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Abstract 

Background:  Localization of messenger RNAs (mRNAs) plays a crucial role in the 
growth and development of cells. Particularly, it plays a major role in regulating 
spatio-temporal gene expression. The in situ hybridization is a promising experimental 
technique used to determine the localization of mRNAs but it is costly and laborious. 
It is also a known fact that a single mRNA can be present in more than one location, 
whereas the existing computational tools are capable of predicting only a single 
location for such mRNAs. Thus, the development of high-end computational tool is 
required for reliable and timely prediction of multiple subcellular locations of mRNAs. 
Hence, we develop the present computational model to predict the multiple localiza-
tions of mRNAs.

Results:  The mRNA sequences from 9 different localizations were considered. Each 
sequence was first transformed to a numeric feature vector of size 5460, based on the 
k-mer features of sizes 1–6. Out of 5460 k-mer features, 1812 important features were 
selected by the Elastic Net statistical model. The Random Forest supervised learn-
ing algorithm was then employed for predicting the localizations with the selected 
features. Five-fold cross-validation accuracies of 70.87, 68.32, 68.36, 68.79, 96.46, 73.44, 
70.94, 97.42 and 71.77% were obtained for the cytoplasm, cytosol, endoplasmic 
reticulum, exosome, mitochondrion, nucleus, pseudopodium, posterior and ribosome 
respectively. With an independent test set, accuracies of 65.33, 73.37, 75.86, 72.99, 
94.26, 70.91, 65.53, 93.60 and 73.45% were obtained for the respective localizations. 
The developed approach also achieved higher accuracies than the existing localization 
prediction tools.

Conclusions:  This study presents a novel computational tool for predicting the 
multiple localization of mRNAs. Based on the proposed approach, an online prediction 
server “mLoc-mRNA” is accessible at http://​cabgr​id.​res.​in:​8080/​mlocm​rna/. The devel-
oped approach is believed to supplement the existing tools and techniques for the 
localization prediction of mRNAs.
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Background
The discovery of asymmetrical distribution of β-actin mRNA in ascidian embryos and 
eggs by Jeffery et al. [1] laid the foundation for mRNA localization study. However, valu-
able understandings of mRNA localization are stemmed from the research undertaken 
thereafter in fungi and animals [2–6]. Localization of mRNAs plays a prominent role in 
spatio-temporal regulation of gene expression, which is crucial for different cellular and 
developmental processes including asymptotic cell division, cell migration, embryonic 
patterning and cellular adaptation to stress [2, 3, 7, 8]. Localization of mRNAs further 
facilitates sub-cellular localization of proteins that helps to establish and maintain the 
cell polarity [2]. In the nervous system of mammals, localization of mRNAs plays vital 
roles ranging from axon and dendrite path finding to synapse generation [9, 10]. Main-
tenance of synaptic plasticity responsible for long-lasting learning and memory also 
depends upon the localization of mRNAs [11–13]. Deregulation of mRNA stability and 
localization may cause different genetic disorders including cancer [9]. More details on 
the adverse impact of the deregulation of mRNA localizations in animals can be found in 
existing studies [14–16].

A crucial factor for the localization of mRNAs is the recognition of cis-acting signals 
(or zipcodes) by the trans-acting factors (mostly RNA binding proteins)[17]. The cis-act-
ing elements are mostly present in 3’UTR of mRNAs [3, 18–20]. Localization of mRNAs 
takes place through three mechanisms i.e., vectorial transport from nuclei, localized 
protection from degradation and directional transport on the cytoskeleton via molecular 
motors [2, 3]. Since a single localized mRNA can produce multiple protein copies, the 
localization of mRNAs saves energy for a cell [21]. Besides, the locally translated pro-
teins prevent themselves from interaction with the other proteins as well as from syn-
thesis in the incorrect locations that is harmful to the cell [22]. The mRNA localization 
also facilitates the assembly of macromolecular protein complexes [23] and regulates the 
differential translation as well [24, 25].

Although in situ hybridization is a reliable experimental technique for mRNA locali-
zation, it is a slow and laborious approach. The in  situ hybridization allows the rapid 
labeling of mRNAs [26, 27] but it is limited to certain tissues [28]. With the advancement 
of in  vivo mRNA localization techniques such as MS2-PP7 [29] system, total internal 
reflection microscopy (TIRF) [30] and 3D structured illumination microscopy (3D-SIM) 
[31], a large number of localized mRNAs are available in the public domain. Hence, the 
development of computational tools for mRNA localization prediction has now become 
feasible.

Predicting the localization of mRNAs can be formulated as both supervised and unsu-
pervised learning problems. In the case of unsupervised learning, homology-based 
methods such as BLAST [32] and HMM [33] can be used for predicting the localization 
of mRNAs. By using BLAST, a database of all the localized mRNA sequences can be built 
and based on the blast search each query sequence can be assigned to a particular locali-
zation depending upon the sequence similarity found. Similarly, an HMM profile can be 
created by using all the localization datasets and the localization of the query sequence 
can be searched against the created HMM profile. However, by using such models only a 
single localization can be predicted for any mRNA. On the other hand, if different data-
bases/profiles are created for different localizations to predict multiple localizations, 
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probability of getting a large number of false positives is always there. This may be the 
reason the existing tools are based on the supervised learning model. The supervised 
computational tools such as RNATracker [34], iLoc-mRNA [35], and mRNALoc [36] 
have been developed for predicting the mRNA localization. It is a well-known fact that a 
single mRNA could be present in more than one localization, whereas the existing tools 
are meant for predicting single localization only. In other words, only a single localiza-
tion can be predicted for each mRNA by using the existing tools. The use of CeFra-Seq 
[37] and APEX-RIP [38] datasets in RNATracker further limits its application. Also, the 
numbers of localizations considered in the existing tools are not more than five.

The above-stated factors prompted us to develop a new computational model for 
predicting the multiple localization of mRNAs. The k-mer features were generated to 
translate the mRNA sequences into vectors of numeric elements. The Elastic Net [39] 
statistical model was used for the selection of important k-mer features. The Random 
Forest [40] supervised learning model was employed for predicting the localizations 
using the selected k-mer features. The performance of the model was evaluated by fol-
lowing the cross-validation and also by using the independent datasets. The proposed 
model achieved higher accuracy in most of the localizations, while compared using the 
independent test datasets. We have also developed an online prediction server for the 
multiple subcellular localization prediction of mRNAs. The developed model is expected 
to supplement the existing localization prediction tools in particular, and the wet-lab 
experiments in general.

Methods
Collection and processing of localization dataset

The mRNA sequences of 9 localizations i.e., cytoplasm (17,053), cytosol (18,173), endo-
plasmic reticulum (6179), exosome (1623), mitochondrion (525), nucleus (25,981), 
pseudopodium (923), posterior (402) and ribosome (16,602) were collected from the 
RNALocate database [41] (order of the locations will remain same hereafter). Except for 
the posterior and mitochondrion, sequences of the remaining localizations were found 
to be overlapping (Fig.  1a). In other words, the sequences were seen to be present in 
more than one localization and up to a maximum of 4 localizations. For instance, 2809 
sequences were found common in the cytoplasm, cytosol, nucleus and ribosome (rep-
resented as purple dots in Fig.  1a). After removing the overlapped sequences, 2730, 
4412, 2008, 1205, 488, 6522, 670, 385 and 3537 mRNA sequences were obtained for the 
respective localizations. Since a higher degree of sequence similarity may lead to over-
estimation of the prediction accuracy, CD-HIT [42] was employed with an 80% cut-off 
to remove the redundant sequences from each localization. The 80% threshold has also 
been used in earlier studies [35, 43]. After removing the redundancy, 1804, 2158, 1020, 
843, 457, 3304, 216, 187 and 1838 sequences were obtained for the corresponding locali-
zations. Variability in the sequence length was also observed to be different for different 
localizations, with the highest variability for the nucleus and lowest for the mitochon-
drion (Fig. 1b).
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Preparation of the positive, negative and independent data sets

A single mRNA can be present in multiple subcellular locations. So, by using a single 
multi-class prediction model trained with 9 different classes (corresponding to 9 locali-
zations), only a single localization (localization with the highest probability) can be pre-
dicted for each mRNA sequence. Therefore, it is required to establish multiple binary 
classifiers instead of a single multi-class classifier to predict the multiple localizations 
of mRNAs. Specifically, 9 binary classifiers are required for 9 localizations. Bu using 9 
binary classifiers, the probability of each mRNA predicted in nine different localiza-
tions can be obtained. Then, with the probability threshold value 0.5, the localization 
(one or more) can be easily decided for the given mRNA sequence. Keeping above in 
mind, positive and negative datasets were prepared for each of the 9 binary classifiers. 
The sequence datasets obtained after removing the redundancy were randomly divided 
into 6 equal-sized subsets for each localization, where one randomly drawn subset from 
each localization was kept aside to use them as an independent dataset. The remain-
ing 5 subsets of each localization were used to train and validate the classifiers, keeping 
in mind the five-fold cross-validation. In particular, 300, 360, 170, 140, 76, 550, 36, 31, 
306 sequences were used as an independent set (Independent test set-I) and the remain-
ing 1504, 1798, 850, 703, 381, 2754, 180, 156, 1532 sequences of the respective localiza-
tions were used for training and validating the classifiers (Fig. 2) through five-fold cross 
validation. Further, the number of training sequences for the pseudopodium (180) and 

Fig. 1  a Pictorial representation of the number of overlapping mRNA sequences in different localizations. 
The purple dots represent the number of overlapping localizations. For instance, between nucleus and 
cytoplasm there are 4644 overlapped sequences. Except mitochondrion and posterior, mRNA sequences 
of the remaining localizations are seen to be overlapped. b Box plot showing the distribution of sequence 
lengths for different localizations. It can be noticed that the variability in the sequence lengths are different 
for different localizations, where the highest variability is for the nucleus and lowest for the mitochondrion
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posterior (156) were not large. Thus, if more sequences would be considered in the test 
set then the number of sequences for the training would be less. Similarly, the numbers 
of test sequences for these two localizations (36, 31) were also less. So, if more sequences 
would be taken in the training set, then a very few sequences would be left out for the 
test set. Thus, we did not consider any other combination of the training and test sets. 
Nevertheless, more stable accuracy can be obtained by training the model with a large 
dataset. For a given localization, sequences of that localization were used as the positive 
set and the sequences of the remaining 8 localizations were utilized as the negative set. 
For instance, 1504 sequences were used as the positive set for the cytoplasm and 8354 
(1798 + 850 + 703 + 381 + 2754 + 180 + 156 + 1532) sequences of the remaining locali-
zations were utilized as the negative set. Similarly, the positive and negative datasets 
were also prepared for other localizations. Besides Independent test set-I, we prepared 
another independent dataset (i.e., Independent test set-II) with the CD-HIT filtered-out 
sequences after removing redundancy at 80% threshold. In the Independent test set-II, 
there were 490, 1037, 485, 185, 14, 1266, 79, 121, 798 sequences for the respective locali-
zations. A graphical representation with the steps involved for preparing the positive, 
negative and independent datasets is shown in Fig. 2. A summary of the number of posi-
tive and negative datasets used in training and test sets are provided in Additional file 1: 
Table S1.

K‑mer feature generation

The k-mer features have been effectively and widely used in many bioinformatics appli-
cations including sequence alignment, genome assembly, characterization of microbial 
community and others [44–46]. These features have also been widely adopted for the 
recognition of regulatory elements on the genomic DNA/RNA [47–49]. The k-mer is a 
fragment of sequence containing k oligonucleotides, where the total number of possible 

Fig. 2  Diagramatic representation of the collection of localization datatset as well as preparation of the 
positive, negative and independent datasets
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k-mer is 4 k. We employed k-mer sizes 1, 2, 3, 4, 5, 6, and hence the total number of fea-
tures generated was 5460 (41 + 42 + 43 + 44 + 45 + 46). Besides the “curse of dimensional-
ity”, using such a large number of features may result in low prediction accuracy due 
to the presence of many irrelevant/redundant features [48, 50–52]. Over fitting of the 
model may be another issue with a large number of features, which results in  low gen-
eralization predictive ability of the model [43]. These limitations could be overcome to a 
large extent by applying the feature selection technique.

Feature selection using elastic net

The Elastic Net [39] statistical model, which is a combination of the LASSO [53] and 
Ridge regression [54] algorithms, was employed for the selection of important k-mer 
features. Consider the generalized linear model

where Y n×1 is the response for n observations, Xn×p is the design matrix for p variables, 
β is the vector of coefficients and ǫ is the vector of random errors. For this model, the 
estimates using the Elastic Net method can be obtained as

The parameter �(≥ 0) controls the amount of shrinkage, where � =0 represents an ordi-
nary least square solution, and all the coefficients shrink to zero with � = ∞ . The regu-
larization parameter α controls both the Ridge and LASSO, where α = 0 and 1 deduce 
the Ridge and LASSO models respectively. In Elastic Net, the coefficients of the least 
important variables are shrunk to zero and the variables with the non-zero coefficients 
are considered important. We implemented the Elastic Net using “glmnet” R-package 
[55], where the classification task was performed with binary response variable by invok-
ing the binomial distribution with parameter family = “binomial”. By using repeated five-
fold cross-validation approach, the optimum value of α (based on highest classification 
accuracy) was selected out of 10 different values of α i.e., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 
0.8, 0.9 and 1. Using the optimum value of α , the function cv.glmnet (with nfolds = 5) was 
then employed to find the optimum value of � (with respect to classification accuracy) 
through a grid search approach. Parameters were optimized with 50% random sample 
observations of the training set, having same number of instances from both the positive 
and negative classes.

Prediction using random forest

We employed the Random Forest (RF) [40] supervised learning algorithm for 
binary classification. The RF is an ensemble of several un-pruned classification 
trees (Fig.  3a), where each classification tree is grown upon a bootstrap sample of 
the training dataset [56, 57]. The decision tree starts with the root node containing 
all the observations and ends with the terminal nodes having the labels of observa-
tions (Fig. 3a). In RF, randomization is introduced at two stages, (1) while drawing 
the bootstrap sample and, (2) during the splitting of the nodes of the classification 

Y = Xβ + ǫ,

β̂ = argmin
β
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tree. Each classification tree of RF votes for every such instance that does not par-
ticipate in the construction of the classifier and such instances are called out-of-bag 
(OOB) instances. The OOB observations are the source to estimate the classifica-
tion error in RF [58], where the prediction label of each instance is decided by the 
majority voting scheme. The steps for building an RF classifier are shown in Fig. 3b. 
The RF is a non-parametric technique, handles large size datasets, provides higher 
accuracy even for noisy data and overcomes the problem of over-fitting with boot-
strapping and ensemble strategy [59]. The ntree (number of classification trees) and 
mtry (number of variables to be selected for node splitting) are the parameters duo 
that are needed to be optimized to achieve higher accuracy. Since default parametric 
values often produce higher accuracy [60], we used ntree = 500 (default ntree) and 
default mtry i.e., square root of the number of features. Further, a larger number of 
instances for the negative class as compared to its positive counterpart (Fig. 2) may 
lead to the prediction bias towards the negative class. To overcome this problem, we 
employed 5 RF classifiers (instead of one) for each localization. In each RF classifier, 
all the instances of the positive class and an equal number of instances randomly 
drawn from the negative class were utilized. A five-fold cross-validation approach 
was adopted to measure the accuracy for each RF and a majority voting strategy was 
applied for the final prediction (Fig. 3c). In other words, if an instance was predicted 
to a certain class in 3 out of 5 RF classifiers the instance was said to be predicted in 
that class. This procedure was followed for all the 9 binary classifiers. A flow dia-
gram showing the steps involved in the proposed approach is shown in Fig. 4.

Fig. 3  a Pictorial representation of a classification tree. b Diagram showing the steps for building a Random 
Forest (RF) classifier. c Graphical display of the prediction using RF for each localization. For each localization, 
5 RF classifiers are built and the final prediction results are determined on the basis of majority voting 
scheme. Further, each RF classifier is trained with a balanced dataset that consists of all the positive instances 
and same number of randomly drawn negative instances. The negative dataset is different for all the five RF 
classifiers for every localizations
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Performance metrics

Five different performance metrics were used to measure the classification accuracy. The 
metrics are

sensitivity =  N
+−N+

−

N+ ,
specificity =  N

−−N−
+

N− ,
accuracy =  N

−−N−
++N+−N+

−
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+ 1
2
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),

 where N+ , N− , N+
−  and N−

+ represent the number of observations of the positive class, 
number of observations of the negative class, number of positive observations misclas-
sified in the negative class and the number of negative observations misclassified in the 
positive class respectively [61–64]. We also computed area under receiver-operating-
characteristics (ROC) [65] curve (aucROC) and area under precision-recall (PR) curve 
(aucPR) [66] to measure the classification accuracy. All the performance metrics were 
computed by following the five-fold cross-validation. For the classification using RF, the 
sensitivity, specificity, accuracy, MCC and F1-score were computed based on the major-
ity voting scheme over 5 RF classifiers. On the other hand, the aucROC and aucPR were 

Fig. 4  A flow diagram of the proposed method comprising the steps from collection of data to prediction of 
test instances
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computed by taking  average over the 5 RFs. Prediction for the independent test set was 
made by passing it through all the 9 binary classifiers, where each binary classifier was 
built with 5 RF classifiers. The prediction label for each test instance was decided based 
on the majority voting of the 5 RF classifiers.

Results
Feature generation and selection analysis

Out of 10 different values of α in Elastic Net, higher aucROC were obtained for α = 0.1 , 
irrespective of the localizations (Fig. 5a). Thus, the optimum value of α was determined 
as 0.1. With an increase in the value of α , accuracy was declined and stabilized after 
α = 0.8 for all the localizations (Fig. 5a). Using α=0.1, the optimum values of aucROC 
i.e., 0.752, 0.721, 0.748, 0.691, 0.985, 0.788 0.718, 0.981 and 0.769 were obtained with �
=0.1644, 0.2079, 0.2196, 0.2298, 0.4932, 0.1329, 0.2013, 2.389 and 0.1939 respectively for 
the corresponding localizations (Fig. 5b). With the determined optimum values of α and 
� , the number of k-mer features with non-zero coefficients were observed to be 339, 213, 
311, 266, 180, 368, 509, 32 and 241 for the respective localizations. Distribution of the 
selected features for different k-mer sizes is shown in Fig. 6a. For instance, the number 
of selected features for the cytoplasm with k-mer sizes 2, 3, 4, 5 and 6 were 4, 8, 38, 92 
and 197 respectively. For k-mer size 1, even a single feature was not found with non-
zero coefficient for all the 9 localizations. Out of 2459 selected features across locali-
zations, 1812 were found to be non-redundant. The k-mer CGAT was observed as the 
most important feature among all the 1812 k-mers because it was selected in 7 out of the 
9 localizations (Fig. 6b). Further, 14, 29, 83 and 317 k-mer features were selected in 5, 4, 
3 and 2 localizations respectively and the remaining features were found to be important 
in one location only. It was also observed that 9 out of the top 15 k-mer features were of 
k-mer size 4 (Fig. 6b). The 1812 non-redundant k-mer features were employed for the 
localization prediction using RF.

Cross‑validated prediction analysis using random forest

Cross-validated performance metrics are presented in Table  1, whereas the ROC and 
PR curves for all the 5 RF classifiers are displayed in Fig. 7. Accuracies of 70.87, 68.32, 
68.36, 68.79, 96.46, 73.44, 70.94, 97.42 and 71.77% were obtained for the respective 
localizations (Table 1). The average values of aucROC and aucPR over all the 5 RFs were 
observed to be ~ 75–98% and ~ 71–99% respectively (Table 1). The highest accuracy was 
found for the mitochondrion followed by the posterior, whereas the lowest accuracy was 
observed for the cytosol. Higher accuracies for the mitochondrion and posterior may be 
attributed to the fact that the mRNA sequences of these localizations were exclusively 
present in the respective localizations (Fig. 1a). More stable accuracies were observed 
for the larger size datasets (cytoplasm, cytosol, nucleus and ribosome) as compared to 
the smaller size datasets (endoplasmic reticulum, exosome, mitochondrion and pseudo-
podium). Although the sample size was small for the posterior, the accuracies were still 
found to be more stable as compared to the other localization with the small sample 
sizes. The probable reason may be that the sequences of the posterior are more con-
served as compared to the other localizations which was evident from the fact that the 
sequences of the posterior were not present in other localizations (Fig. 1a).
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Fig. 5  a Accuracies of the Elastic Net in terms of aucROC with respect to regularization parameter α. It is 
seen that the accuracies are decreased with increase in the value of α. Irrespective of the localization, the 
highest accuracy is obtained with α = 0.1, out of 10 different values of α (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
1). b Trend in accuracy for Elastic Net with respect to λ. It is seen that the optimum value of λ is different for 
different localizations. Except posterior, the optimum value of λ is less than 1 for the remaining localizations
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Comparative analysis with other bootstrapping methods

We have compared the performance of RF with other bootstrapping methods i.e., Bag-
ging [67] and Boosting [68]. Performances were computed in the same way as done in 
the case of RF, by using the same dataset. The Bagging and Boosting algorithms were 
implemented by using the ipred [69] and adabag [70] R-packages respectively. Default 

Fig. 6  a Heat map showing the distribution of selected k-mer features in different localizations. b Cloud 
plotting of important k-mer features. It is observed that the feature CGAT of k-mer size 4 is the most 
important which is selected in 7 out of 9 localizations
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parameters setting were employed for prediction. The results are shown in Fig. 8. Accu-
racies of the RF for the cytosol (68.32), exosome (68.79), nucleus (73.44), posterior 
(97.42) and ribosome (71.77) were higher than that of Bagging (68.3, 68.3, 73.2, 95.1, 
71.4) and Boosting (67.4, 68.2, 72.8, 97.0, 70.4). On the other hand, the accuracies of the 
Boosting algorithm were higher for the cytoplasm (73.1), endoplasmic reticulum (68.7), 
mitochondrion (97.7) and pseudopodium (71.3) than that of Bagging (71.1, 68.3, 94.4, 
68.6) and RF (70.87, 68.36, 96.46, 70.94) methods. Similarly, the values of MCC of the RF 
were higher for the localizations cytosol (36.75), exosome (37.81), nucleus (46.88), pos-
terior (94.85) and ribosome (43.55) than that of Bagging (36.7, 37.8, 46.4, 90.2, 42.7) and 
Boosting (34.8, 36.5, 45.6, 94.2, 40.9). On the other hand, Boosting algorithm achieved 
higher MCC for the cytoplasm (46.2), endoplasmic reticulum (37.5), mitochondrion 
(95.5) and pseudopodium (42.7) than that of Bagging (41.3, 36.8, 89.0, 37.1) and RF (41.8, 
36.95, 91.26, 41.93) methods.

Performance analysis of random forest with different k‑mer features

To study the effect of different k-mer sizes, the performance of RF was analyzed 
with six different k-mer features i.e., k = 1, k = 2, k = 3, k = 4, k = 5 and k = 6. Thus, 
the numbers of features utilized were 4, 16, 64, 256, 1024 and 4096 respectively. The 
accuracies were measured in terms of aucROC and aucPR following five-fold cross 
validation (Fig.  9). Except exosome, mitochondrion and pseudopodium, the accura-
cies are increased up to k = 3 for rest of the 6 localizations, whereas the accuracies for 
the exosome, mitochondrion and pseudopodium are found to be increased upto k = 4, 
k = 5 and k = 6 respectively (Fig. 9). Higher accuracy with k = 3 may be attributed to 
the formation of codon structure that resulted in better discrimination of mRNA 

Table 1  Performance metrics of mRNA localization prediction using random forest (RF)

For each localization, a balanced dataset with equal number of positive and negative instances was used for prediction 
using RF. Performance metrics are computed following majority voting strategy, where 5 RF classifiers are constructed for 
each localization. Besides, accuracies in each classifier are measured following five-fold cross-validation

EPR Endoplasmic reticulum

Localization Performance metrics

Sensitivity Specificity Accuracy MCC F1-score aucROC aucPR

Cytoplasm 
(1504)

73.24 ± 0.79 68.51 ± 1.36 70.87 ± 0.37 41.80 ± 0.71 71.53 ± 0.24 78.13 ± 0.20 77.43 ± 0.61

Cytosol 
(1798)

64.53 ± 0.61 72.11 ± 0.63 68.32 ± 0.16 36.75 ± 0.32 66.83 ± 0.56 75.63 ± 0.28 71.75 ± 0.49

EPR (850) 63.04 ± 1.72 73.68 ± 1.68 68.36 ± 0.99 36.95 ± 2.00 66.84 ± 1.27 75.54 ± 0.54 72.79 ± 0.77

Exosome 
(703)

63.20 ± 1.56 74.37 ± 1.13 68.79 ± 1.21 37.81 ± 2.41 66.74 ± 1.25 76.47 ± 0.62 77.57 ± 0.67

Mitochon-
drion (381)

98.53 ± 0.14 91.66 ± 7.95 96.46 ± 1.03 91.26 ± 5.76 95.59 ± 3.66 98.98 ± 0.20 99.27 ± 0.24

Nucleus 
(2754)

72.89 ± 0.92 73.99 ± 0.19 73.44 ± 0.54 46.88 ± 1.07 73.51 ± 0.60 80.28 ± 0.21 79.12 ± 0.27

Pseudopo-
dium (180)

72.89 ± 1.20 69.00 ± 1.64 70.94 ± 0.97 41.93 ± 1.94 71.34 ± 1.02 76.73 ± 0.50 73.82 ± 1.62

Posterior 
(156)

98.19 ± 0.29 96.65 ± 0.84 97.42 ± 0.46 94.85 ± 0.90 97.19 ± 0.55 98.90 ± 0.83 98.29 ± 1.36

Ribosome 
(1532)

72.65 ± 1.01 70.89 ± 0.81 71.77 ± 0.24 43.55 ± 0.50 72.19 ± 0.51 78.40 ± 0.09 75.44 ± 0.29
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Fig. 7  a Receiver operating characteristics (ROC) curves for predicting the localization of mRNAs using the 
Random Forest (RF) classification algorithm. In each localization, 5 RFclassifiers in each localization. The dotted 
line represents the line of random guess which is 0.5 in the present scenario
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localizations. On the other hand, less accuracy with k-mer sizes 4, 5 and 6 may be due 
to the generation of redundant features (mostly contained 0 s). This implies that the 
model performance may not increase with further increment in the k-mer size.

Evaluation with independent test set‑I

Classification accuracies for the independent test set-I were obtained as 65.33, 71.37, 
75.86, 72.99, 94.26, 70.91, 65.53, 93.60 and 73.45% respectively (Table 2). The aucROC 
values (~ 73–98%) were observed at par with the cross-validation accuracy, whereas 
the aucPR values (~ 7–75%) were much lower than that of cross-validation accu-
racy because of the highly imbalanced test dataset (Table  2). This is because ROC 
is independent of the class distribution and PR is dependent upon the number of 

Fig. 8  Circular bar plots of the performance metrics of RF, Bagging and Boosting algorithms. The accuracy 
and MCC of the RF are higher in five localizations (cytosol, exosome, nucleus, posterior, ribosome), whereas 
the Boosting algorithm performed better in the remaining four localizations (cytoplasm, endoplasmic 
reticulum, mitochondrion, pseudopodium). The Bagging classifier achieved the lowest accuracy and MCC 
than that of RF and Boosting classifiers
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Fig. 9  a Receiver operating characteristics (ROC) curves and b precision-recall curves for the RF classifier with 
different k-mer features
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observations present in different classes. The MCC also takes into account the class 
distribution and hence its values were also observed to be less because of imbalanced 
dataset (Table 2).

Evaluation with independent test set‑II

Performance metrics for the independent test set-II are given in Table 3. Accuracies 
for the respective localizations were observed to be 69.34, 75.91, 74.91, 78.10, 95.28, 
80.91, 93.16 and 78.69% respectively. Prediction accuracies were also found to be 
higher than that of independent test set-I, because independent test set-II shares a 
higher degree of similarity with the training set. The aucROC values were also much 
higher and it may be because ROC does not account for the class distribution.

Table 2  Performance metrics for the Independent test set-I

Prediction for the test set was made by passing it through all the 9 binary classifiers corresponding to 9 localizations. The 
accuracies are found to be consistent with that of training set, except aucPR. The low aucPR may be attributed to the highly 
unbalanced nature of the test dataset, where for a given location sequences of the remaining locations together constituted 
the negative set

EPR Endoplasmic reticulum

Localization Performance metrics

Sensitivity Specificity Accuracy MCC F1-measure aucROC aucPR

Cytoplasm (300) 70.00 64.49 65.33 25.22 38.09 74.72 37.88

Cytosol (360) 64.17 72.98 71.37 30.35 45.04 76.30 40.51

EPR (170) 94.59 74.71 75.86 35.62 40.93 73.57 17.80

Exosome (140) 66.43 73.50 72.99 22.53 25.92 76.49 34.84

Mitochondrion (76) 82.89 94.72 94.26 54.26 52.73 95.81 75.60

Nucleus (550) 75.09 69.30 70.91 40.21 59.06 78.75 57.96

Pseudopodium (36) 55.56 65.72 65.53 5.99 5.57 69.56 6.55

Posterior (31) 100.00 93.50 93.60 42.97 32.98 98.45 44.12

Ribosome (306) 66.34 74.76 73.45 32.01 43.72 77.91 37.67

Table 3  Prediction accuracies with Independent test set-II

The sensitivities are found to be much higher than that of Independent test set-I. Because, this dataset shares > 80% 
sequence similarity with the training set. However, overall accuracies are found at par with the training dataset. It can also 
be seen that the aucROC values are much higher, may be due to higher degree of sequence similarity with the training set

EPR Endoplasmic reticulum

Localization Performance metrics

Sensitivity Specificity Accuracy MCC F1-score aucROC aucPR

Cytoplasm (490) 91.84 66.57 69.34 37.26 39.66 91.77 73.72

Cytosol (1037) 89.78 71.73 75.91 52.49 63.39 92.21 83.36

EPR (485) 91.55 72.88 74.91 42.25 44.21 92.00 69.50

Exosome (185) 88.65 77.65 78.10 30.44 25.12 92.29 64.38

Mitochondrion (14) 92.86 95.29 95.28 22.62 10.99 98.97 49.99

Nucleus (1266) 90.76 76.47 80.51 61.25 72.54 93.00 86.41

Pseudopodium (79) 93.67 69.02 69.45 17.68 9.79 92.93 59.72

Posterior (121) 100.00 92.97 93.16 51.33 44.20 98.11 53.66

Ribosome (789) 91.48 73.73 76.89 51.45 58.28 93.05 80.26
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Comparative analysis with the existing methods

There are three tools such as RNATracker [34], iLoc-mRNA [35] and mRNALoc [36] 
available for predicting mRNA localizations. Since the RNATracker has been trained 
with the CeFra-Seq/APEX-RIP dataset involving gene expression and coordinate files, 
it was not included for comparison. Between iLoc-mRNA and mRNALoc, the latter one 
has been shown to outperform the former one. Thus, we compared with the mRNALoc 
which is also the latest one in the series. The comparison was made using two datasets, 
i.e., Independent test set-I (Test set-I) and independent dataset of mRNALoc (Test set-
II). It was also ensured that sequences of the mRNALoc test set were not present in our 
training set and sequences of the Independent test set-I were not present in the training 
set of mRNALoc. Furthermore, the comparison was made with the 4 localizations (cyto-
plasm, endoplasmic reticulum, mitochondrion and nucleus) that were common between 
the mRNALoc and our study. The performance metrics were computed by considering 
the sequences of a given localization as the positive set and the remaining three localiza-
tions as the negative set. For instance, in test set-I, the number of positive instances for 
the nucleus was 83 and the number of negative instances was 142 (86 + 31 + 25). For 
the test set-I, the proposed approach achieved higher accuracies (67.9, 60.7) and MCC 
(36.1, 23.8) for the localizations cytoplasm and nucleus respectively (Table  4). On the 
other hand, mRNALoc achieved higher accuracies (70.2, 70.9) and MCC (42.1, 47.5) for 
the localizations endoplasmic reticulum and mitochondrion respectively (Table 4). For 
the test set-II, the developed approach achieved higher accuracies for all the four locali-
zations i.e., cytoplasm (64.3), endoplasmic reticulum (83.0), mitochondrion (91.3) and 
nucleus (77.6). Except for mitochondrion, the MCC values of the proposed approach 
were also higher for the rest of the three localizations i.e., cytoplasm (28.6), mitochon-
drion (62.4) and nucleus (21.4). Taking both the test sets into account, the proposed 
approach may be said to perform better than that of mRNALoc.

Table 4  Comparative analysis of the developed approach with the mRNALoc

For the Test set-I, the developed method achieved higher accuracy than the mRNALoc for cytoplasm and nucleus 
localizations. For the Test set-II, the developed method performed better than mRNALoc in all the four localizations

Bold font denotes the higher performance of the proposed approach as compared to the mRNALoc

Sn sensitivity, Sp specificity, Ac accuracy, MCC Matthew’s correlation coefficient

mRNALoc Proposed

Sn Sp Ac F1-score MCC Sn Sp Ac F1-score MCC

Test set-I

Cytoplasm (86) 39.5 75.6 57.5 44.1 16.2 76.7 59.0 67.9 63.1 36.1
Endoplasmic reticulum (31) 51.7 88.8 70.2 46.6 42.1 44.8 91.8 68.3 45.7 40.2

Mitochondrion (25) 48.0 93.8 70.9 48.6 47.5 56.0 73.5 64.8 30.4 22.3

Nucleus (83) 50.0 62.2 56.1 46.1 12.3 39.0 82.3 60.7 46.6 23.8
Test set-II

Cytoplasm (464) 52.6 64.5 58.6 52.6 17.2 63.4 65.3 64.3 60.5 28.6
Endoplasmic reticulum (103) 43.7 78.4 61.0 25.0 17.3 72.8 93.1 83.0 61.2 62.4
Mitochondrion (8) 75.0 97.8 86.4 65.2 47.7 100 82.7 91.3 31.6 21.4

Nucleus (508) 55.5 78.7 67.1 61.8 34.4 55.1 100 77.6 71.1 58.6
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Prediction server mLoc‑mRNA

An online prediction server “mLoc-mRNA” is freely accessible at http://​cabgr​id.​res.​in:​
8080/​mlocm​rna/ for predicting the multiple subcellular localization of mRNAs. The 
front-end of the server has been designed by using HTML (hypertext markup language), 
whereas the developed R-programs run at the back end with the help of PHP (hyper-
text preprocessor). There are provisions for both uploading the FASTA file of mRNA 
sequences as well as pasting of mRNA sequences in the text area by the user (Fig. 10a). 
The results were shown in terms of probabilities with which each mRNA sequence was 
predicted in 9 different localizations (Fig. 10b). The value 0.5 was treated as a threshold 
above which the test instance was predicted in the positive class and the negative class 
otherwise.

Discussion
Localization of mRNAs is an evolutionarily conserved phenomenon, found in plants, 
animals as well as in unicellular organisms [8]. Coupled with the translational regulation, 
subcellular localization of mRNAs provides means to control the time and location of 
the protein synthesis and their functions [2, 3, 8, 28]. Genome-wide association analysis 
[71–73] suggests that the establishment of functionally distinct compartments happens 
through sub-cellular targeting of mRNAs by polarized cells. Keep in view the numerous 
advantages of mRNA localization, this study presents a new computational model for 
predicting the multiple subcellular localization of mRNAs.

The mRNA localization datasets were collected from the RNALocate database. Besides 
the considered 9 localizations, mRNA sequences were also available for other localiza-
tions such as anterior, apical, axon and others. However, after removing the overlapped 
and redundant sequences, very few sequences were left for these localizations and thus 
not considered in this study. Though the cytosol is the aqueous part of the cytoplasm, it 
has its own function i.e., cytosol concentrates the dissolved molecules into the correct 
position for efficient metabolism, and a large number of proteins are localized in the 
cytosol [74]. Therefore, both cytoplasm and cytosol were considered despite the fact that 
the cytosol is the aqueous part of the cytoplasm. Furthermore, there were overlapped 
sequences between these two localizations, and we utilized the dataset after removing 
not only the overlapped sequences but also the sequences that shared more than 80% 
sequence identity with any other sequences in each localization.

We utilized k-mer features for translating the nucleotide sequences into numeric vec-
tors, where the important k-mer features were selected by using the Elastic Net model. 
The LASSO eliminates the redundant/irrelevant features and hence reduces the over-
fitting of the model. On the other hand, Ridge assigns less weight to the features that 
are less relevant for predicting the response. Elastic Net combines the features of both 
LASSO and the Ridge to improve the prediction performance [39]. Thus, the Elastic Net 
may be more effective as compared to the LASSO and Ridge. Hence, we employed the 
Elastic Net for the feature selection.

The RF algorithm was employed for the prediction purpose because it is an ensemble 
learning method that tends to produce higher accuracy as compared to the single base 
classifier [40]. The performance of the developed computational model was evaluated 

http://cabgrid.res.in:8080/mlocmrna/
http://cabgrid.res.in:8080/mlocmrna/
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by following a five-fold cross-validation procedure as well as by using the independent 
test sets. Higher accuracies were obtained for the mitochondrion and posterior as com-
pared to the other localizations because the sequences of these two localizations share 
a lesser degree of similarity with other localizations which is evident from the fact that 
the sequences of these localizations were present in the remaining localizations (Fig. 1a). 

Fig. 10  a Diagram showing the server page of mLoc-mRNA. The user can either submit the sequence file 
in FASTA format or upload the sequences in the text area for prediction. b Prediction result for an example 
sequence, where the probability of prediction in each localization is provided
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The RF model is not only useful for the classification/prediction but also for the selec-
tion of important features through RF variable importance measure. There are two types 
of RF variable importance measure i.e., mean decrease in impurity (Gini importance) 
and mean decrease in accuracy (permutation importance). For the permutation impor-
tance of a variable, the prediction accuracy on the OOB sample is first computed. Then, 
the values of the variable in the OOB samples are permuted keeping all other variables 
the same and the accuracy with the permuted data is again computed. The difference 
in the prediction accuracy caused by the permutation is measured and averaged over 
all the tree classifiers of RF. The idea of permutation importance is that if a variable is 
important to achieve high prediction accuracy, shuffling that variable should lead to 
an increase in the error and vice-versa. Mean decrease in impurity is another variable 
importance measure of RF. The Gini impurity is used as a measure to choose the variable 
for splitting of parental node into daughter nodes. For a particular variable, the decrease 
in Gini impurity is accumulated for each tree every time the variable is chosen to split a 
node. The sum is averaged over all the trees in the forest to get the importance of each 
such variable. Though the Gini importance is a biased measure, minimal computation 
is required for the Gini impurity. On the other hand, though permutation-based impor-
tance employs an exhaustive permutation, it is a reasonably efficient technique than that 
of Gini importance.

Besides RF, we have also used the ensemble learning methods Bagging and Boost-
ing. In terms of accuracy and MCC, Bagging achieved less accuracy than that of RF and 
Boosting methods. Out of 9 localizations, RF achieved higher accuracy and MCC in 5 
localizations whereas Boosting achieved higher accuracy and MCC in the other four 
localizations. In other words, RF achieved higher accuracy in majority of the localiza-
tion. However, the difference in accuracies between RF and Boosting algorithm were not 
much higher. Further, Boosting algorithm is more sensitive to noisy data and over fitting 
as compared to the RF because the classification trees are grown independently in RF 
whereas the classification trees are correlated in Boosting. Also, less numbers of param-
eters are needed to be tuned in RF as compared to the Boosting algorithm. Keeping all 
the above points in mind, we preferred RF for prediction in all the 9 localizations. In 
Bagging, randomization is only introduced while drawing the bootstrap sample, whereas 
in RF randomization is introduced at two stages i.e., during drawing the bootstrap sam-
ple and splitting of the nodes of the classification tree [40]. This may be the reason RF 
achieved higher accuracy than that of Bagging. As far as Boosting method is concerned, 
it works sequentially and iteratively adjusts the weights of observations until a better 
learner is achieved. On the other hand, in Bagging each classification tree is grown inde-
pendently without adjusting the weights of observations [75]. This may be the reason 
for the better accuracy of the Boosting over Bagging method. Since RF was preferred for 
prediction in 9 localizations as compared to other bootstrapping methods, the RF was 
only used for prediction of the independent dataset. The cross validation accuracy and 
the accuracy with the independent dataset were found to be similar for the developed 
approach.

Performance of the mLoc-mRNA was also compared with the state-of-art single local-
ization prediction tool mRNALoc using two different independent datasets. The mLoc-
mRNA achieved higher accuracy in two localizations with the test set-I and all the four 
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localizations with the test set-II. Thus, the proposed approach may achieve higher accu-
racy than that of mRNALoc with regard to predicting the single localization of mRNAs. 
The performance was compared with that of mRNALoc only because it has outper-
formed the other existing methods such as RNATracker [34] and iLoc-mRNA [35]. We 
have used the localization dataset of the RNALocate database that contains data from 
65 organisms with most of the data from the model organisms like, Homo sapiens, Mus 
musculus and  Saccharomyces cerevisiae. On the other hand, the existing tools such 
as RNATracker and iLoc-mRNA have been developed by using only localization data 
of human mRNA. Thus, the developed tool mLoc-mRNA is a more general one with 
regard to predicting the eukaryotic mRNA subcellular localization. Besides, the datasets 
i.e., CeFra-Seq [36], APEX-RIP [37] used in the RNATracker are sometimes noisy and 
inaccurate [38]. On the other hand, the dataset used in our study was collected from the 
RNALocate which contains a manually curated mRNA localization dataset with experi-
mental evidence. Further, existing localization prediction tools such as RNATracker, 
iLoc-mRNA and mRNALoc have been developed for predicting the single localization 
of mRNAs. On the other hand, the mLoc-mRNA is meant for predicting both single as 
well as multiple subcellular localizations.

We have also developed an online prediction tool mLoc-mRNA (http://​cabgr​id.​res.​
in:​8080/​mlocm​rna/) for multiple localization prediction of mRNAs. Using the tool, the 
prediction label for the test instance is decided with the majority voting by 5 RF classi-
fiers. The developed tool is expected to supplement the existing single localization pre-
diction tools as well as the in situ hybridization technique for mRNA localization study.

Conclusions
In this article, we have developed a new computational method for predicting multiple 
subcellular localization of mRNAs. By using the developed method, user can easily pre-
dict the probability of any mRNA sequence being predicted in 9 different localizations. 
The developed web server is expected to be of great help for researchers from the non-
computational background. The proposed methodology will certainly supplement the 
existing studies towards the localization prediction of mRNAs.
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