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An automatic hypothesis 
generation for plausible linkage 
between xanthium and diabetes
Arida Ferti Syafiandini, Gyuri Song, Yuri Ahn, Heeyoung Kim & Min Song*

There has been a significant increase in text mining implementation for biomedical literature in recent 
years. Previous studies introduced the implementation of text mining and literature-based discovery 
to generate hypotheses of potential candidates for drug development. By conducting a hypothesis-
generation step and using evidence from published journal articles or proceedings, previous studies 
have managed to reduce experimental time and costs. First, we applied the closed discovery approach 
from Swanson’s ABC model to collect publications related to 36 Xanthium compounds or diabetes. 
Second, we extracted biomedical entities and relations using a knowledge extraction engine, the 
Public Knowledge Discovery Engine for Java or PKDE4J. Third, we built a knowledge graph using the 
obtained bio entities and relations and then generated paths with Xanthium compounds as source 
nodes and diabetes as the target node. Lastly, we employed graph embeddings to rank each path 
and evaluated the results based on domain experts’ opinions and literature. Among 36 Xanthium 
compounds, 35 had direct paths to five diabetes-related nodes. We ranked 2,740,314 paths in total 
between 35 Xanthium compounds and three diabetes-related phrases: type 1 diabetes, type 2 
diabetes, and diabetes mellitus. Based on the top five percentile paths, we concluded that adenosine, 
choline, beta-sitosterol, rhamnose, and scopoletin were potential candidates for diabetes drug 
development using natural products. Our framework for hypothesis generation employs a closed 
discovery from Swanson’s ABC model that has proven very helpful in discovering biological linkages 
between bio entities. The PKDE4J tools we used to capture bio entities from our document collection 
could label entities into five categories: genes, compounds, phenotypes, biological processes, and 
molecular functions. Using the BioPREP model, we managed to interpret the semantic relatedness 
between two nodes and provided paths containing valuable hypotheses. Lastly, using a graph-
embedding algorithm in our path-ranking analysis, we exploited the semantic relatedness while 
preserving the graph structure properties.

Drug development is both expensive and time-consuming. Therefore, many studies have focused on reducing 
the time and costs of drug development. Multidisciplinary approaches and the implementation of computational 
methods are strongly encouraged to reduce the workload in drug development. Previous studies have applied 
artificial intelligence approaches to help reduce drug development  costs1,2. As the quantity of biomedical literature 
has increased, there has been steadfast interest in applying text-mining techniques and Literature-based Dis-
covery (LBD) to generate applicable drug compound  candidates3. We can extract information from biomedical 
literature and generate facts using text-mining techniques. Then, we can employ the LBD concept to generate 
hypotheses for drug development using those facts. Analyzing existing facts garnered from biomedical literature 
to generate new hypotheses is called “Conceptual Biology”4.

Previous works suggest that combining LBD and text-mining techniques to generate hypotheses for drug 
development can significantly decrease the experiment time and  cost5–8. However, despite the significant growth 
of studies in this field, hypothesis generation for drug development purposes remains challenging. The high 
dimensionality of biological substances and the number of related publications can be a significant obstacle to 
discovering possible linkages between  entities9. Moreover, the number of generated paths during hypothesis gen-
eration is relatively high, making it difficult to gain insights. Therefore, to tackle such problems, this paper pro-
posed a complete framework for hypothesis generation utilizing LBD and text-mining techniques with additional 
path-ranking steps to select critical paths and recommended them for further experiments in drug development.
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We investigated the natural compounds found in Xanthium and their connectedness with diabetes as a 
case study. Those compounds are extracted from medicinal plants in the Xanthium genus such as Xanthium 
strumarium10 and Xanthium sibiricum11. A previous study found that Xanthium strumarium might have an 
anti-diabetic effect because its fruit reduced the elevation of plasma glucose levels in diabetic  rats12. Another 
study found that Xanthium sibiricum Patrin ex Widder water extracts (CEW) could increase the sugar tolerance 
in normal mice and decrease the blood sugar level in diabetic  mice13. Further  experiments14 also proved that 
Xanthium compounds and diabetes are significantly related but there have been few studies about the complete 
biological interactions between these two. In addition, we found that diabetes is one of the most common 
endocrine disorders with a high probability of severe  complications15,16. Diabetes is also a lifelong disease with 
no available cure. Several synthetic drugs are available for diabetes treatments but they are costly, have many 
side effects, and are unsuitable for long-term  consumption17. Therefore, there is an urgent need to find natural 
compounds for long-term diabetes treatment.

To generate hypotheses for Xanthium compounds and diabetes, we applied Swanson’s ABC  model18, which is 
a known LBD model for bio-literature mining. This model has two main steps we need to execute, constructing 
a knowledge base and generating paths. We utilized the PKDE4J  tool19 and BioPREP  model20 to extract entities 
and relations from retrieved PubMed articles and construct the knowledge base. PKDE4J is a dictionary-based 
Named Entity Recognition (NER) and rule-based relation extraction tool, while BioPREP is a pre-trained lan-
guage model specifically built for learning biomedical text. The BioPREP model learned sentences, transformed 
them into embedding representations, and forwarded them for predicate (relation) classification. We generated 
simple paths from our knowledge base and ranked them using our proposed path-ranking algorithm, which 
combines the graph-embedding  approach21 and the encoder–decoder architecture. We relied on a literature-
based study and experts’ opinions to validate our path-ranking results.

We highlighted our contributions in this paper: constructing a Xanthium compounds-diabetes knowledge 
base, proposing a path-ranking approach using graph-embedding values, and generating hypotheses for drug 
development experiments using Xanthium compounds.

Related works
Swanson first implemented a literature-based discovery approach to investigate linkages between dietary fish 
oil and Raynaud’s  syndrome18. This approach is known as the ABC model and pioneered biomedical literature 
mining. Swanson’s ABC model generated constructive hypotheses and was helpful for further investigation. 
With the growing number of publications and digitalization, more studies have applied and co-opted Swanson’s 
ABC model with text-mining techniques for knowledge discovery and hypothesis  generation22. We can cover 
more extensive collections with text-mining techniques and significantly reduce analysis bias. Moreover, we 
increased the probability of discovering new biological concepts and produced more compact hypotheses for 
drug  development23–25.

The basic principle in the ABC model is constructing a knowledge base (usually represented as a graph) using 
open or closed discovery approaches. Essentially, an open discovery aimed to discover C instances given the 
A and B instances, while closed discovery aimed to discover B instances given the A and C instances. We can 
directly observe and choose the A, B, or C instances in small collection cases. Nevertheless, we need to use an 
automated approach to identify those instances for significant collection cases.  PKDE4J19—a dictionary-based 
tool for entity recognition and relation extraction—is one solution for processing large-scale data collections. 
PKDE4J can automatically identify entities and label the relationships between two entities in sentences. For 
entity extraction, PKDE4J utilized multiple dictionaries with a vast vocabulary. In a previous evaluation, PKDE4J 
outperformed several machine learning-based tools—including  Neji26—in the NER task. PKDE4J gave better 
performance, especially for matching and labeling bio entities with multiple terms.

PKDE4J employed a rule-based approach for relation extraction, which might be powerful but may not 
cover all conditions. Other than rule-based approaches, previous studies proposed supervised approaches that 
utilize neural network structures to extract relation information from  texts27–29. However, those methods were 
less efficient because they required determining features beforehand. The development of a pre-trained language 
model such as  BERT30 has enabled the processing of texts without additional feature-processing steps. BERT 
employs bidirectional encoders that learn sentences and passages in a contextual manner. We can fine-tune BERT 
for specific vocabularies and collections such as biomedical literature; BioPREP is one of several BERT models 
explicitly trained for  biomedicine20. BioPREP fine-tuned the previously available BERT models  SciBERT31 and 
 BioBERT32 using  SemMedDB33. SemMedDB is a publicly available large dataset for biomedical entity and rela-
tion extraction. Fine-tuning a language model with SemMedDB can tackle the coverage problem when building 
a relation-extraction model.

Once we finish the knowledge base construction, we need to generate paths and conclude hypotheses based 
on those paths. Depending on the knowledge base size and path depths, the number of generated paths could 
be enormous and analyzing them individually would be excessive. Therefore, we need an automated approach 
such as a path-ranking algorithm (PRA). A PRA would help identify critical paths for hypothesis generation 
and has emerged as a promising method for learning inference paths in large knowledge  graphs34. The most 
common step in PRA is calculating the triple score (node–relation–node) and calculating the path score. A 
previous  study35 proposed a triple score calculation using semantic relatedness between nodes and compared 
their approaches with baseline approaches, such as co-occurrence, word embedding, COALS, and random index. 
They concluded that their approach performed well compared to those baseline approaches. Despite its effective-
ness, their approach depended on the quantity of collected data and was not suitable for handling networks with 
multiple relations. Therefore, this paper proposed a PRA algorithm that employed a graph-embedding approach 
called  Complex21 to calculate a triple score. The Complex algorithm considers relation information in edges and 
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maps them into complex space. Using this algorithm, we can obtain embedding values that reflect on multiple 
relation conditions and the importance of triples.

Previous studies have developed various LBD tools for generating hypotheses to support drug discovery. 
One early tool in LBD, Swanson’s Arrowsmith, utilized the term co-occurrence to identify associations between 
 entities36. Other tools such as  BITOLA37,  DAD38,  LitLinker39,  Manjal40, and  LION41 provide similar LBD func-
tions focusing on biomedical literature mining. The success of hypothesis generation using the LBD approach 
significantly depended on path selection and scoring efficiency. Previous studies attempted to use various rep-
resentation models to calculate path scores and filter paths based on those scores. Despite numerous advantages 
in implementing a graph-embedding algorithm on heterogeneous networks (knowledge bases)42, it has not been 
widely implemented in the LBD framework.

Data
Our hypothesis generation framework followed the close discovery approach of Swanson’s ABC  model22. The 
close discovery approach tried to identify B entities that connected the A entity to the C entity. Both A and C 
entities were known entities that we can use as source and tail nodes in path retrieval. This paper defined A 
entities as Xanthium compounds and C entities as diabetes-related terms or phrases. Since we aimed to discover 
B entities (multiple types of bio entities) that connected those entities, we formulated search queries using Xan-
thium compounds and diabetes to retrieve documents from PubMed.

Previous  studies10,43 discovered 243 compounds from Xanthium, only 36 of which were closely related to dia-
betes. Therefore, we used those 36 compounds to retrieve titles and abstracts from PubMed in our search queries. 
We retrieved documents from PubMed using queries from Table 1 in January 2021 and collected 805,839 titles 
and abstracts. After pre-processing and duplicate removal, 763,155 titles and abstracts remained in our collection. 
Then, we tokenized each sentence from abstracts and titles and used them for the NER and relation-extraction 
tasks. We provided a document sample related to 4,5-dicaffeoylquinic acid in Table 2.

Methods
Knowledge base construction. We extracted bio entities and relations from our document collection 
to construct a knowledge base (graph) for hypothesis generation. There are two steps in our knowledge base 
construction: entity extraction (NER task) and relation extraction. Figure 1 illustrates the complete flow of our 
research.

Table 1.  Search queries for document retrieval.

“A” node (Xanthium compounds) “C” nodes (diabetes)

1,3-di-O-caffeoylquinic acid[TIAB] OR 2-acetolactate[TIAB] OR 
acetone[TIAB] OR adenosine[TIAB] OR alkaloids[TIAB] OR aloe 
emodin[TIAB] OR atractyloside[TIAB] OR balanophonin[TIAB] OR 
beta-sitostenone[TIAB] OR beta-sitosterol[TIAB] OR betulin[TIAB] 
OR betulinic acid[TIAB] OR caffeic acid[TIAB] OR caffeic acid ethyl 
ester[TIAB] OR campesterol[TIAB] OR chlorogenic acid[TIAB] 
OR choline[TIAB] OR emodin[TIAB] OR ergosterol[TIAB] OR 
quercetin[TIAB] OR rhamnose[TIAB] OR scopoletin[TIAB] OR 
stigmasterol[TIAB] OR syringaresinol[TIAB] OR thiourea[TIAB] OR 
water-soluble glycosides[TIAB] OR 3,5-dicaffeoylquinic acid[TIAB] 
OR 4,5-dicaffeoylquinic acid[TIAB] OR ferulic acid[TIAB] OR 
formononetin[TIAB] OR hexadecanoic acid[TIAB] OR N-trans-fer-
uloyl tyramine[TIAB] OR oleanolic acid[TIAB] OR oleic acid[TIAB] 
OR ononin[TIAB] OR protocatechuic acid[TIAB]

diabet*[TIAB] ([TIAB] retrieving articles that contain a certain 
keyword in titles or abstracts) OR diabetes[MH] ([MH] retrieving 
articles that discuss diabetes in the MeSH list)

Table 2.  Document sample.

Title: The anti-inflammatory activities of Ainsliaea fragrans Champ. extract and its components in lipopolysaccharide-stimulated RAW264.7 
macrophages through inhibition of NF-κB pathway

Journal: Journal of ethnopharmacology

Abstract: The anti-inflammatory activities of Ainsliaea fragrans Champ. Extract and its components in lipopolysaccharide-stimulated 
RAW264.7 macrophages through inhibition of NF-κB pathway. Ainsliaea fragrans Champ. (A. fragrans) is a traditional Chinese herbal 
that contains components like 3,5-dicaffeoylquinic acid and 4,5-dicaffeoylquinic acid. It exhibits anti-inflammatory activities which has 
been used for the treatment of gynecological diseases for many years in China. The aims of the present study were to investigate the anti-
inflammatory activities of A. fragrans and elucidate the underlying mechanisms with regard to its molecular basis of action for the best 
component. The anti-inflammatory effects of A. fragrans were studied by using lipopolysaccharide (LPS)-stimulated activation of nitric oxide 
(NO) in mouse RAW264.7 macrophages. Expression of inducible NO synthase (iNOS) and pro-inflammatory cytokines, inhibitory κBα 
(IκBα) degradation and nuclear translocation of NF-κB p65 were further investigated. The present study demonstrated that A. fragrans could 
suppress the production of NO in LPS-stimulated RAW264.7 macrophages. Further investigations showed A. fragrans could suppress iNOS 
expression. A. fragrans also inhibited the expression of tumor necrosis factor-alpha and interleukin-6. A. fragrans significantly decreased 
the degradation of IκBα, reduced the level of nuclear translocation of p65. All these results suggested the inhibitory effects of A. fragrans on 
the production of inflammatory mediators through the inhibition of the NF-κB activation pathway. Our results indicated that A. fragrans 
inhibited inflammatory events and iNOS expression in LPS-stimulated RAW264.7 cells through the inactivation of NF-κB pathway. This 
study gives scientific evidence that validate the use of A. fragrans in treatment of patients with gynecological diseases in clinical practice in 
traditional Chinese medicine
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Entity extraction (NER task). To extract bio entities from our document collection, we used a knowledge 
extraction engine called  PKDE4J19. This tool has a dictionary-based NER module where we can use custom 
dictionaries depending on which entities we want to extract. We decided to use eight bio entities related to drug 
development: genes (including protein and RNA), compounds (including Xanthium compounds), phenotypes, 
biological processes, and molecular functions. In addition, we utilized five different dictionaries from several 
biological databases, as described in Table 3.

As mentioned in the data section, we used the [MH] code for our document retrieval. Hence, during the 
retrieval process, not only were “diabetes”-related documents retrieved, we also retrieved documents related 
to “diabetes mellitus,” “type 1 diabetes,” “type 2 diabetes,” “gestational diabetes,” and “pre-diabetes.” This paper 
analyzed every possible hypothesis (path) between Xanthium compounds and those five diabetes-related phrases.

Relation extraction. For relation extraction, we examined every sentence in our document collection. If 
there were two or more unique bio entities in a sentence, we proceeded with the relation-extraction step using 
a pre-trained model called  BioPREP20. BioPREP employs a BioBERT-based model that it fine-tunes using the 
SemMedDB  dataset33. Using the BioPREP model, we extracted 28 relations, namely: “process of,” “part of,” “loca-
tion of,” “diagnoses,” “interacts with,” “treats,” “coexists with,” “is a,” “uses,” “precedes,” “associated with,” “causes,” 
“affects,” “administered to,” “disrupts,” “occurs in,” “complicates,” “inhibits,” “stimulates,” “augments,” “compared 

Figure 1.  Our research framework.

Table 3.  Dictionary summary.

Dictionary Sources Number of Entities

1 Gene Entrez44,  Ensembl45,  BioGrid46,  PharmGKB47, UniProt  ID48, NCBI  taxonomy49 20,503,546

2 Compound PubChem50,  ChEMBL51,  ChEBI52,  CAS53,  BindingDB54,  KEGG55,  DrugBank56 64,966,141

3 Phenotype Medical Subject Headings (MeSH) 109,062

4 Biological Process Gene  Ontology57 30,492

5 Molecular Function Gene  Ontology57 12,257
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with,” “prevents,” “method of,” “neg interacts with,” “neg affects,” “produces,” “manifestation of,” and “higher 
than.”

The pre-trained BioPREP model required entity type information for predicate classification. Hence, we 
needed to substitute entities with entity types before processing our sentences using the model, as illustrated 
in Fig. 2. If there were more than two unique bio entities in a sentence, we processed the entire sentence for 
relation extraction.

Proposed path-ranking algorithm. After obtaining nodes and relations in the previous step, we built a 
knowledge graph and evaluated each possible path from Xanthium compounds to diabetes using our proposed 
path-ranking algorithm (PRA) framework. Our PRA framework consists of three steps: (1) transforming nodes 
and relations from the graph into vector representations (graph embedding). (2) Calculating triple (head node–
relation–tail node) scores. The triples are bio entity pairs and relations obtained from the relation extraction step 
(“Relation extraction” section). (3) Calculating the path scores based on the average of triple scores and ranked 
paths accordingly. Paths with high scores have more inference possibilities, which might be necessary for con-
structing hypotheses.

Previous works in PRA employed co-occurrence and node similarity based on ontology to calculate the triple 
score (node–relation–node)44. However, using the co-occurrence number in PRA neglected the semantic related-
ness between nodes because it ignores relation/edge type. Similar to co-occurrence, the previous approach in the 
triple score calculation using ontology information focused solely on the hierarchical positioning and neglected 
semantic relations between  nodes58. These conditions might not be the best option for inference-purpose or 
hypothesis generation from path-ranking results. Therefore, this paper proposed a framework in PRA that 
includes relations to calculate the triple score.

Our framework employed a graph embedding approach called  Complex21 to transform nodes and rela-
tions into vector representations (complex space). Previous research used Complex embeddings to execute link 
prediction tasks in knowledge graph  completion59. Complex assumes a knowledge base as a three-way tensor 
to model asymmetric relations, matching relations in our knowledge graph. Complex decomposes tensor into 
low-dimensional vectors representing embedding values of entities and relations.

First, we trained our knowledge graph using the complex embeddings model and obtained the vector rep-
resentation for nodes and relations. Then, we concatenated the head node, relation, and tail node vectors and 
constructed triple vectors. Later, we used the triple vectors as inputs for encoder–decoder architecture to obtain 
the weight values to calculate triple scores, as illustrated in Fig. 3. Later, we will use the weight values to transform 
the n-dimension vector into a probability that represents the triple score.

Our encoder–decoder architecture has seven layers. The first three are encoder layers, the fourth is the mid-
dle layer, and the last three are decoder layers. Our experiment only included the weight values from the last 
decoder layer as it encodes the latent representation of data. We used the mean-squared error loss in the training 
process to maintain the model correctness. We obtained the triple score by calculating the triple vector using Eq. 
(1). To rank paths, we calculated the path score of each path by averaging the total triple scores. For example, 
for paths with a depth of two (where there were two triples in the path), the path score would be the total of two 
triple scores divided by two.

 where n is the triple vector (v) dimension and h is the weight values obtained from the hidden layer.

Hypothesis generation and evaluation. After executing the path-ranking algorithm, we conducted a 
thorough study of the biological linkages from the top-n paths. Our experts examined the top five percentile 

(1)θh,r,t = vh,r,t · h

Figure 2.  Pre-processing sentences by substituting entities with their type.
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and concluded which paths were most plausible for drug development experiments. Furthermore, our experts 
examined paths in the middle and lower ranks to validate the performance of our proposed ranking algorithm.

Result
Xanthium compounds-diabetes knowledge base. The first step in knowledge base construction 
is entity extraction or NER task. We employed  PKDE4J19 to process sentences and found that only 3,397,178 
sentences contained bio entities. Initially, there were 145,246 unique bio entity terms; after normalization and 
disambiguation processes, only 84,176 bio entities remained. We provided a summary of NER task results in 
Table 4. Among 26,343 compounds, 144 compounds in total were related to Xanthium.

We used the bio entity and entity type information obtained from the NER task to pre-process sentences 
for the second step, relation extraction. We should note that we only processed sentences with two or more 
entities and skipped sentences with only one entity. Table 5 gives the sample triples from relation extraction 
results. Similar node types might have more than one relation; for example, a phenotype can be a process of 
another phenotype or one phenotype can cause another phenotype, depending on the sentences registered as 
the  BioPREP20 model input.

We constructed a knowledge base using the obtained triple data from the relation extraction step. Then, we 
generated paths from 36 Xanthium compounds to five diabetes nodes (diabetes mellitus, type 1 diabetes, type 2 
diabetes, gestational diabetes, and pre-diabetes). The generated paths were paths with a depth of two, three, and 
four. Unfortunately, we found no connecting paths between water-soluble glycosides and five diabetes nodes. 
This might be due to limited available information about water-soluble glycosides, as we only collected 14 related 
articles (as of January 2021). There are 12,437 paths with a depth of two, 3,612,585 with a depth of three, and 
1,151,267,082 with a depth of four for 35 Xanthium compounds to five diabetes nodes.

Given the large number of paths generated, we focused on “type 1 diabetes,” “type 2 diabetes,” and “diabetes 
mellitus” as tail nodes and a depth of two and three for further analysis. We provided the path summary between 
35 Xanthium compounds and three diabetes-related phrases, “type 1 diabetes,” “type 2 diabetes,” and “diabe-
tes mellitus,” in Table 6 and illustrated the subgraph of our knowledge base in Fig. 4. More paths were found 
from compounds like adenosine, choline, hexadecenoic acid, and quercetin than other compounds; these might 

Figure 3.  For calculating the triple score, we transform each node and edge into vector representation and 
construct triple vectors. Then, using the encoder–decoder architecture, we automatically generate weight values 
for the triple score calculation.

Table 4.  NER result summary.

Entity type Total

Phenotype 21,505

Compound 26,343

Gene 19,709

Protein 12,188

Biological Process 3414

Molecular Function 853

RNA 164

84,176
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Table 5.  Sample triples (head–relation–tail) from knowledge base.

Head (type) Relation Tail (type) Total

1 Phenotype Process of Phenotype 173,315

2 Phenotype Coexists with Phenotype 106,648

3 Phenotype Is A Phenotype 89,645

4 Compound Is A Compound 88,520

5 Compound Coexists with Compound 81,549

6 Gene Coexists with Gene 52,989

7 Protein Coexists with Protein 36,110

8 Phenotype Associated with Phenotype 34,761

9 Phenotype Causes Phenotype 27,918

10 Gene Is A Gene 27,464

Table 6.  Number of Paths for depth = 2 and depth = 3 from Xanthium compounds to “type 1 diabetes,” “type 2 
diabetes,” and “diabetes mellitus.”

Head

Total path

Type 1 diabetes Type 2 diabetes Diabetes mellitus

Depth 2 Depth 3 Depth 2 Depth 3 Depth 2 Depth 3

1 1,3_di_o_caffeoylquinic_acid 1 472 8 702 5 911

2 2_Acetolactate 3 1487 2 1732 4 2562

3 3,5_Dicaffeoylquinic_acid 2 260 2 360 4 457

4 4,5_Dicaffeoylquinic_acid 124 154 2 227 1 314

5 Acetone 336 38,651 198 46,892 289 66,230

6 Adenosine 177 80,372 436 95,341 708 134,650

7 Alkaloids 24 44,404 214 53,379 315 74,503

8 Aloe_emodin 9 9223 34 11,579 43 16,486

9 Atractyloside 1 5362 17 6497 17 9626

10 Balanophonin 35 755 5 1019 3 1390

11 Beta_sitostenone 38 409 4 607 3 767

12 Beta_sitosterol 47 16,384 52 21,073 80 29,085

13 Betulin 81 12,737 58 15,910 71 21,839

14 betulinic_acid 3 13,209 50 16,734 75 23,209

15 Caffeic_acid 22 28,589 115 36,282 181 50,355

16 Caffeic_acid_ethyl_ester 108 1155 9 1551 8 2170

17 Campesterol 190 8851 31 11,383 27 15,582

18 Chlorogenic_acid 69 35,819 147 44,429 214 61,171

19 Choline 59 54,070 290 64,827 448 90,269

20 emodin 90 20,301 94 24,973 145 34,885

21 Ergosterol 28 18,850 73 23,359 93 32,819

22 Ferulic_acid 190 30,105 127 37,381 166 51,512

23 Formononetin 1 9,422 33 11,991 39 17,150

24 Hexadecanoic_acid 56 60,202 253 73,441 338 101,224

25 n_trans_feruloyl_tyramine 169 576 4 792 3 1068

26 Oleanolic_acid 7 18,355 73 23,555 90 32,520

27 Oleic_acid 31 45,470 201 54,731 307 76,246

28 Ononin 215 1742 8 2121 7 2928

29 Protocatechuic_acid 61 12,071 44 15,650 63 21,602

30 Quercetin 24 57,706 297 70,084 462 97,745

31 Rhamnose 37 19,511 68 23,811 111 34,430

32 Scopoletin 5 8654 38 11,136 47 15,168

33 Stigmasterol 67 10,490 43 13,298 63 18,218

34 Syringaresinol 1 1646 10 2287 10 3037

35 Thiourea 3 25,694 90 31,105 146 44,759

Total 2314 693,158 3130 850,239 4586 1,186,887
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indicate the high relatedness between those compounds and diabetes. We calculated scores for those paths and 
ranked them accordingly.

We can find the 35 compounds mentioned in Table 6 in the root, leaf, fruit, and aerial parts of Xanthium 
 plants60. Despite findings of syringaresinol as a potential therapeutic agent for diabetes as it indicates the inhibi-
tion of inflammation, fibrosis, and oxidative  stress61, we found fewer paths connecting the compound to diabe-
tes. Similar to syringaresinol, there were relatively few paths for atractyloside and formononetin regardless of 
their significant relatedness with type 2 diabetes progression. Meanwhile, for compounds with evidence from 
a laboratory—such as beta-sitosterol and emodin—we found an adequate number of paths connecting those 
compounds to diabetes.

Path-ranking performance evaluation. To ensure the performance of our proposed path-ranking algo-
rithm, we conducted separate experiments using the Hetionet dataset. Hetionet is a bio entity network built 
using 29 publicly available databases containing 24 entity types (compounds, diseases, genes, biological path-
ways, etc.). Hetionet (version 1.0) contains 2,250,197 edges with 47,031 nodes from 11 types of bio entities. 
Although we can consider Hetionet a complete biological network (given how many datasets were integrated), 
it has little information regarding Xanthium compounds. A previous project called  Repethio62 used Hetionet 
to identify paths from compound to disease and discriminate between treatments and non-treatments. The 
Repethio project gives a clear idea of how network-based data analysis significantly impacts drug  development63.

The Repethio project predicted the probability of treatment for 209,168 compound–disease pairs (het.io/
repurpose) and used two external sets of treatment for validation. This was an open study that received real-
time evaluations from community members. For compound–disease prediction, they also provided network 
support analysis with information about path score and meta path contributions (meta path significance rate 
in treatment prediction). They calculated path scores using residual degree weighted path count (R-DWPC), a 
modification of the DWPC method introduced  in64. Unlike the previous DWPC method, R-DWPC reflects the 
specific relationship between source and target nodes in paths. By assuming that the path score represents the 
level of significance (the higher, the better), we can also use the path score provided in the Repethio project for 
path ranking.

To validate our path-ranking algorithm, we used extracted paths between diabetes-related compounds and 
type 2 diabetes mellitus from Hetionet and compared ranking results based on path score with our path-ranking 
results. We retrieved paths with different depths: one, two, and three. We did not retrieve paths with a depth 
larger than four because Hetionet only provides information on path scores for paths with a depth of three or less. 
The compounds we used as source nodes for path retrieval were: Glyburide, Glipizide, Gemfibrozil, Tolazamide, 

Figure 4.  An ego graph of the compound “1,3_di_o_caffeoylquinic_acid” with radius = 1.
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Tolbutamide, Glimepiride, Telmisartan, Chlorpropamide, Losartan, Irbesartan, Eprosartan, Valsartan, Alogliptin, 
Nateglinide, Olmesartan, Gliclazide, Rosiglitazone, Methylergometrine, Repaglinide, and Fenofibrate. These 
compounds are recommended for diabetes  disease56 and have a high probability of type 2 diabetes mellitus 
treatment according to Hetionet.

Using 20 compounds as source nodes and type 2 diabetes mellitus as the target node, we retrieved 13 paths 
with depth one, 132 paths with depth two, and 26,194 paths with depth three. For ranking results comparison, 
we employed rank-biased overlap (RBO)65 to calculate the similarity degree between our results (from PRA 
ranking) and Hetionet ranking. Table 7 shows the similarity degree based on RBO calculation for 20 compounds 
(with paths of depth two). In addition, we provided samples for path-ranking results with a depth of two for 
Glyburide to type 2 diabetes mellitus in Table 8. We provided their path-ranking results in additional material 
for other essential compounds.

For paths with depth two, the similarity was in the range 49.5–100% with an average value of 71.2%; the 
Alogliptin and Methylergometrine paths reached 100% similarity. The average similarity degree for paths with 
a depth of three was slightly lower as the number of paths was increased. The average value was 49.8% and 
the range was 44.5–54.7%. We should note that our proposed approaches in path scoring and Hetionet differ 

Table 7.  Similarity degree between our PRA and Hetionet ranking based on RBO analysis. Significant values 
are in bold.

Compounds Depth Total paths from hetionet Similarity degree

1 Chlorpropamide 2 8 49.50%

2 Valsartan 2 5 53.30%

3 Glimepiride 2 7 53.80%

4 Tolazamide 2 7 53.80%

5 Tolbutamide 2 7 53.80%

6 Gliclazide 2 11 55.60%

7 Glipizide 2 11 59.60%

8 Olmesartan 2 6 59.70%

9 Eprosartan 2 3 66.70%

10 Nateglinide 2 6 69.40%

11 Glyburide 2 14 71.10%

12 Rosiglitazone 2 7 76.90%

13 Irbesartan 2 7 78.60%

14 Telmisartan 2 5 80.00%

15 Losartan 2 8 81.30%

16 Fenofibrate 2 3 83.30%

17 Gemfibrozil 2 5 83.30%

18 Repaglinide 2 5 93.30%

19 Methylergometrine 2 4 100.00%

20 Alogliptin 2 3 100.00%

Table 8.  Ranking results for paths between Glyburide-type 2 diabetes mellitus with a depth of two.

Path Our PRA Ranking Hetionet Ranking

Glyburide—[treats]—gestational diabetes—[resembles]—type 2 diabetes mellitus 1 1

Glyburide—[resembles]—Tolazamide—[treats]—type 2 diabetes mellitus 2 3

Glyburide—[binds]—ABCC8—[associates]—type 2 diabetes mellitus 3 8

Glyburide—[binds]—KCNJ11—[associates]—type 2 diabetes mellitus 4 9

Glyburide—[resembles]—Glipizide—[treats]—type 2 diabetes mellitus 5 5

Glyburide—[resembles]—Chlorpropamide]—[treats—type 2 diabetes mellitus 6 6

Glyburide—[resembles]—Glimepiride—[treats]—type 2 diabetes mellitus 7 2

Glyburide—[binds]—ABCC2—[associates]—type 2 diabetes mellitus 8 10

Glyburide—[resembles]—Gliclazide—[treats]—type 2 diabetes mellitus 9 4

Glyburide—[binds]—CPT1A—[associates]—type 2 diabetes mellitus 10 7

Glyburide—[binds]—CYP3A4—[associates]—type 2 diabetes mellitus 11 11

Glyburide—[binds]—ALB—[associates]—type 2 diabetes mellitus 12 12

Glyburide—[downregulates]—VEGFA—[associates]—type 2 diabetes mellitus 13 14

Glyburide—[downregulates]—HIF1A—[associates]—type 2 diabetes mellitus 14 13
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considerably. Hetionet weighted each path (edge) by calculating node degrees’ product and raising it to a negative 
exponent. Meanwhile, our approach focused on weighting each path using graph embedding values translated 
from complex space.

Path-ranking results (Xanthium compounds—diabetes). There were 2,740,314 paths between 35 
Xanthium compounds and the three diabetes nodes type 1 diabetes, type 2 diabetes, and diabetes mellitus. We 
calculated the path score by averaging the triple scores obtained from Eq. (1). Then, we sorted those paths and 
analyzed paths in the top five percentile. There were 34,774 paths for type 1 diabetes, 42,670 for type 2 diabetes, 
and 59,575 for diabetes mellitus. Among the top-ranked paths linked to type 1 diabetes, compounds such as 
adenosine, alkaloids, quercetin, choline, and oleic acid were dominant. For type 2 diabetes, based on the number 
of occurrences in top percentile paths, the most significant compounds were adenosine, quercetin, alkaloids, 
choline, and caffeic acid. Lastly, for diabetes mellitus, the most significant compounds were adenosine, querce-
tin, alkaloids, choline, and hexadecenoic acid. Table 9 provides the top ten paths of each diabetes term.

Based on the top percentile paths, diabetes is strongly related to adenosine, alkaloids, choline, and quercetin. 
As reported in the clinical trials sections from the Drug  Bank56, some records stated that adenosine and choline 
are related to diabetes. Adenosine was used for diabetes mellitus and type 2 diabetes experiments but there was 

Table 9.  Top ten paths of Xanthium compounds—three diabetes terms.

Rank Path Score

Type 1 diabetes

1 beta_sitosterol—[Stimulates]—glucose—[Associated with]—type_1_diabetes 0.822

2 rhamnose—[Associated with]—glucose—[Associated with]—type_1_diabetes 0.820

3 adenosine—[Associated with]—labetalol—[Associated with]—glucose—[Associated with]—type_1_diabetes 0.819

4 alkaloids—[Parts of]—aucubin—[Treats]—glucose—[Associated with]—type_1_diabetes 0.819

5 adenosine—[Coexists with]—allicin—[Affects]—glucose—[Associated with]—type_1_diabetes 0.818

6 scopoletin—[Stimulates]—glucose—[Associated with]—type_1_diabetes 0.818

7 alkaloids—[Associated with]—phenytoin—[Causes]—glucose—[Associated with]—type_1_diabetes 0.818

8 beta_sitosterol—[Stimulates]—glucose—[Associated with]—methanol—[Neg Affects]—type_1_diabetes 0.818

9 oleic_acid—[Neg Affects]—gallic_acid—[Stimulates]—glucose—[Associated with]—type_1_diabetes 0.817

10 rhamnose—[Associated with]—glucose—[Associated with]—methanol—[Associated with]—type_1_diabetes 0.817

Type 2 diabetes

1 alkaloids—[Administered to]—diabetic_complication—[Associated with]—autoimmune_disease—[Associ-
ated with]—type_2_diabetes 0.824

2 alkaloids—[Administered to]—diabetic_complication—[Causes]—arthritis—[Associated with]—type_2_dia-
betes 0.823

3 alkaloids—[Administered to]—diabetic_complication—[Associated with]—autoimmune_disease—[Associ-
ated with]—type_2_diabetes 0.822

4 alkaloids—[Administered to]—diabetic_complication—[Causes]—vasculitis—[Associated with]—type_2_
diabetes 0.822

5 quercetin—[Coexists with]—diabetic_complication—[Associated with]—autoimmune_disease—[Associated 
with]—type_2_diabetes 0.821

6 alkaloids—[Administered to]—diabetic_complication—[Causes]—neurological_disorder—[Associated 
with]—type_2_diabetes 0.821

7 alkaloids—[Administered to]—diabetic_complication—[Associated with]—chronic_lung_disease—[Associ-
ated with]—type_2_diabetes 0.820

8 alkaloids—[Administered to]—diabetic_complication—[Causes]—optic_neuropathy—[Associated with]—
type_2_diabetes 0.820

9 quercetin—[Coexists with]—diabetic_complication—[Causes]—arthritis—[Associated with]—type_2_dia-
betes 0.820

10 alkaloids—[Administered to]—diabetic_complication—[Associated with]—hypokalemia—[Associated 
with]—type_2_diabetes 0.820

Diabetes Mellitus

1 adenosine—[Treats]—congestive_heart_failure—[Associated with]—diabetes_mellitus 0.853

2 adenosine—[Treats]—asthma—[Associated with]—diabetes_mellitus 0.852

3 adenosine—[Neg Affects]—luteolin—[Stimulates]—diabetes_mellitus 0.850

4 alkaloids—[Causes]—hyperlipidemia—[Associated with]—diabetes_mellitus 0.850

5 adenosine—[Treats]—lymphoma—[Associated with]—diabetes_mellitus 0.850

6 adenosine—[Associated with]—inflammatory_bowel_disease—[Associatedwith]—diabetes_mellitus 0.849

7 alkaloids—[Treats]—heart_disease—[Associated with]—diabetes_mellitus 0.849

8 alkaloids—[Associated with]—autoimmune_disease—[Associated with]—diabetes_mellitus 0.848

9 adenosine—[Treats]—pulmonary_disease—[Associated with]—diabetes_mellitus 0.847

10 alkaloids—[Treats]—metabolic_disease—[Associated with]—diabetes_mellitus 0.847
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no further information about the clinical trial phase or purpose. However, a record mentioned that a clinical 
experiment for diabetic peripheral neuropathic pain treatment had entered phase four of the clinical trial for 
choline. In addition, another clinical experiment used choline for type 2 diabetes mellitus treatment and entered 
the third phase of clinical trials.

Alkaloids are natural chemical compounds derived from plants, animals, bacteria, or fungi with various 
pharmacological  activities17. Naturally, derived alkaloids were effective for diabetic nephropathy treatments 
and suitable for patients who did not respond well to synthetic drugs or conventional therapeutic  medications66. 
Alkaloids could be a strong candidate for the new discovery of anti-diabetic agents. In addition to alkaloids, 
quercetin might be a potential candidate for diabetes treatment. Quercetin is one of the plant-based flavonoids 
with various potent biological properties including anti-inflammatory, antioxidative, anti-hypertensive, antican-
cer, antiviral, neuroprotective, hepatoprotective, and anti-diabetic67. Although there has not been any clinical 
trial record of quercetin for diabetes treatment, there was a completed phase one clinical trial for quercetin as a 
treatment purpose in high blood pressure disease (hypertension). Previous work mentioned that diabetes patients 
with hypertension were more predisposed to several  complications68.

In addition to adenosine, alkaloids, choline, and quercetin, we discovered that caffeic acid, hexadecenoic acid, 
and oleic acid were also significantly related to diabetes. Those acids are essential to maintaining the diabetes 
patients’ diets. Caffeic acid could suppress the progression of type 2 diabetes  states69. High hexadecenoic acid or 
palmitoleic acid in diets were highly associated with higher risks of  diabetes70. Lastly, oleic acid helped prevent 
type 2 diabetes and cardiovascular  diseases71. According to clinical trial records (as of January 2021), among 36 
Xanthium compounds, only two—adenosine and choline—have been reportedly used for diabetes clinical trials. 
Those two compounds were also in the top selection based on our PRA results. After matching findings from 
top percentile paths with previous research—including clinical trials—we concluded that our PRA framework 
distinguished critical paths for hypothesis generation.

Hypothesis generation. Our experts analyzed the top-ranked paths (the top five percentile) and com-
piled information for Xanthium compounds and diabetes. Previous research showed significant relationships 
between diabetes and adenosine, oleic acid, choline, caffeic acid, and stigmasterol. From the constructed Xan-
thium compounds and diabetes, there was a direct edge between those compounds and diabetes. In addition, 
several paths with a depth of two or three connected those compounds and diabetes diseases. Based on those 
paths, we concluded that choline and betaine intake were supplementary to type 2  diabetes72. Caffeic acid has 
antioxidant properties that might prevent several chronic diseases including  diabetes73. Moreover, stigmasterol 
had the potential to protect beta cell functions during diabetes  progression74. Other compounds were also con-
nected to diabetes disease through intermediary nodes that are most likely to accelerate diabetes progression, 
such as hypertension and infections.

The type 1 diabetes-related paths showed significant relatedness between several Xanthium compounds and 
glucose. Glucose is the main compound in carbohydrate metabolism and provides energy by ATP synthesis. 
Cells in diabetic patients cannot process glucose effectively due to insulin decrease, resulting in a high glucose 
level. Compounds such as adenosine, beta-sitosterol, rhamnose, and scopoletin could show decreased glucose 
level. Based on the data in our collection, we found 2808 documents supporting the argument about adenosine, 
glucose, and diabetes. For others, we found 73 articles on beta-sitosterol, 63 articles on rhamnose, and 12 articles 
on scopoletin. Based on those numbers, we can assume that researchers had explored adenosine and diabetes 
further but only a few had shown interest in the other three compounds. These three compounds might be more 
appropriate selections for hypothesis generation results than adenosine. Since there were only a few publications 
related to those compounds and diabetes, we believe that there might be more discoveries to be made; we strongly 
recommend them for further experiments concerning the glucose level in diabetes cases.

Based on the top percentile paths, we found that adenosine had a significant role in diabetes prognosis. 
Adenosine is an agonist of adenosine receptors with binding functions that trigger biological reactions. Adeno-
sine receptor signaling plays an essential role in inflammation, immune systems, and oxidative  stress75. Thus, 
adenosine was highly related to heart disease, ischemic heart disease, autoimmune disease, and lymphoma. Those 
diseases are metabolic syndromes related to diabetes. Since we only observed paths with a depth of two and three, 
the intermediary nodes (between Xanthium compound and diabetes-related terms) were mostly compound or 
disease nodes. Therefore, for further experiments with more variations in intermediary nodes, we recommended 
using paths with a depth more extensive than three.

Based on our findings about the top five percentile paths, we concluded the following hypotheses.

• Compounds that negatively affect glucose level (lowering effect) are potential candidates for diabetes drug 
development.

• Compounds that are beneficial to treat diseases related to higher diabetes risks are potential candidates for 
diabetes drug development.

• We recommended adenosine, choline, beta-sitosterol, rhamnose, and scopoletin for further studies in diabetes 
drug development.

Conclusions
Previous hypothesis-generation approaches depended on how experts summarized published scientific docu-
ments or how experts interpreted knowledge bases. Similar to previous approaches, we experimented with pub-
lished scientific documents and expert judgments to generate hypotheses for diabetes drug development using 
compounds from Xanthium. Our hypothesis generation framework used evidence from scientific publications 
retrieved from PubMed to build a Xanthium compounds-diabetes knowledge base and generate hypotheses from 
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it. First, we employed a dictionary-based tool to conduct the NER task and extracted bio-entities such as genes, 
compounds, phenotypes, biological processes, and molecular functions. Depending on the size and coverage of 
dictionaries, using a dictionary-based tool might be beneficial for recognizing bio-entities. Second, we classi-
fied possible relations between two entities using entity type information obtained from the NER task step and 
analyzed sentences’ context. We trained sentences where two entities were found in a supervised manner using a 
deep learning approach. The relation classification step gave us triple information (node–relation–node), which 
enabled us to construct a knowledge base.

Using the constructed knowledge base, we generated simple paths from Xanthium compounds to three 
diabetes-related phrases: type 1 diabetes, type 2 diabetes, and diabetes mellitus. We used several cutoffs to gener-
ate paths and analyzed paths with depths of two and three, which we then ranked using our proposed PRA. Our 
proposed PRA approach utilized a graph-embedding model to transform nodes and relations (edges) into vector 
representations. Then, we constructed the triple (node–relation–node) vector representation by concatenating 
individual vectors and used them to calculate the triple score. Lastly, we calculated the path score based on the 
average of total triple scores in a path. We considered paths with high path scores as significant paths that might 
be helpful for hypothesis generation. Using PRA, we made shortlists of important information from an extensive 
knowledge base. In addition, this helped our experts generate hypotheses related to Xanthium compounds and 
diabetes. Since our proposed PRA approach employed graph embedding, the results depended on how well the 
graph was constructed. A larger graph with complete information might give better results than smaller ones. 
Unfortunately, we only experimented with one graph embedding algorithm in this research, Complex. We plan 
to do more comprehensive experiments with other graph-embedding algorithms for further analysis.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.
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