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Significant progress in previous decades has led to several methodologies developed to facilitate the design of optimal antimicrobial 
dosing. In this review, we highlight common pharmacokinetic/pharmacodynamic (PKPD) modeling techniques and their roles in 
guiding rational dosing regimen design. In the early drug development phases, dose fractionation studies identify the PKPD index 
most closely associated with bacterial killing. Once discerned, this index is linked to clinical efficacy end points, and classification 
and regression tree analysis can be used to define the PKPD target goal. Monte Carlo simulations integrate PKPD and 
microbiological data to identify dosing strategies with a high probability of achieving the established PKPD target. Results then 
determine dosing regimens to investigate and/or validate the findings of randomized controlled trials. Further improvements in 
PKPD modeling could lead to an era of precision dosing and personalized therapeutics.
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The rise of broad-spectrum antimicrobial resistance is a critical 
situation that clinicians are facing today. With limited options 
available, there is a growing need to judiciously utilize and op
timize our current arsenal of antimicrobials to improve patient 
outcomes. In previous decades, several advances were made to 
characterize the concentration–effect relationships of antimi
crobials to facilitate optimal drug dosing. In general, pharma
cokinetic and pharmacodynamic (PKPD) analyses allow the 
exploration of the time course of an observed drug effect, which 
provide a means to relate the effects to drug concentrations in 
the body [1, 2]. For most nonantimicrobials, their effects can 
either be measures of clinical response (eg, analgesia) or bio
markers of drug effects (eg, international normalized ratio) 
[3, 4]. As a result, the dose–response relationship can be eluci
dated by directly monitoring the physiological and/or bio
chemical variables of the host [5]. However, these principles 

do not apply to antimicrobials as their main target is the path
ogen (as opposed to receptor targets in the host).

Dosing of antimicrobials differs greatly from other drugs, as 
the evaluation of its efficacy relies on 2 factors: (1) drug expo
sure achieved in the host and (2) pathogen susceptibility to the 
drug [6]. Due to this distinction, clinical response measures of 
the host are only indirect aspects of antimicrobial effectiveness. 
To circumvent the challenge of integrating the above factors, 
surrogate indices have been proposed to predict clinical success 
[7]. These measures relate the extent of drug exposure in the 
host and the susceptibility of the pathogen to the drug (com
monly represented by the minimum inhibitory concentration 
[MIC]). Consequently, these indices represent a complex inter
play between factors of the host and pathogen, which help to 
inform dose selection to achieve favorable outcomes [8, 9]. In 
an ideal setting, antimicrobial dosing should be individualized 
based on patient (eg, body weight, renal/hepatic function, plas
ma albumin) and microbial (eg, MIC, resistance mechanism 
genotypes) characteristics (ie, precision dosing).

Over the years, many approaches have been developed to fa
cilitate the design of optimal dosing regimens. The objectives of 
this review are to describe the most common PKPD techniques 
from an end user’s perspective and to facilitate clinician inter
pretation of studies using these modeling tools. Similar tech
niques can also be applied to minimizing adverse effects 
associated with antimicrobial therapy (ie, toxicodynamics). 
The statistical basis and theory behind these approaches are be
yond the scope of this review. For brevity’s sake, we will focus 
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on the efficacy of antibacterials in this review for the purpose of 
illustration.

DOSE FRACTIONATION STUDIES AND HOW THEY 
INFORM PKPD PARAMETER SELECTION

Background

In the early stages of nonantimicrobial drug development, 
dose-finding studies are essential to inform dose selection for 
testing in clinical trials [10, 11]. In phase II studies, the effec
tiveness and safety of an experimental drug are determined, 
typically through a dose escalation design. Doses in proportion 
to the maximum tolerated dose, in addition to host clinical re
sponses, are studied to establish the dose–effect relationship of 
the drug. Study results are used to formulate the most optimal 
dosing regimen to be investigated in phase III clinical trials 
[12]. However, this study design is not directly applicable to an
timicrobials as efficacy is also affected by pathogen susceptibil
ity to the antimicrobial. More robust surrogate indices (ie, 
PKPD parameters) have thus been proposed as better predic
tors of clinical and microbiological success. To identify the 
PKPD index most closely correlated to bacterial killing (ie, ef
ficacy), dose fractionation studies have commonly been 
utilized.

Experimental Design

Dose fractionation experiments involve studying various dos
ing regimens with different dosing intervals and fractions of 
the total daily dose in such a way that the total daily drug expo
sure is kept constant (Table 1) [8, 13]. This design can be adopt
ed in different preclinical infection models (eg, chemostat, 
hollow-fiber, neutropenic murine thigh infection/pneumonia 
models). In the simplest design with a single pathogen, differ
ent PKPD indices (eg, Cmax/MIC, T > MIC, area under the 
curve [AUC]/minimum inhibitory concentration [MIC]) could 
be compared relying on a specific MIC as the common denom
inator, as shown in Table 1.

Alternatively, a scatter plot can be utilized to discriminate 
antimicrobial effect (typically represented by the bacterial 
count following 24 hours of treatment) from the PKPD indices 
(Figure 1). Typically, a regression curve (representing an inhib
itory sigmoidal Emax model) that best fits all the data points is 
generated. The selection of the PKPD index most closely relat
ed to bacterial killing is derived from the regression model with 
the best coefficient of determination (denoted as r2). Of note, 
the free, unbounded fraction of a drug is often used in the cal
culation of PK parameters and is denoted by the prefix f, as this 
represents the active component of the drug [14, 15]. Results 
from these studies identify the PKPD index that best predicts 
antimicrobial efficacy and have historically been derived from 
1 of the 3 PKPD indices described above. The methods used 
to elucidate the PKPD of an antimicrobial can be made even 
more robust when tested against a range of MICs from a single 
or multiple pathogens.

Many researchers use this regression approach to discern the 
PKPD index that is most closely linked to bacterial killing [16– 
19]. For instance, in a study by Zhou and colleagues, an in vivo 
neutropenic murine pneumonia model was utilized to charac
terize the PKPD of minocycline against Acinetobacter bauman
nii [19]. Briefly, the relationship between minocycline exposure 
and antimicrobial efficacy was described following administra
tion of varying doses of minocycline, and the PK of the drug 
was elucidated through analysis of serum and epithelial lining 
fluid concentrations. Through regression modeling, the 
AUC/MIC ratio was deemed the PKPD index most closely cor
related to the antimicrobial activity of minocycline against A. 
baumannii, due to AUC/MIC having the highest coefficient 
of determination among the 3 PKPD indices studied.

Expert Commentary

Traditional PKPD indices may provide a simplified character
ization of antimicrobial efficacy and are used for screening pur
poses in the early drug development stages. However, they may 
not fully capture bacterial killing comprehensively [20, 21]. 
There is an implicit assumption that the characterization of an
timicrobial efficacy can be classified into 1 of only 3 distinct 
PKPD indices (mentioned previously), but there may be other 
indices that could also accurately describe the bacterial killing 
of antimicrobials. For instance, the minimum concentration- 
to-MIC ratio (Cmin/MIC) may potentially be a better PKPD 
parameter compared with T > MIC, due to a ceiling effect of 
100% with the latter [22, 23]. As a result, Cmin/MIC may offer 
greater flexibility for antimicrobial exposures to be quantified, 
especially when the efficacy breakpoint is beyond T > MIC 
of 100%.

In all of the PKPD indices defined above, these measures rely 
on the MIC to describe antimicrobial PD. Although widely 
used due to its practicality, key limitations exist with utilizing 
MIC in PKPD analyses. The MIC represents the drug 

Table 1. Exposure Profiles of a Hypothetical Antimicrobial Exhibiting 
Linear Kinetics (Volume of Distribution of 40 L, Clearance of 28 L/h, 
Elimination Half-life of 1 Hour, and Negligible Protein Binding); the 
Target Pathogen Is Assumed to Have an MIC of 1 mg/L

Dosing Regimen fCmax, mg/L fCmin, mg/L fAUC, mg•h/L T > MIC, %

2000 mg every 24 h 50 Negligible 72 23

1000 mg every 12 h 25 0.01 72 38

500 mg every 6 h 12.5 0.2 72 60

Different antimicrobial pharmacodynamic characterizations may be inferred based on 
efficacy observed for various dosing regimens. For example, if the regimen given the 
least frequently (every 24 h) is the most effective, Cmax/MIC is thought to be the PKPD 
index most closely linked to an antimicrobial’s efficacy. In contrast, T > MIC is most 
associated with the regimen given most frequently (every 6 h). If there is no difference in 
efficacy, the AUC/MIC is the index linked to bacterial killing.  

Abbreviations: AUC/MIC, area under the curve/minimum inhibitory concentration; CFU, 
colony-forming units; PKPD, pharmacokinetic/pharmacodynamic.
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concentration that prevents visible growth of bacteria over a 
fixed time frame [24]. The result can be interpreted as a binary 
outcome that states that an antimicrobial given at a concentra
tion above the MIC leads to inhibition of bacterial growth, 
while concentrations below the MIC will fail to prevent bacte
rial growth. Under these conditions, the MIC does not quanti
tatively define the rate and extent of bacterial killing, and thus 
may not reflect the antimicrobial effects comprehensively [25]. 
Another limitation is that MIC measurements may fail to detect 
any potential resistant subpopulation(s) present in minute 
amounts (ie, below the limit of detection within the time frame 
in which MIC results are evaluated) [26]. Finally, MIC mea
surements could be subjected to inconsistencies due to labora
tory variations [15, 25]. An identical bacterial strain may 
exhibit different MIC values in 2 different institutions utilizing 

2 different types of lab equipment, which may have significant 
clinical implications if the true MIC lies close to the threshold 
between susceptible and nonsusceptible interpretations.

Due to the inherent drawbacks of MICs, innovations in 
non-MIC-based indices might provide further insights into an
timicrobial PKPD. Researchers have utilized more objective 
parameters in PKPD analysis, such as minimum bactericidal 
concentration (MBC), mutant prevention concentration 
(MPC), and kill rate–based PKPD integration models [27, 28]. 
For instance, MPC-based PKPD indices have been used in the 
study of fluoroquinolones because of their propensity to select 
drug-resistant mutants that occur gradually through genetic 
mutations [27]. Although nonconventional PD parameters 
have been developed to describe antimicrobial effects beyond 
what the MIC can provide, no single PD parameter may fully 
characterize bacterial killing. Therefore, a combination of non
traditional and traditional PKPD indices can be used to deter
mine the entire spectrum of antimicrobial mechanisms of 
action [24, 29, 30]. Further advances in the study of antimicro
bial PKPD are needed to distinguish what truly defines their ef
ficacy. Dose–response relationships may be more realistically 
described as a continuous (nonlinear) function as opposed to 
discrete categories. Different approaches to ascertain these non
linear functions are beyond the scope of this review [31, 32].

CLASSIFICATION AND REGRESSION TREE ANALYSIS 
AND PARTITIONING TECHNIQUES TO IDENTIFY GOAL 
TARGETS

Background

Following the identification of the optimal PKPD index associ
ated with bacterial killing, the next step is to link the index to 
clinically meaningful efficacy outcomes. Many study end points 
assessing antimicrobial therapy encode outcomes as a set of dis
crete states, such as whether a patient survived (mortality) or 
whether a pathogen continued to be recovered on repeat cul
tures (persistence). Lower drug exposures in a subject are typ
ically associated with less favorable outcomes, while higher 
drug exposures are associated with a higher likelihood of 

Figure 1. Relationship between PKPD indices of minocycline and Acinetobacter baumannii burden in mouse lung tissue at 24 hours [19]. Figure reproduced with permission 
from the American Society for Microbiology and Zhou et al. [19]. Each data point represented observations of 1 animal. Solid lines represent the best-fit regression curve. In 
this context, a reduction in log CFU/g (bacterial burden) is associated with bacterial killing. AUC/MIC best depicts A. baumannii killing of minocycline; its correlation with 
bacterial killing has the highest r2 value. Abbreviations: AUC/MIC, area under the curve/minimum inhibitory concentration; CFU, colony-forming units; PKPD, pharmacoki
netic/pharmacodynamic.

Figure 2. Association of clinical success and tigecycline fAUC0–24:MIC ratio in 
patients with hospital-acquired pneumonia. Figure reproduced with permission 
from data reported from Bhavnani et al. [81]. The probability of clinical success as
sociated with an fAUC/MIC of 0.1, 1, and 10 was 39% (blue), 63% (green), and 82% 
(red), respectively. This approach allows dosing selection to accommodate various 
clinical circumstances with different benefit-to-risk ratios. Abbreviations: AUC, 
area under the curve; MIC, minimum inhibitory concentration.
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favorable outcomes. When a trend is suspected, one may at
tempt to correlate different magnitudes of the PKPD index 
through regression analysis. This technique estimates the quan
titative impact of an independent variable (eg, magnitude of 
drug exposure) on the dependent variable (eg, hospital mortal
ity) [33]. Due to the dichotomy of most outcome variables, lo
gistic regression is traditionally used.

In clinical studies, logistic regression analysis is a powerful 
tool that yields a probability of achieving the research end 
points [34]. Furthermore, the analysis output is a prediction 
equation with coefficients that can be related to the odds ratio. 
However, the interpretation of these results may be subjective 
as the goal threshold that describes the most optimal probabil
ity of achieving a clinical outcome could be different among 
practitioners. As opposed to providing probabilities of an out
come based on the exposure variable (eg, AUC/MIC = 10 is as
sociated with 82% clinical success) (Figure 2), clinicians often 
prefer a target exposure that has the most reliable likelihood 
of clinical success. For these reasons, recursive partitioning 
techniques have been used to provide an objective method to 
determine a single drug exposure value most significantly asso
ciated with an outcome of interest.

Analytical Design

Recursive partitioning techniques have been used in epidemio
logical studies to explore distinct patient subpopulations and 
identify risk factors associated with a study outcome [35, 36]. 
The name of this technique refers to the fact that the data set 
can be split into sections (partitioning) repeatedly (recursive) 

until the remaining data points cannot be split further or the 
program reaches a user-specified stopping criterion [33, 37]. 
Classification and regression tree (CART) analysis is a type of 
recursive partitioning technique that produces a clinical deci
sion tree that is easier to interpret compared with logistic re
gression, making this more practical in clinical settings [38]. 
Researchers have utilized this methodology to relate the study 
outcome to antimicrobial PKPD parameters for the identifica
tion of breakpoint thresholds associated with clinical success.

Briefly, CART analysis begins with ranking the magnitude of 
the independent variable in ascending (or descending) order, 
which can be branched out into 2 subgroups. The group con
taining the entire sample is designated the parent node, while 
the subgroups are termed child nodes [33]. In many antimicro
bial studies, the splitting criterion is based on the magnitude of 
drug exposure with the greatest statistical significance with re
spect to the outcome variable. This would then be designated 
the breakpoint threshold after further refinement. For example, 
the relationship between the clinical outcome (eg, mortality) 
observed for each individual and their drug exposure achieved 
(eg, serum concentration or PKPD index) can be assessed 
through a 2-by-2 table. Comparisons are made between pa
tients who did and did not achieve the outcome of interest 
above a single drug exposure value to outcomes of patients 
who were below that drug exposure value. Through repeated 
analysis of each threshold, the magnitude of the PKPD index 
found to be most significantly associated with the study out
come is deemed the breakpoint (Table 2).

In several instances, CART analysis has been used in the lit
erature to help clinicians identify goal targets for antimicrobials 
to maximize patient outcomes [23, 39–42]. For example, Kullar 
and colleagues determined that patients receiving vancomycin 
for methicillin-resistant Staphylococcus aureus (MRSA) bacter
emia with an AUC/MIC <421 have significantly higher rates of 
clinical failure [43]. This study, along with other evidence, pro
vided the basis for the recommendation to target AUC/MIC 
≥400 when utilizing vancomycin for MRSA infections [44–46].

Expert Commentary

CART analysis has several advantages over logistic regression. 
It is an objective method for predicting an outcome through 
classification, which leads to a clinical decision tree that is easily 
interpreted by clinicians [33, 37, 38]. Moreover, the breakpoint 
threshold is determined based on the statistical analysis of all 
PKPD index values observed in a given sample population 
[47]. CART analysis is a nonparametric technique, so no as
sumptions need to be made regarding the distribution of the 
values of the predictor variables [33].

Despite these advantages, there are several limitations of 
CART analysis. The breakpoints defined from CART analysis 
are focused on reproducibility, as opposed to being the absolute 
breakpoint clinicians should target to predict clinical success. 

Table 2. Reanalysis of Data by Aitken et al. [36] for Illustrating CART 
Analysis

Cmin/MIC Ratio

Clinical Outcome

P ValueSuccess, No. Failure, No.

Threshold 1

≤0.7 0 1 .364

>0.7 21 11

Threshold 2

≤1.5 2 1 1

>1.5 19 11

Threshold 3

≤2.1 2 6 .015a

>2.1 19 6

Threshold 4

≤4 9 8 .282

>4 12 4
aBriefly, plasma concentrations of cefepime before the next scheduled dose (Cmin) in 33 
patients were normalized to MIC of the pathogen recovered from the same subject. The 
PKPD exposures were linked to the clinical outcomes observed. The CART program 
generates a series of 2-by-2 tables correlating every observed Cmin/MIC value and 
clinical outcome. For illustrative purposes, this table comprises of a subset of 4 tables 
from the CART analysis. The Fisher exact test was utilized for statistical comparison. In 
this representative series of 2-by-2 tables, the most statistically significant difference in 
outcome was found using Cmin/MIC = 2.1 as the threshold.  

Abbreviations: CART, classification and regression tree; MIC, minimum inhibitory 
concentration; PKPD, pharmacokinetic/pharmacodynamic.
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If there is an absolute breakpoint, this creates perfectly separable 
classes that easily predict clinical success and failure. However, 
there may be instances where patients may still do well clinically 
below the identified efficacy threshold. In this scenario where a 
data set is nonseparable, evaluating the steepness of the logistic 
curve in regression analysis may be helpful in order to assess 
the benefits vs risks of targeting above the threshold 
(Figure 2). Second, the data set can only be split in between ob
served magnitudes of the PKPD index. Thus, the resolution of 
the threshold is inherently dependent on the distribution of 
the observed drug exposures. Lastly, CART analysis usually eval
uates 1 single end point, but not all patients have end points that 
align with clinical success. For example, a patient who survived 
but had microbiological persistence in subsequent cultures 
might be classified differently depending on the end point 
used in a CART analysis. This instance illustrates a fundamental 
disadvantage of CART analysis as it cannot account for multiple 
clinical end points. Recent clinical studies have gravitated toward 
the desirability of outcome ranking (DOOR) analytic approach, 
which assesses the overall clinical outcome of a patient by eval
uating the benefits/risks of antimicrobial therapy through ordi
nal categorization of outcomes [48–50].

MONTE CARLO SIMULATIONS TO EVALUATE 
DOSING STRATEGIES

Background

With a PKPD target established, the next step is to identify the 
dosing strategies most likely to attain that goal. During drug 

development, PKPD models have been utilized to facilitate 
the design of clinical trials and propose dosing regimens to 
maximize efficacy outcomes [51]. Quantitative models to de
scribe biological (pharmacological) processes can be determin
istic or stochastic [52]. Models widely used in systems 
pharmacology are generally deterministic, where the output 
is determined from a given set of conditions and attempts to 
predict the average population effect of the system [51]. On 
the other hand, stochastic processes assume that the inputs in 
a system are subject to randomness and that the same set of 
conditions may lead to variable outcomes weighted by their 
probability. In the study of antimicrobials, Monte Carlo simu
lations (a form of stochastic forecasting) utilize random sam
pling to generate a virtual population to predict the 
probability of an outcome based on prior input data [6, 53, 54]. 
The premise of Monte Carlo simulations is that if an experi
ment is repeated multiple times, we can reliably infer that the 
results of the simulation will be close to the expected outcome 
[55]. Integrating PK variability and microbiological data, such 
an analysis can then be utilized to evaluate the likelihood that a 
particular dosing regimen will achieve an established PKPD 
target [56, 57]. Furthermore, results can then identify dosing 
strategies that could be used to guide the design or validate 
findings of randomized controlled trials [54].

Monte Carlo simulations have been used extensively in anti
microbial development phases for several reasons. It is costly 
and time-consuming to test different dosing regimens compre
hensively in human subjects, and thus it may be more practical 

Figure 3. Simple schematic depicting the process of antimicrobial dose design involving Monte Carlo simulations. The necessary a priori input models for Monte Carlo 
simulations include the antimicrobial PKPD relationship, a robust population PK model with well-defined parameter point estimates, intersubject variability of the parameters, 
and any available parameter covariates (which informs parameter variation based on subject characteristics) and microbiological data, if needed. As represented by the 
dashed line, the susceptibility distribution for the pathogens of interest (based on local surveillance data) may be incorporated to evaluate dosing regimens against a range 
of MICs. The output of simulations is then tested against the PKPD index breakpoint to generate the probability of attaining the PKPD index target specified by the user. 
Results allow clinicians to deduce dosing strategies that help guide the design or validate the findings of clinical trials. Abbreviations: MIC, minimum inhibitory concentration; 
PKPD, pharmacokinetic/pharmacodynamic.
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to simulate a virtual clinical trial of thousands of subjects. For 
example, given a simple study design, to assess 3 total daily dos
es (eg, 2000, 1000, and 500 mg), given in 3 dosing frequencies 
(eg, every 24, 12, and 6 hours), and infused over 4 infusion 
times/modalities (eg, over 1, 2, 4, and 24 hours of continuous 
infusion), 36 different regimens would need to be tested in ap
propriately sized human trials. Additionally, most dosing ad
justments of nonantimicrobials for end-organ dysfunctions 
are based on normalizing the overall drug exposure (AUC), 
which may not always apply to antimicrobials (since bacterial 
killing could depend on a PKPD index other than AUC/ 
MIC). More appropriate antimicrobial dosing adjustments 
can be obtained through Monte Carlo simulations using the 
most relevant PKPD index [58, 59]. Similar simulations can 
also help to inform optimal dosing regimens in special popula
tions, including patients with augmented renal clearance, crit
ically ill patients, and obese patients [32, 60–63]. The literature 
has shown that these patients have PK variations that would 
alter the efficacy of antimicrobials at doses known to be ef
fective in the general population. Lastly, studies have inte
grated Monte Carlo simulations into other analyses such as 
pharmacoeconomic evaluations used for formulary decision- 
making [64–66]. In this instance, simulations are able to identify 
the dosing regimens that are the most cost-effective by balanc
ing drug acquisition cost and the likelihood of PKPD target 
attainment.

Analytical Design

Generally, the prerequisites to perform a Monte Carlo simula
tion include a robust (population) PK model with well-defined 

PK parameters (eg, clearance, volume of distribution) in the tar
get patient population, ideally with a covariate(s) model that in
forms any PK variations based on patient demographics and 
characteristics (eg, clearance expressed as a function of glomer
ular filtration rate) and a PKPD model that defines the relation
ship between drug exposure and outcome [6, 67]. Once these 
inputs are introduced, the program creates a simulated popula
tion from the PK model where each subject will be randomly as
signed PK variables based on the parameter distribution of the 
model. A concentration–time profile for each subject is con
structed and evaluated against specific MICs of a pathogen. 
The ultimate result would be the likelihood of achieving the pre
defined PKPD target, more commonly referred to as the prob
ability of target attainment (PTA), for the entire sample 
population (Figure 3). Some experts believe that a PTA of 
90% or higher is an appropriate threshold to support the use 
of a particular dosing regimen at a given MIC [53]. A weighted 
distribution of drug susceptibility could also be incorporated 
based on recent local/regional surveillance data to guide the 
use of empiric therapy [67]. When actual PK (eg, drug exposure, 
penetration) and drug susceptibility patterns (eg, MIC, resis
tance genotypes) are known, these factors may pave the way to
ward precision dosing of antimicrobial therapy [68, 69].

Multiple studies have utilized Monte Carlo simulations to fa
cilitate the design of optimal dosing strategies for various anti
microbials [70–73]. For instance, extended infusions of 
piperacillin/tazobactam have shown higher PTAs to a variety 
of Enterobacterales and Pseudomonas aeruginosa, especially 
at an MIC range of 8–16 mg/L, despite having a lower total dai
ly dose compared with standard regimens, as shown in Figure 4

Figure 4. Probability of target attainment analysis for piperacillin/tazobactam 
therapy. Figure reproduced with permission from the Oxford University Press and 
Lodise et al. [72]. Both intermittent and extended infusions of piperacillin/tazobac
tam have high probabilities of target attainment when the MIC is low (≤4 mg/L). 
Within the MIC range of 8–16 mg/L, the probability of target attainment for pro
longed-infusion piperacillin/tazobactam is considerably higher compared with st
andard-infusion administrations. Beyond a certain MIC (16 mg/L in this scenario), 
clinically relevant dosing strategies are unlikely to achieve optimal exposures need
ed for bacterial killing. Abbreviation: MIC, minimum inhibitory concentration.

Figure 5. Thirty-day mortality rates for patients with bacteremia due to P. aeru
ginosa. Figure reproduced with permission from the Oxford University Press and 
Tam et al. [74]. In bacteremic patients due to P. aeruginosa with reduced suscept
ibility to piperacillin/tazobactam (MIC = 32 or 64 mg/L), patients who received pi
peracillin/tazobactam experienced higher mortality compared with those who 
received alternative agents. The difference observed was less dramatic if the M
IC was ≤16 mg/L. Abbreviation: MIC, minimum inhibitory concentration.

6 • OFID • Chua and Tam



[72, 73]. When the pathogen MIC is >16 mg/L, the PTAs for 
piperacillin/tazobactam decrease dramatically, regardless of 
the dosing strategy used. Two studies presented clinical evi
dence that validated the findings of the Monte Carlo simula
tions. Tam et al. found a higher 30-day mortality rate in 
patients with P. aeruginosa bacteremia receiving piperacillin/ 
tazobactam when the MIC was >16 mg/L (Figure 5) [74]. 
Similarly, when compared with intermittent infusion regimens, 
continuous-infusion piperacillin/tazobactam was associated 
with increased clinical cure of ventilator-associated pneumonia 
when the pathogen MIC ranged from 8 to 16 mg/L (Figure 6) 
[75]. Thus, optimized PK/PD-based dosing provides the most 
clinical impact when used against pathogens expressing low- 
to intermediate-level resistance.

These studies have (at least in part) led the Clinical and 
Laboratory Standards Institute (CLSI) to revise the suscepti
bility breakpoint in 2012; the CLSI more recently recom
mended extended-infusion piperacillin/tazobactam dosing 
in patients with Enterobacterales infections with MICs of 
16 mg/L [76].

Expert Commentary

Despite the widespread use of Monte Carlo simulations in an
timicrobial development, limitations exist for this methodolo
gy. Clinical outcome data from high-quality randomized 
controlled trials are still required to support the findings of 
Monte Carlo simulations [54]. For example, Fish and col
leagues found that PKPD modeling did not accurately predict 

clinical or microbiological success in patients with P. aerugino
sa pneumonia [77]. Therefore, factors other than PKPD targets 
may have to be considered when applying simulation results in 
clinical practice. Debates regarding the modeling tools and ex
posure targets that best translate preclinical data to clinical 
practice are ongoing. Several population modeling tools aiming 
to characterize specific patient populations of different physiol
ogies (eg, neutropenia, nosocomial pneumonia) have been de
veloped; however, assumptions on PK parameter distribution 
may still not apply to a specific patient [78].

A fundamental limitation of simulations is that results are 
only as valid as the model assumptions used for the input data 
[67, 79]. As mentioned previously, Monte Carlo simulations 
require a robust PK model used to generate PK profiles for a 
simulated population. For instance, antimicrobial serum 
concentrations used to formulate a population PK model 
may not appropriately predict PKPD target attainment in 
meningitis; using cerebrospinal fluid data as inputs would 
be more appropriate in this scenario. Also, there is currently 
no consensus on what sample size is required for a predictive 
model. Power analysis is typically used to determine the sam
ple size needed in clinical studies to compare an outcome in 2 
groups with appropriate statistical power. However, this ap
proach is not directly applicable as the PK model aims to de
scribe the behavior of the drug in the target population (eg, 
intersubject distribution of PK parameters, etc.). Thus, simu
lations based on population PK models involving a small 
sample size may not capture the realistic PK variability of 
the target population [67].

To improve the validity of results obtained from Monte 
Carlo simulations, new PK (or outcome) data involving addi
tional subjects may be incorporated sequentially into the orig
inal data set [80]. This longitudinal process of merging more 
observed data to further refine output functions is referred to 
as stochastic feedback. In general, this is an iterative process 
that involves continually adding new data as they become avail
able to the previous PK model and validating the simulation 
findings in order to produce a more informative Monte Carlo 
analysis. Such processes would potentially overcome the limit
ed robustness of the initial simulation, and more optimal dos
ing strategies could be identified. Further advances in 
mathematical modeling are needed to integrate PKPD princi
ples into the clinical setting, with an emphasis on validating 
simulations with experimental findings.

CONCLUSIONS

Several methodologies used to facilitate the design of optimal 
antimicrobial dosing in drug development were reviewed. 
Future advances in the application of more comprehensive 
modeling tools for dosing regimen design can lead to an era 
of precision dosing and personalized therapeutics.

Figure 6. Clinical cure of patients with ventilator-associated pneumonia due to 
gram-negative bacteria. Figure reproduced with permission from Lorente et al. [75]. 
Continuous infusion of piperacillin/tazobactam was associated with higher clinical 
cure rates, compared with standard-infusion administration. The benefit was most 
prominent when the pathogen MIC was between 8 and 16 mg/L while controlling 
for patient comorbidities such as age, chronic obstructive pulmonary disease, and 
APACHE II scores. Abbreviation: MIC, minimum inhibitory concentration.
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