experimental results and statistical analysis of the data, the following may be concluded.

The feed rate has a greater effect on cutting force and tool wear than the spindle speed
in the milling of CFRP composite materials but has no influence on dust emission.

1. Cutting speed is the main parameter that controls the cutting temperature in milling
of CFRP composite materials, followed by feed rate.

2. The predicted temperatures from the analytical model agreed well with the experi-
mental observations within a range of ±10%.

3. The cutting temperature does not exceed the glass transition temperature for the
cutting speeds (10,000, 15,000, 20,000 rpm) and feed rates (2, 4, 6 µm/tooth) used.

4. The specific cutting energy for the cutting forces considered was investigated as a
material property. It was found to increase with an increase in the spindle speed but
decrease with an increase in the feed rate.

5. During the machining, fine particles were emitted (aerodynamic diameters ranging
from 0.5–10 µm). The maximum concentration of fine particles reached 2776.6 #/cm3,
while the minimum number reached 432.3 #/cm3. The spindle speed significantly
affects fine dust generation, whereas the feed rate is not statistically significant. The
total number concentration of fine particles decreased with an increase in the feed rate.

6. The optimum levels of the control factors for minimizing the cutting force, tool wear,
cutting temperature, specific cutting energy, and fine particles emission were derived
using the ANOVA approach. The optimal conditions for cutting force and tool wear
were observed at cutting speed = 10,000 rpm and feed rate = 2 µm/tooth, while those
for a specific cutting energy, cutting temperature, and total number of particles were
observed at cutting speed = 10,000 and feed rate = 6 µm/tooth.
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Nomenclature

CFRP Carbon fiber reinforced polymer
Fx Normal force in the x direction
Fy Feed force in the y direction
Fc Cutting force (N)
∅ Engagement angle (◦)
α Rake angle (◦)
U Specific energy (Nm/mm3)
vc Cutting speed (m/min)
s Spindle speed (rpm)
SS Total sum of squares
ANOVA Analysis of variance
CNC Computer numerical control
R2-adj. The percentage of variation explained by only the independent variables that actually

affect the dependent variable.
ρ Density (g/cm3)
C Heat capacity (J/g-C)
K Thermal diffusivity of work material (mm2/s)
T Temperature rises at tool-chip interface (◦C)
α Thermal conductivity (j/s-mm ◦C)
Cρ Specific heat (j/mm3-C)
MRR Material removal rate (N-m/mm3)
ap Depth of cut (mm)
DF Degrees of freedom
MS Mean of squares
µ Micrometer
R2 The correlation between the predicted values and the observed values
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