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Somatic mutations and DNA methylation identify a subgroup
of poor prognosis within lower-risk myelodysplastic
syndromes
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Abstract

Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by
the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA
methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic
profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed
a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-
naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.gov.NCT00600860). Unsupervised clustering
analyses identified six clusters based on genetic profiling that concentrate into four clusters on the basis of genome-wide
methylation profiling with significant overlap between the two clustering modes. The four methylation clusters showed distinct
clinical and genetic features and distinct methylation landscape. All clusters shared hypermethylated enhancers enriched in
binding motifs for ETS and bZIP (C/EBP) transcription factor families, involved in the regulation of myeloid cell differentiation. By
contrast, one cluster gathering patients with early leukemic evolution exhibited a specific pattern of hypermethylated promoters
and, distinctly from other clusters, the upregulation of AP-1 complex members FOS/FOSL2 together with the absence of
hypermethylation of their binding motif at target gene enhancers, which is of relevance for leukemic initiation. Among MDS
patients with lower-risk IPSS-M, this cluster displayed a significantly inferior overall survival (p < 0.0001). Our study showed that
genetic and DNA methylation features of LR-MDS at early stages may refine risk stratification, therefore offering the frame for a
precocious therapeutic intervention.
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Genetic and DNA methylation profiling of lower-risk MDS

INTRODUCTION

Lower-risk myelodysplastic syndromes (LR-MDS) are a group of
heterogeneous disorders with variable severity of hematopoietic
impairment and kinetics of disease progression, making clinical
decision-making difficult in terms of timing and modality of ther-
apeutic intervention.x™ While complications related to chronic cy-
topenias represent the most frequent causes of death, recognizing
patients at higher risk of clonal progression is critical to inform
therapeutic intervention.>® Based on the prospective unbiased pa-
tient population recruited within the European MDS (EUMDS) Reg-
istry, we reported transfusion dependency, kinetics of cytopenia, and
toxic iron species, as relevant prognostic factors.>™” Facing a spec-
trum of disorders comprising indolent conditions, we identified
meaningful surrogate endpoints such as changes in Health-related
Quality of Life (HRQoL) and RBC transfusion-free survival.®?

Identification of somatic mutations in a high proportion of pa-
tients and recognition of genotype-phenotype correlations have
paved the way for a molecular classification.’°~*> Genomic profiling
can shed light on premalignant conditions,*¢ identify subsets with a
distinctive molecular basis,*”’~1? and recognize patients at higher risk
of clonal progression, requiring early disease-modifying treat-
ments.2%2! Mutations in epigenetic regulators involved in DNA me-
thylation and histone modification are prevalent in more than half of
MDS.1011:2223 TET? |oss-of-function mutations install early epige-
netic changes and are associated with hypermethylation of regulatory
regions.2* Aberrant methylation profiles were associated with pro-
gression and response to treatment with hypomethylating agents
(HMA).2>%° Furthermore, MDS patients without epigenetic muta-
tions show epigenetic alterations, suggesting convergent mechan-
isms.®! The integration of genomic and epigenomic profiling has the
potential to give insight into the pathogenic mechanisms of MDS.

Based on unsupervised clustering analyses of somatic mutations
and DNA methylation in a large cohort of LR-MDS patients, we aimed
to identify clinically and biologically relevant groups. Our study al-
lowed recognizing divergent trajectories at early stages of the
disease.

MATERIALS AND METHODS
Patients

The EUMDS Registry is recording consecutive newly diagnosed patients
within three months of diagnosis. The data set TRIAGE comprised 543
LR-MDS cases based on IPSS risk low or intermediate-1 (Table 1). A
French cohort of 175 LR-MDS patients at diagnosis consecutively en-
rolled after consent for biological sample collection and individual follow-
up of 2 years (median 24 months [confidence interval [Cl] 95%:
18.9-32.3]) was considered for methylome and transcriptome studies.
This cohort included 28 cases who progressed to leukemia (MDSp) with a
median of 15.5 months [Cl 95%: 8.5-18.7]. Among them, 156 were in-
cluded in the genetic study (Supporting Information S1: Figure 1). The
procedures followed the statements of Helsinki's Declaration. EUMDS
Registry (NCT00600860) was approved by the Institution's Ethics Com-
mittees according to national legislation. The French cohort was approved
by IRB IdF-X 2010-A00033-36-2753.

Somatic mutation analysis

DNA was extracted from the bone marrow mononuclear cell
(BMMNC) fraction using the DNA/RNA Kit (Qiagen). Sequencing of
target regions (Supporting Information S1: Table 1) was performed
using a custom 27-gene panel of single-molecule-tagged molecular
inversion probes (smMIPs) on NextSeq500 platform and a 55-gene
panel on NovaSeq for IPSS-M calculation®? (lllumina). Variants were
called with appreci8 using 25% VAF, a minimum of 2 mutated reads.>®

DNA methylation profiling and bioinformatics analysis

DNA methylation was analyzed using Infinium MethylationEPIC
850 K BeadChip Array (lllumina; Supporting Information). The me-
thylation level at each CpG was estimated as B-values using the ratio
of intensities between methylated (8 =1) and unmethylated (8 =0)
alleles. For unsupervised clustering, CpGs were filtered based on the
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TABLE 1  Clinical and hematologic features of individuals included in the
study.

Number of patients 543
Age (mean, range) 71.9 (20.9-97.5)
Sex (M/F) 305/238
Hemoglobin (g/dL), mean (range) 9.9 (3.8-15.0)
MCV (fL), median (range) 99 (58-134)
WABC (x107/L), mean (range) 5.2 (0.9-18.8)
ANC (x10%/L), mean (range) 3.0 (0.0-11.9)
AMC (x10?/L), mean (range) 0.4 (0.0-4.3)
Monocytes (%), mean (range) 8 (0.0-43.5)
Platelets (x10°/L), mean (range) 204 (8-904)
BM blasts (%), mean (range) 2.6 (0.0-10.0)
RS (%), mean (range) 16 (0-92)
WHO category, n (%)
MDS-SLD 56 (10.3)
MDS-MLD 196 (36.1)
MDS-RS-SLD 90 (16.6)
MDS-RS-MLD 53(9.8)
MDS del(5q) 26 (4.7)
MDS-EB-1 84 (15.5)
MDS unclassified 21 (3.9)
Missing 17 (3.1)
IPSS risk group, n (%)
Low 263 (48.5)
Intermediate-1 225 (41.4)
Missing 55 (10.1)
IPSS-R risk group, n (%)
Very low 127 (23.4)
Low 240 (44.2)
Intermediate 81 (14.9)
High 16 (3.0)
Missing 79 (14.5)
Karyotype (normal/abnormal) 318/140

Abbreviations: AMC, absolute monocyte count; ANC, absolute neutrophil count; BM,
bone marrow; EB1, excess of blasts 5%-9%; IPSS-R, International Prognostic Scoring
System-Revised; MCV, median corpuscular volume; MLD, multiple lineage dysplasia;
RS, ring sideroblasts; SLD, single lineage dysplasia; WBC, white blood cell.

standard deviation (SD) of normalized B-values. The 5000 CpGs with
the highest SD values were retained (SD >0.195754) in order to
realize unsupervised clustering with the K-means algorithm (100 in-
itializations with 1000 max iterations each). A hierarchical clustering
was then performed using a selection of the 500 highest mean CpG
and 500 lowest mean CpG from each of the 4 clusters identified by
unsupervised clustering. Differentially methylated CpGs were defined
through pairwise comparisons between clusters and controls with a
AB-value >|0.20|. Differentially methylated regions (DMR)-CpG call-
ing was performed with DMRcate package, each requiring 22 minP-
robes, with an adjusted p<0.05 and a false discovery rate
(FDR) < 0.001. The re-annotation of lllumina Infinium Methylatio-
nEPIC CpGs (including enhancer positions) by Bizet et al. was used.>*

Transcription factor (TF) motif enrichment analyses of hypermethy-
lated enhancer and bivalent enhancer/promoter regions were per-
formed using HOMER's script findmotifsGenome. For enrichment
analysis, sequences of 125-bp flanking each of the CpG sites located
in these regions were defined (-size 250), background selection was
set as default, -nomotif option was used (no search for de novo motif
enrichment), and enrichment values were calculated as p-values of
the Fischer's exact test with correction for the number of tested TF
binding motifs in HOMER. The motifs representing at least 10% of
the sequences and containing a cytosine preceding a guanine were
considered. For specific methylated CpG in motifs search, a -size of
20 was used, with a motif file containing all 440 motifs from HOMER
(v4.11.1), and the same parameters as above.

Messenger RNA (mRNA) profiling

Libraries were prepared from BMMNC using TruSeq Stranded mRNA
Sample Preparation Kit (lllumina) and sequenced paired-end (2 x 75 bp) on
NextSeq550 platform. FASTQ sequences were aligned on hg19/GRCh37
with STARv.2.7.3a. The mean depth of sequence coverage was 47 (IQR:
38-48) million reads. Abundance estimation of cell types for RNA-seq
data (for samples with both methylation and RNA-seq data) was realized
with CIBERSORT. The reference signature matrix was created with
publicly available single-cell RNA-seq data of purified CD34" BM cells
with the following parameters: minimum expression = 1, replicates = 30,
and sampling=0.5 for RNA input options, and k=13, g=107>, and a
number of barcode genes between 3 and 50 for additional options.3>3¢
Normalized counts of 134 RNA-seq samples were used to impute cell
fractions with B-mode batch correction, absolute mode, and 500 per-
mutations for significance analysis. Differentially expressed genes were
identified with DESeqv.1.3.0.1 (S < 0.01). Pathways were determined in
GeneOntology using Panther16.0 and biological process data set.

Statistical analyses

Numerical variables were summarized by median, mean, and range;
categorical variables were described with count and frequency (%).
Comparison of numerical variables was carried out using nonpara-
metric tests (Mann-Whitney, Kruskal-Wallis analysis of variance).
Comparison of categorical variables was performed with Fisher's
exact or Chi-square tests. Genetic hierarchical clustering based on the
Jaccard distance was used with the Ward D.2 clustering method.
Cluster optimal number was chosen using the Kelley-
Gardner-Sutcliffe method.®” For comparison of clustering methods,
standardized residuals from the Chi-square test were used to de-
termine the largest deviations from randomness. Relations between
variables were studied by logistic regression to obtain odds ratios
with confidence intervals. Multivariate analyses were performed by
means of Cox proportional hazards regression. Survival analyses were
performed with the Kaplan-Meier method. Endpoints included all-
cause mortality, time to progression to higher-risk MDS and AML or
to AML, and time to first treatment.

RESULTS

Unsupervised clustering analysis based on somatic
mutation profiles

Four hundred twenty-two out of 543 patients harbored one or more
somatic mutations (78%) (Supporting Information S1: Figure 2A). One
hundred forty patients showed an abnormal karyotype with 6% del(5q)
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FIGURE 1 Unsupervised genetic clustering and clinical outcomes of the six clusters of lower risk myelodysplastic syndromes (LR-MDS). (A) Frequency of genetic lesions
including somatic mutations and chromosomal anomalies. (B) Heatmap of the genetic clusters. The tightest clusters are A and B, followed by cluster F (mean Jaccard distance
0.25), cluster E (0.50), cluster D (0.57), and finally cluster C (0.81). Cluster tightness is strongly associated with the number of genetic features that determine the clusters.
Mutation enrichment is indicated as -log10(q). (C) Overall survival of LR-MDS patients stratified by cluster (p < 0.001). Compared to cluster A, clusters B and F did not show
significantly different survival in multivariable analysis (hazard ratio [HR] 0.87, p = 0.72; HR 1.45, p = 0.33, respectively), while C, D, and E showed a significantly worse outcome
(HR 4.14, p < 0.001; HR 3.57, p < 0.001; HR 2.54, p = 0.002, respectively). (D) Risk of disease progression analyzed as a composite endpoint of progression into higher-risk MDS
or acute myeloid leukemia (AML). The six clusters showed significantly different time to progression (p < 0.001): clusters B and F did not show significantly different survival
compared to cluster A (HR 1.57, p = 0.36; HR 0.78, p = 0.70, respectively), while C, D, and E showed a significantly worse outcome (HR 4.93, p < 0.001; HR 4.47, p < 0.001; HR
4.43, p <0.001, respectively).
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FIGURE 2 Unsupervised methylation-based clustering and patterns of genetic lesions. Unsupervised clustering of lower-risk myelodysplastic syndromes (LR-
MD) was obtained by the K-means method using the 5000 unique CpGs with the highest standard deviation (SD) of their normalized B-values and identified 4
clusters. (A) Raincloud plots representing the distribution of average B-value of samples in the 4 methylation clusters (C1, C2, C3, C4) and controls (CTRL). Box plots
show the median £ SD and the whiskers represent the maximal and minimal values. Mann-Whitney test for p-values (*<0.05, **<0.01, ****<0.0001). (B) Heatmap
representing the normalized B-value of selected CpG (row) including the 500 highest mean CpGs and the 500 lowest mean CpGs from each cluster after removal of
CpG duplicates and hierarchical clustering. Columns represent patient samples. Disease and mutation status are indicated. DNA variant allele frequencies (VAFs) are
shown as color shades. Presence or absence of del(5q) is indicated by 1 or O, respectively, and the number of TP53 mutations (0, 1, 2) per patient is indicated by
distinct colors. (C) Bar plots representing the number of the indicated mutation or cytogenetic abnormality in each cluster.

(Figure 1A and Supporting Information S1: Figure 2B). At least one
mutation and/or cytogenetic abnormality was found in 86.4%. As ex-
pected for LR-MDS, the spectrum of genetic lesions was biased
compared to other unselected MDS populations, SF3B1 being the most
frequently mutated gene (34%) while TP53 or RUNX1 being under-
represented (Figure 1A).141>333¢

Unsupervised hierarchical clustering analysis based on genetic
profile with the Jaccard distance measure identified an optimal
cluster number of six (Supporting Information S1: Figure 3A,B). The
six clusters showed a distinct genetic profile (Figure 1B). Cluster A
gathered MDS-del(5q), those associated with SF3B1 mutation seg-
regating in other clusters. Cluster A comprised cases without proof of
clonal hematopoiesis by mutation and cytogenetic analysis. A primary
SF3B1 cluster first divided into a cluster B characterized by isolated
SF3B1 mutation and a SF3B1/DNMT3A/TET2, which then divided
into SF3B1/DNMT3A cluster E and SF3B1/TET2 cluster F (Supporting
Information S1: Figure 4A-D). We identified a cluster D almost in-
variably characterized by SRSF2 mutation, mainly associated with
TET2 or ASXL1 mutations, and a cluster C enriched in high-risk mu-
tations including ASXL1, EZH2, U2AF1, and TP53. Notably, a distinct
homogeneous subcluster, driven by U2AF1 mutation, emerged from
this cluster at a lower hierarchical level (Supporting Information S1:
Figure 4D).

Clinical features, health-related quality of life, and
outcomes of genetic clusters

The six genetically defined clusters showed distinct clinical features
and outcomes. SF3B1-mutant clusters (B, E, F) showed lower he-
moglobin, higher MCV, ferritin, and transferrin saturation, higher
proportion of ring sideroblasts, and lower blast count. Cluster C
showed higher BM blasts and cases with multilineage dysplasia.
Cluster D showed higher BM blasts and monocyte counts and lower
platelets compared to others (Table 2).

We analyzed the time to first treatment or specific treatment
modalities, adjusted for age and sex, including erythropoiesis-
stimulating agents (ESA), RBC transfusion, HMA, and lenalidomide.
Relative to cluster A, cluster C showed a shorter time to first treat-
ment (p=0.011), RBC transfusion (p=0.001), and HMA treatment
(p =0.040). A shorter time to HMA treatment was also noticed for
cluster D (p =0.016) and a shorter time to lenalidomide treatment in
clusters B (p =0.003), C (p=0.009), E (p=0.031), and F (p =0.008).
Conversely, time to ESA treatment was not different among the six
clusters (p = 0.380) (Supporting Information S1: Table 2). A thorough
analysis of patterns of correlation between mutations and HRQoL in a
subgroup of 185 LR-MDS patients showed no significant effect on
the EQ.5D summary scores (Supporting Information S1: Table 3).
Focusing on EQ.5D components, patterns suggested a relationship
between SF3B1 or SRSF2 mutations and mobility and usual actions
arguing for divergent effect on HRQoL of these mutations.

We analyzed clinical outcomes including overall survival (OS) and
risk of disease progression (Supporting Information S1: Figure 5A-C).
The six genetic clusters showed different OS (p < 0.001) (Figure 1C).

Compared to cluster A, clusters B, and F did not show different OS in
multivariable analysis (HR 0.87, p=0.72; HR 1.45, p = 0.33, respec-
tively), while clusters C, D, and E showed a worse outcome (HR 4.14,
p<0.001; HR=3.57, p<0.001; HR=2.54, p=0.002, respectively).
Notably, clusters B (isolated SF3B1) and F (SF3B1/TET2) showed si-
milar outcome (HR 1.66, p = 0.25), while cluster E (SF3B1/DNMT3A)
and cluster C (SF3B1/ASXL1/EZH2/RUNX1) showed a worse OS (HR
2.90, p = 0.005). The 6 clusters showed different times to progression,
analyzed as a composite endpoint of progression into higher-risk
MDS or AML (p < 0.001) (Figure 1D). In multivariable analysis, clusters
B and F did not show different time to any progression compared to
cluster A (HR 1.57, p=0.36; HR 0.78, p =0.70, respectively), while
clusters C, D, and E showed a worse outcome (HR 4.93, p < 0.001; HR
4.47, p<0.001; HR 4.43, p < 0.001, respectively). Finally, clusters C,
D, and E showed a shorter time to progression into higher-risk MDS
(HR 3.58, p=0.006; HR 4.19, p=0.002; HR 3.1, p=0.019, respec-
tively) (Supporting Information S1: Figure 5D). The genetic clustering
stratified patients with poor outcome in three subgroups with dis-
tinct OS.

Identification of four methylation clusters with
distinct mutations by unsupervised clustering

To improve our understanding of the variability of LR-MDS trajec-
tories, we investigated the epigenetic landscape of 175 LR-MDS
patients in comparison to 7 age-matched healthy controls. The me-
thylation cohort displayed no differences from the TRIAGE cohort in
terms of age, sex, and mutation frequencies (Supporting Information
S1: Table 4). Fifty-nine patients (33.7%) had an abnormal karyotype.
At least one mutation and/or cytogenetic abnormality was found in
150 (85.7%) cases. Mutations in TET2 were detected in 58 (33%),
SF3B1 in 54 (31%), and SRSF2 in 32 (18%) patients. The median
mutation number per patient was 1 and common co-mutation pat-
terns were observed (Supporting Information S1: Figure 6A-C).
IPSS-M scoring®® identified 6 groups of patients with different OS
(p <0.0001) and a distinct risk of AML evolution between very low
(VL), low (L), and moderate low (ML) IPSS-M <0 and moderate high
(MH), high (H), and very high (VH) IPSS-M > 0 (p < 0.0001; Supporting
Information S1: Figure 6D,E). More precisely, IPSS-M refined the
prognosis of patients with the most favorable outcome (Supporting
Information S1: Table 5). The methylation cohort comprised 28 pa-
tients with early progression to AML (MDSp) within the 2-year
follow-up. These patients displayed a lower mean platelet count
(p=0.013), a higher mean blast count (p=0.001), a higher median
number of mutations (p <0.0001), and a significant enrichment in
IPSS-R intermediate- and high-risk categories (p = 0.0001). Mutations
in ASXL1, EZH2, RUNX1, and TP53 were more frequent (p = 0.009)
and IPSS-M was worse (p<0.0001) in MDSp than in MDS
(Supporting Information S1: Table 6).

The EPIC array allowed interrogating the methylation of 723,612
sites representing ~2% of the genome CpGs with an enrichment at
promoters and enhancers. Genome-wide methylation level computed
as mean normalized CpG B-values was not different between MDS,
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FIGURE 3 (See caption on next page).
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FIGURE 3

Differentially methylated CpGs within differentially methylated regions (DMR-CpG). DMR-CpGs were defined as regions containing at least 2 CpGs with delta

B>]0.20| and a Benjamini-Hochberg (BH)-adjusted p < 0.05. (A) Scatter plots representing the delta B-values of each hypermethylated and hypomethylated DMR-CpG in

clusters C1, C2, C3, and C4 compared to controls. Mann-Whitney test for p-values. **<0.01; ****<0.0001. (B) Numbers of hypermethylated and hypomethylated DMR-CpGs in
CpG islands, open seas, shores, bivalent enhancers/promoters, enhancers, and promoters. (C) Pie charts showing the proportion of hypermethylated (hyper) or hypomethylated
(hypo) DMR-CpGs at bivalent enhancer and promoter, enhancer, gene body, intergenic region, and promoter identified in the comparisons of C1, C2, C3, and C4 to controls.
Total numbers of DMR-CpGs are indicated in brackets. (D) Heatmap representing the numbers of hypermethylated or hypomethylated individual CpGs near referenced genes
and the numbers of downregulated genes close to hypermethylated CpGs and of upregulated genes close to hypomethylated CpGs with log, fold-change > |1| and p < 0.05 in
each cluster. (E) Gene Ontology analyses of downregulated and upregulated gene sets near hypermethylated and hypomethylated CpGs, respectively, identified in (D). Bar plots
showing pathways significantly over-represented in clusters C1, C3, and C4 compared to controls. No significant terms were found in the comparison of cluster C2 with

controls.

MDSp, and control group, while it was increased in TET2-mutated
compared to TET2-wild-type samples or controls in correlation with
mutation number (Supporting Information S1: Figure 7A-C). Un-
supervised clustering using the 5000 CpGs with the highest standard
deviation (SD) of their normalized B-values identified four clusters
(Supporting Information S1: Figure 8A,B). Genome-wide methylation
level of each cluster was similarly elevated in clusters 1 and 4 com-
pared to controls, lower in cluster 2 compared to clusters 1, 3, and 4
(b <0.0001) and controls (p < 0.01), and higher in cluster 3 compared
to other clusters (p < 0.001) and controls (p < 0.05; Figure 2A). After
selection of the highest mean CpGs and lowest mean CpGs from each
cluster, a hierarchical clustering showed that a subset of hypo-
methylated CpG defined cluster 2, while two distinct subsets of hy-
permethylated CpGs defined clusters 3 and 4, respectively
(Figure 2B). LR-MDS patients allocated to each cluster showed dis-
tinct genetic profiles (Figure 2B,C and Supporting Information S1:
Table 7). Methylation cluster 1 was enriched in MDS-del(5q) (12%), or
no evidence of clonality (42%). Cluster 2 was enriched in SF3B1
mutation (81%) with TET2 (38%) or DNMT3A mutation (22%). By lo-
gistic regression, SF3B1 was predicted in cluster 2 with an odds ratio
of 25.61 [95% Cl: 9.00-84.44]; p < 1077). Hypermethylated cluster 3
was enriched in TET2/IDH1/2 (74%/26%) and SRSF2 (48%) muta-
tions, which were predicted in cluster 3 with odds ratios of 16.66
([95% Cl: 5.91-52.81]; p=4.10"") and 18.67 ([95% CI: 5.31-88.91];
p =3.1077), respectively. Cluster 4 gathered cases with at least one
mutation, mainly high-risk RUNX1, EZH2, ASXL1, U2AF1, and mul-
tiTP53 mutations. ASXL1 and RUNX1 mutations were predicted in
cluster 4 with odds ratios of 11.53 ([95% Cl: 4.03-37.24]; p = 107°)
and 16.76 ([95% Cl: 4.08-114.58]; p = 5.10°), respectively.

A cross-tabulation of the methylation-based and the mutation-
based unsupervised clustering methods demonstrated a strong cor-
relation (X2 =127.52; p < 107°). The standardized residuals from the
Chi-square test established that methylation clusters 1 and 3 highly
correlated with genetic clusters A and D, respectively, methylation
cluster 2 with both genetic clusters B and E, and methylation cluster 4
with genetic cluster C (Supporting Information S1: Table 8A). Fur-
thermore, a cross-tabulation of the methylation-based unsupervised
clustering and IPSS-M categorization demonstrated also a strong
correlation (X2 =60.80; p <107%) with cluster 1 correlated with the
very low category, cluster 2 correlated with low category, and cluster
4 correlated with moderate high, high, and very high categories
(Supporting Information S1: Table 8B). This shows that methylation-
based clustering integrated specific molecular patterns and distinct
risk categories.

DMR and differentially expressed gene sets in
methylation clusters

To explore methylation changes between clusters, we analyzed DMR
using DMRcate, as sequences containing at least 2 CpGs with a delta

B-value >|0.20| and a BH-adjusted p < 0.05 further called DMR-CpGs
(Supporting Information S1: Tables 9A-E). We identified 3860, 1642,
7053, and 3296 DMR-CpGs in the comparisons of clusters 1, 2, 3,
and 4 with controls, respectively (Figure 3A), and 1880 DMR-CpGs in
the comparison of MDSp with controls (Supporting Information S1:
Tables 9A-E). Most of the DMR-CpGs were hypermethylated, and
cluster 3, in which almost all samples were TET2 or IDH1/2 mutated,
retained the highest number and the most elevated positive delta
B>0.20 of the hypermethylated DMR-CpGs compared to the 3
others, while clusters 2 and 4 had significantly more negative delta
B < -0.20 corresponding to hypomethylated DMR-CpGs (Figure 3A
and Supporting Information S1: Figure 9).

We then annotated the lists of hypermethylated or hypomethy-
lated DMR-CpGs with CG-rich regions (CpG islands), shores (at up to
2 kb from CpG islands), and open seas (>4 kb from CpG islands) and
with gene features including bivalent promoter/enhancer, enhancer,
gene body, intergenic, and promoter (Supporting Information S1:
Table 9A-D). To avoid underestimating enhancers, we used a refined
probe annotation.®* We found that the hypermethylated DMR-CpGs
were predominant at CpG islands in cluster 4. In agreement with CpG
islands occupying more than 90% of promoters, the proportion of
hypermethylated DMR-CpGs at promoters was also higher in cluster
4 compared to controls. The TET2 hydroxylase is known to orches-
trate the demethylation of enhancers through its recruitment to the
DNA by interacting with TF, and conversely, inactivation of TET2 gene
leads to enhancer hypermethylation.?* Consistently, TET2 mutant-
enriched cluster 3 displayed the highest number of hypermethylated
enhancers. Hypermethylated DMR-CpGs overlapping with enhancers
were not abundant in clusters 2 and 4, which, in contrast, displayed
hypomethylated DMR-CpGs mainly in bivalent regulatory regions and
in the shores of CpG islands (Figure 3B). Remarkably, the proportion
of hypermethylated DMR-CpGs at promoters and the proportion of
hypomethylated DMR-CpGs at bivalent regulatory regions were in-
creased in cluster 4 compared to the others (Figure 3C).

To investigate the impact of methylation changes on gene ex-
pression, RNA-sequencing data of 127/175 LR-MDS including 25
MDSp and 7 controls were generated. We studied the repartition of
hematopoietic cell types among BM mononuclear cells using a re-
ference signature matrix publicly available from single-cell RNA-seq
data of BM CD34" cells and CIBERSORT algorithm, as previously
(Supporting Information S1: Table 10).%>3¢%% We found similar
abundances of common myeloid, megakaryocyte/erythroid, and
granulocyte/monocyte progenitors across methylation clusters and
controls while multi-lymphoid progenitors (MLPs) were less abundant
in cluster 2 compared to cluster 4 and increased in clusters 1, 3, and 4
compared to controls (Supporting Information S1: Figure 10). Using
DESeq2, we identified differentially downregulated or upregulated
genes between clusters and controls (with log2 fold-change > |1] and
p <0.05). Then, the DMR-CpGs were annotated with the nearest
differentially downregulated or upregulated genes (Supporting In-
formation S1: Table 9A-D). Clusters 1 and 3 retained the highest
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FIGURE 4 (See caption on next page).
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FIGURE 4 Differentially methylated enhancer and promoter gene target expression. (A) Transcription factor (TF) binding motif enrichment analyses within stretches
of 125-bp flanking on both sides of the hypermethylated CpG (delta B-value >|0.20| and Benjamini-Hochberg (BH)-adjusted p < 0.05) found in enhancers in the
comparison of clusters C1, C2, C3, and C4 to control samples using HOMER. Shared and differential TF families which binding motifs were enriched (q < 10™%) are
shown. (B) Major TF binding motifs at hypermethylated enhancers shared between clusters. p-Values generated using Fischer's exact test with correction for the
number of tested TF binding motifs and percentage of target sequences with motif are indicated. (C) Heatmap representing the expression levels shown as DESeq2
normalized counts transformed with a variance stabilizing transformation of transcription factors in each cluster compared to controls. (D) Upset plot showing
intersections between clusters of the gene targets of differentially methylated enhancers. (E) Examples of genes with a TF motif (yellow squares) occupying the
enhancers with hypermethylated or hypomethylated CpGs within differentially methylated regions (DMR-CpGs). DMR-CpG B-values are shown. Dots represent
CpGs. The red line represents the B-values of CpGs in clusters C1, C2, C3, or C4 and the blue line represents the B-values of CpGs in controls. The log, fold-change
(FC) of gene expression between cluster and controls is indicated in brackets. (F) Scatter plots showing differentially expressed genes [log,(FC) >|0.5|; BH-adjusted
p < 0.05] overlapping differentially methylated promoters (delta B > |0.20|; BH-adjusted p < 0.05) specific to clusters C1, C2, C3, or C4 in comparison with controls.

Cluster C4 genes are annotated.

number of downregulated genes close to hypermethylated CpGs and
clusters 2 and 4 retained the highest numbers of upregulated genes in
the vicinity of hypomethylated CpGs (Figure 3D). We performed a
Gene Ontology analysis of these gene sets. The main pathways over-
represented in cluster 1 involved B cell homeostasis and the regula-
tion of innate immune response. We cannot exclude a relationship
between the emergence of B cell homeostasis or CD40 signaling
pathways and the increased abundancy of MLPs in cluster 1. No
specific pathways were found in cluster 2. Pathways emerging in
cluster C3 involved the cellular response to M-CSF, a key factor for
monocytic differentiation, macrophage differentiation, and the ne-
gative regulation of IL1B production and NFkB signaling. In cluster 4,
the main pathways involved the regulation of cell cycle and differ-
entiation, caspase activation, and glucose metabolism (Figure 3E).

Altogether, our unsupervised clustering unveiled distinct profiles
of methylation aberrancies. MDS with short time to AML mostly
gathered in cluster 4 were characterized by an enrichment in hy-
permethylated promoters and hypomethylated bivalent regulatory
regions and a specific transcriptomic profile.

Landscape of TF binding motifs occupying
differentially methylated enhancers

Aberrant methylation of the binding sites for TF overlapping en-
hancers may perturb their function that is required for hemato-
poietic cell development.®? To explore this, we carried out motif
enrichment analyses within stretches of 125-bp flanking differen-
tially methylated CpG on both sides using HOMER. The enrichment
in motifs for the ETS family and bZIP TFs was highly significant in
the four clusters. Among a large set of 440 unique TF motifs in
HOMER, 55, 30, 93, 28, and 29 binding motifs were significantly
enriched (g < 0.0001) at hypermethylated enhancers (delta g > 0.20)
in clusters 1, 2, 3, 4, and MDSp, respectively (Supporting Informa-
tion S1: Table 11A). Hypermethylated binding motifs for the ETS TF
family including ETS1 and SPI1, several bZIP TF families including C/
EBP involved in myeloid cell differentiation, and HTH TF MYB were
the most frequently enriched in all samples (Figure 4A,B). However,
clusters might display distinct patterns of enrichment for other bZIP
TF binding motifs in hypermethylated enhancers. Notably, the hy-
permethylated motifs for FOS and FOSL2 were enriched in clusters
1, 2, and 3, but not in cluster 4. The motifs for BACH1/2, BATF,
JUN, and JUNB were enriched in clusters 1 and 3, but not in clusters
2 and 4. A hypermethylated motif for bHLH TF SCL/Tall involved in
hematopoietic lineage specification was enriched in clusters 1 and 3.
Moreover, cluster 2 displayed a specific pattern of hypomethylated
motifs for zinc finger (Zf) GATA1 TF family that was consistent with
the maintenance of an erythroid commitment (Supporting Informa-
tion S1: Table 11B). Altogether, the hypermethylation of TF motifs in

clusters 1 and 3 illustrates the uncoupling between cell proliferation
and differentiation processes characterizing the hematopoiesis of
myeloid malignancies. Conversely, in cluster 4, the absence of hy-
permethylated motifs at enhancers for AP-1 complex members FOS,
FOSL2, JUN, and JUNB, together with the upregulation of FOS,
FOSL2, JUN, and JUNB transcripts which has been implicated in AML
initiation®? suggest that downstream pathways could be activated
(Supporting Information S1: Table 11A and Figure 4C). The profile of
TFs which binding motifs at enhancers were hypermethylated, was
almost similar between cluster 4 and MDSp, notably, the lack of
hypermethylated motifs at enhancers for AP-1 complex members
(Supporting Information S1: Table 11A and Supporting Information
S1: Figure 11). Finally, the absence of hypermethylated motifs for
AP-1 complex members at enhancers, together with the down-
regulation of AP-1 transcripts in cluster 2, suggests a distinct cell
fate (Figure 4A,C).

Regulation of gene expression by enhancer and
promoter methylation

As a proxy of enhancer activity, we analyzed differentially expressed
target genes of enhancers that contained one differentially methylated
CpG (delta B >0.2) within a TF binding motif. Globally, we identified
131, 14, 122, 32, and 51 differentially expressed target genes down-
stream of enhancers with hypermethylated motifs in clusters 1, 2, 3, 4,
and MDSp, respectively (Supporting Information S1: Table 12A). These
genes were involved in hematopoiesis, metabolism regulation, and
cancer development. Clusters 1 and 3's identity was defined by specific
target gene sets not overlapping with gene sets of other clusters
(Figure 4D). Deregulated gene expression linked to abnormal methy-
lation of binding motifs for ETS and C/EBP TF families was observed in
all clusters. As examples, in cluster 1, two hypermethylated bZIP motifs
were associated with the downregulation of antiapoptotic sphingosine
kinase 1 (SPHK1), and of ATB-binding cassette subfamily C member 3
(ABCC3) genes, and a hypomethylated ETS motif was associated with
upregulation of chromodomain helicase DNA binding protein 7 (CHD?7).
Of note, in cluster 2, eight genes were upregulated downstream of
enhancers with hypomethylated motifs, including the cyclin-dependent
kinase inhibitor 1C (CDKN1C), the DNA-binding TF Lim homeobox
protein 6 (LHX6), a GATA target, and the sprouty RTK signaling an-
tagonist (SPRY4), an inhibitor of MAPK signaling pathway, while the
downregulation of the protein phosphatase 1 regulatory subunit 27
(PPP1R27) was linked to a hypermethylated ETS motif (Figure 4E and
Supporting Information S1: Table 12B). Moreover, in cluster 3, hy-
permethylated Zf and bHLH motifs were associated with the down-
regulation of interferon regulatory factor 2 (IRF2) and inhibitor of DNA
binding 1 (ID1), and in cluster 4, and MDSp as well, hypermethylated Zf
and bHLH motifs were associated with the downregulation of
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isocitrate dehydrogenase 1 (IDH1) and p21(RAC1)-activated kinase 2
(PAK2) (Figure 4E and Supporting Information S1: Table 12A).

We also annotated differentially methylated promoters with
the nearest differentially expressed gene (Supporting Information
S1: Table 9A-E). The number of genes overlapping promoters
with an aberrant methylation level was higher in cluster 4 than in
the others. Specific to cluster 4, we identified a set of 10 dif-
ferentially expressed genes, all involved in cancer development,
including 5 upregulated genes with a hypomethylated promoter,
such as cyclin Y (CCNY), chondroitin sulfate synthase 1 (CHSY1),
guanine nucleotide exchange factor (MCF2L), cohesin complex
component (RAD21), and RAP1 GTPase activating protein
(RAP1GAP2), and 5 downregulated genes with a hypermethylated
promoter, such APC downregulated 1 like (APCDD1L), cannabi-
noid receptor interacting protein 1 (CNRIP1), NFKB activating
protein like (NKAPL), tensin 3 (TNS3), and zinc finger protein 518B
(ZNF518B) (Figure 4F).

Altogether, these results indicate that methylation imprinting at
distal promoter regulatory regions drives gene expression changes in
LR-MDS and that the methylation-deregulated proximal promoters
may confer an additional level of regulation to gene expression
among the LR-MDS which rapidly evolve to AML.

p value
<0.001

21 (52.5)
5(12.5)
16 (40.0)

c4

c3

7 (22.6)
1(3.2)
4(12.9)

Clinical features and outcomes of methylation-based
clusters within LR-MDS

Methylation-based clusters showed distinct clinical features (Table 3).
Males were more represented than females in clusters 3 and 4.
Clusters 2 and 4 showed lower hemoglobin and blast percentage and
higher MCV, ferritin, and transferrin saturation. Cluster 3 showed
higher hemoglobin, monocyte, and blast percentages and lower pla-
telet count compared to other clusters. Cluster 1 was enriched in
MDS-del(5g) and MDS-SLD/MLD, while clusters 2 and 3 were en-
riched in MDS-RS and MDS-EB1, respectively. Cluster 4 gathered
miscellaneous WHO categories with the highest proportion of MDSp.

We analyzed the clinical outcomes of each cluster, including OS
and risk of disease progression to AML. The four methylation-defined
clusters showed different OS (p < 0.0001) and different times to AML
progression (p < 0.0001) (Figure 5A,B). Compared to clusters 1, 2, and
3, cluster 4 showed the worst OS with HR 5.69 (97.5% CI
[2.94-11.00], p < 0.0001), HR 4.50 (97.5% CI [2.18-9.28], p < 0.0001)
and HR 3.02 (97.5% CI [1.51-6.06], p = 0.002), respectively, and the
highest risk of AML evolution with HR 14.12 (97.5% Cl [4.03-49.45],
p <0.0001), HR 6.32 (97.5% CI [2.07-19.32], p = 0.001), and HR 4.76
(97.5% ClI [1.57-14.40], p=0.006), respectively (Supporting In-
formation S1: Table 13). We then investigated whether cluster 4
might contain information that could refine prognostication in the
lower-risk IPSS-M group (IPSS-M < 0). Methylation cluster 4 retained
a significantly inferior OS compared to clusters 1, 2, and 3 with HR
5.80 (97.5% Cl [2.48-13.55], p=0.0001), HR 5.66 (97.5% ClI
[2.10-15.21], p=0.0006), and HR 3.97 (97.5% CI [1.43-11.06],
p = 0.008), respectively. By contrast, the risk of AML progression was
similar between clusters (Figure 5C,D).

Cc2
3(8.1)
1(2.7)
5(13.5)

Methylation cluster

c1

6(8.9)
2 (3.0
3 (4.5

Cohort
37 (21.1)
9(5.2)
28 (16.0)

DISCUSSION

(Continued)

In this study, unsupervised clustering approaches based on mutations
or methylation profiling identified relevant clinical and biological
clusters in a cohort of LR-MDS. Methylation-based clustering in-
tegrated specific genetic patterns and identified MDS patients with
inferior OS and at risk of AML progression. Furthermore, it refined

Very high/high/moderate high
AML transformation, n (%)

Missing

Abbreviations: AMC, absolute monocyte count; AML, acute myeloid leukemia; ANC, absolute neutrophil count; BM, bone marrow; EB1, excess of blasts 5%-9%; IPSS-R, International Prognostic Scoring System-Revised; IPSS-M, IPSS-molecular;

MCV, median corpuscular volume; MLD, multiple lineage dysplasia; RS, ring sideroblasts; SLD, single lineage dysplasia; WBC, white blood cell.

TABLE 3
Variables
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Overall survival and risk of disease progression to acute myeloid leukemia (AML) stratified on methylation clustering. (A) Overall survival (OS) of

lower-risk myelodysplastic syndromes (LR-MDS) patients stratified on methylation clusters. The four clusters showed significantly different OS (p < 0.0001). (B) Risk
of disease progression to AML of LR-MDS patients stratified on methylation clusters. The four clusters showed significantly different times to AML progression
(p < 0.0001). (C) OS of MDS patients with very low (VL), low (L), moderate low (ML) IPSS-M stratified on methylation clusters (hazard ratio 3.10, 95% Cl [1.71-5.63];
p < 0.0001). (D) Risk of AML progression of MDS patients with VL, L, ML IPSS-M stratified on methylation clusters.

the prediction of death from other causes than AML within lower-risk
IPSS-M patients.

We identified six mutation-based clusters presenting similarities
with those reported in unselected MDS.*® Our strategy identified
three SF3B1-mutated clusters with distinct clinical outcomes, SF3B1/
DNMT3A showing worse OS and higher risk of progression than
isolated SF3B1 and SF3B1/TET2. In addition, it identified a cluster
enriched in high-risk mutations associated with reduced OS, higher
risk of progression, and shorter time to first treatment and a cluster
characterized by SRSF2 mutation mainly associated with TET2 mu-
tations, a co-mutation pattern highly predictive of chronic myelo-
monocytic leukemia (CMML) which is consistent with their early
interception preceding the development of an overt CMML.*? Finally,
this analysis identified a group of LR-MDS without proof of clonality.
Although we did not analyze all possible gene mutations and minor
cytogenetic lesions might be missed by standard cytogenetics, this
highlights that current morphology-based diagnostic criteria might
not be sufficiently accurate to always discriminate myeloid neoplasms
from other non-neoplastic conditions. In this cohort of LR-MDS pa-
tients, the genetic clustering identified subgroups of patients with
shared molecular patterns suggesting distinct disease trajectories.
Although its objective was different from outcome prediction, the

genetic clustering informed the prognosis of patients with poor sur-
vival. On the contrary, the IPSS-M stratified better patients with more
favorable outcomes.

Unsupervised analysis of genome-wide methylation profiles
concentrated LR-MDS into four clusters that were enriched in spe-
cific genetic lesions such as del5q, SF3B1, TET2/SRSF2, and high-risk
mutations. Most cases gathering in cluster 3 demonstrated frequent
TET2/SRSF2 or multiTET2 mutations, a hypermethylated profile, a
transcriptomic signature including M-CSF pathway activation and
innate immune response and an intermediate prognosis, all features
of MDS which may evolve to CMML.*?>*% Our analysis also identified
a unique cluster of patients at risk of early AML evolution and inferior
OS, characterized by a global hypermethylation predominating at
promoters and frequent hypomethylated regions in shores and bi-
valent regulatory regions. Previous studies based on the methylome
analysis of paired MDS/secondary AML samples have shown an in-
creased methylation level at the advanced stage and distinctive
baseline methylation patterns between stable MDS and MDS at risk
of progression.2844 In agreement with our findings, hypomethylation
extends across the genome at disease progression and is an important
feature of de novo AML.***° Using different computational methods,
the interest for methylation-based clustering was strengthened by
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the identification of groups of poor prognosis in an unselected po-
pulation of LR-MDS and HR-MDS.#¢#7 Selectively focusing on LR-
MDS has the potential to increase the sensitivity in recognizing dis-
tinct disease trajectories and LR-MDS patients with poor outcome in
the earliest stages.

The poor redundancy of methylation aberrancies at promoters
or enhancers and transcriptomic profiles may reflect MDS hetero-
geneity. Seminal studies in human TET2 or IDH1/2 mutated MDS or
AML samples reported events of promoter DNA hypermethyla-
tion,?®> when extended genomic coverage of CpGs showed that
hypermethylation at enhancer regions appeared as a hallmark of
TET2 invalidation both in human CMML monocytes and in periph-
eral blood cells of clonal hematopoiesis of indeterminate potential
and of clonal cytopenia of undetermined significance and in cell lines
or mice models.24*®4? We confirmed here that enhancers were
heavily hypermethylated, when TET2 or IDH1/2 genes were mu-
tated (cluster 3) and also when IDH1 gene was downregulated by
hypermethylation of its enhancer TF binding motif (clusters 1 and 4).
Other mutations in genes may indirectly affect the DNA methylation
such as SRSF2 and ZBTB33.3%°° More surprisingly, the SF3B1 mu-
tation was strongly associated with a global hypomethylation of the
genome even in the absence of a DNMT3A co-mutation. Altogether,
the gene expression patterns driven by methylation aberrancies may
capture the underlying biology and reveal the divergence of tra-
jectories occurring during clonal progression.

The strong correlation between genetic and epigenetic classifi-
cations emphasizes the usefulness of multi-omics approach to LR-
MDS patient risk stratification. The identification of a methylation
subgroup of patients with inferior OS indicates that DNA methylation
features may refine risk evaluation. Future studies circumscribed to
MDS patients in lower-risk categories according to IPSS-M are re-
quired to strengthen this strategy and offer a frame for early ther-
apeutic interventions.
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