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Abstract

Background: In low-resource settings, there are numerous socioeconomic challenges such as poverty, inadequate
facilities, shortage of skilled health workers, illiteracy and cultural barriers that contribute to high maternal and newborn
deaths. To address these challenges, there are several mHealth projects particularly in Sub-Sahara Africa seeking to
exploit opportunities provided by over 90% rate of mobile penetration. However, most of these interventions have
failed to justify their value proposition to inspire utilization in low-resource settings.

Methods: This study proposes a theoretical model named Technology, Individual, Process-Fit (TIPFit) suitable
for user-centred evaluation of intervention designs to predict utilization of mHealth products in low-resource
settings. To investigate the predictive power of TIPFit model, we operationalized its latent constructs into
variables used to predict utilization of an mHealth prototype called mamacare. The study employed single-
group repeated measures quasi-experiment in which a random sample of 79 antenatal and postnatal patients
were recruited from a rural hospital. During the study conducted between May and October 2014, the treatment involved
sending and receiving SMS alerts on vital signs, appointments, safe delivery, danger signs, nutrition, preventive care and
adherence to medication.

Results: Measurements taken during the study were cleaned and coded for analysis using statistical models like Partial
Least Squares (PLS), Repeated Measures Analysis of Variance (RM-ANOVA), and Bonferroni tests. After analyzing 73 pretest
responses, the model predicted 80.2% fit, and 63.9% likelihood of utilization. However, results obtained from initial post-
test taken after three months demonstrated 69.1% fit, and utilization of 50.5%. The variation between prediction and the
actual outcome necessitated improvement of mamacare based on feedback obtained from users. Three months later, we
conducted the second post-test that recorded further drop in fit from 69.1 to 60.3% but utilization marginally improved
from 50.5 to 53.7%.

Conclusions: Despite variations between the pretest and post-test outcomes, the study demonstrates that
predictive approach to user-centred design offers greater flexibility in aligning design attributes of an mHealth
intervention to fulfill user needs and expectations. These findings provide a unique contribution for decision
makers because it is possible to prioritize investments among competing digital health projects.
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Background
To exploit opportunities provided by mobile penetration
in developing countries, there is proliferation of technol-
ogy innovations aimed at improving healthcare service
delivery [1–4]. This is the motivation behind numerous
mobile health (mHealth) interventions aimed at over-
coming challenges like poor infrastructure, staff short-
ages, and limited budgets that characterize low-resource
settings [5–7]. Despite these initiatives, a global observa-
tory survey conducted by World Health Organization
(WHO) and International Telecommunication Union
(ITU) revealed that majority of mHealth systems are
weak platforms that have failed to transit to actual prac-
tice [8]. Prior studies have also attributed failure of
mHealth interventions to misalignment to realistic needs
and expectations of the target users [9–11]. Since most
mHealth initiatives in Sub-Sahara Africa are donor-funded
projects, we argue that low utilization of most of these
interventions may be due to poor understanding of users,
tasks and technology context during design. Several case
studies have revealed that design of some of mHealth
systems is based on “perceived problems”, then “pushed”
for adoption and use by consumers who were least
involved in designing the intervention [8, 12].
To scale up utilization of mHealth innovations, there

is need for user-centred evaluation of design specifica-
tions to predict usage behaviour after workplace imple-
mentation. Some of the reviewed studies on technology
adoption have demonstrated how to predict utilization
based on theoretical knowledge of causal connections
[13–15]. For example, Davis and Venkatesh [14] used

Technology Acceptance Model (TAM) to predict accept-
ance and use of a new system based on perceived useful-
ness. The same approach was used by Bhattacherjee and
Premkumar [15] to provide empirical evidence on pre-
dictive approach to user acceptance testing. This study
therefore builds on similar approaches to predicting ac-
ceptance and use of mHealth interventions in
low-resource settings. Due to gaps identified in the
reviewed models and theories [16–22], we derived a
structural model for predicting utilization of mHealth
interventions. The model called TIPFit comprises of pre-
dictor variables X1 to X9 shown in Fig. 1; hypothesized
to influence fit and utilization of an mHealth interven-
tion. TIPFit is an acronym derived from individual,
process, technology, and fit constructs. Similar to stud-
ies by Strong et al. [21] and Davis and Konsynski [22],
fit is configured as a surrogate measure of user accept-
ance to determine temporal changes toward usage of
mHealth artifacts. Justification and detailed reasoning
regarding inclusion of each construct as a predictor vari-
able is provided in the methods section.
To validate the model, we conducted within-subjects

repeated measures quasi-experiment. The validation
process was done in a practical scenario to investigate
how well user’s perceptions predicted utilization of
mamacare prototype. Mamacare is an integrated
mobile and web-based application optimized to run on
low-cost smartphones because most health facilities in
low-resource settings have limited access to computers,
power and broadband internet. Furthermore, WHO
[10] recommends use of mobile phones to facilitate

Fig. 1 TIPFit model consisting of predictor variables (X1-X9) hypothesized to influence fit. Consequently, fit determines utilization of mHealth interventions
as depicted by P10
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timely delivery and access to healthcare services. There
is no doubt that acceptance and use of mHealth inno-
vations has the potential to achieve Sustainable Devel-
opment Goals (SDGs) aimed at reversing maternal and
newborn deaths by 2030 [23].

Methods
To build a strong case for the predictive method
employed in this study, we first justify inclusion of
eleven TIPFit variables classified into five constructs:
individual, process, technology, fit and utilization of
mHealth [14, 15, 23, 24].

Attitude (X1)
Prior studies in behaviour science have shown that atti-
tude influences one’s judgment on certain behaviour,
subject or action [25–27]. Therefore, inclusion of atti-
tude as a predictor variable was informed by our
pre-study experience, and empirical findings from stud-
ies that are based on Theory of Planned Behaviour
(TPB) [16, 26, 27]. In TIPFit model, attitude is crucial in
measuring patients’ and caregivers’ perception before
and after exposure to an intervention. We hypothesized
that attitude changes over time as benefits of an inter-
vention becomes more realistic due to continued use.

Self-efficacy (X2)
Self-efficacy as a predictor variable was derived from
Technology Acceptance Model (TAM) and Computer
Self-Efficacy (CSE) [17, 20]. The variable is intended to
measure one’s ability to use technology to access health-
care services and information. In particular, we used
this predictor to measure one’s ability to use mobile
phones to access maternal care services and informa-
tion in rural areas.

Sensory requirements (X3)
Sensory requirements as a predictor variable was derived
from Process Virtualization Theory and Impact of IT
(PVT-IT) [18, 22]. Overby and Konsynski [22, 28] dem-
onstrated that sensory requirements of touch, smell,
sight and taste makes it difficult to virtualize some phys-
ical processes. Moreover, Overby [18] argues that if a
process requires sensory experience of smell, taste or
touch, it would be more difficult to replicate these
senses in a virtual (electronic) environment. For
example, during routine maternal care visits, clinicians
use medical devices to physically take clinical tests such
as temperature, blood pressure, blood sugar, and haemo-
globin. Although some of these vital signs may be taken
remotely using wireless sensors, it may be difficult or
costly to deploy such technologies in low-resource
settings. This is why sensory requirements variable is
crucial in predicting the degree to which mobile phones

and point-of-care devices can be used to fulfil sensory
requirements in maternal and newborn care.

Relationship (X4)
Relationship as a predictor variable was derived from
PVT-IT [18, 22] to investigate the degree of interaction
between caregivers and patients in remote areas. We
observe that in clinical processes, relationship is import-
ant because it builds mutual trust between patients and
caregivers.
During physical encounter, verbal and non-verbal

communications convey vital information resulting to
mutual trust and better inter-personal relationships [28].
Although multimedia technology may be used to simu-
late such interaction, limitations of cost and infrastruc-
ture in low-resource settings make multimedia-based
interventions unsustainable.

Identification and privacy (X5)
Identification refers to proof of one’s identity while priv-
acy refers to confidentiality of health information. This
variable derived from PVT-IT [18, 22] was largely
informed by our pre-study experience during focus
group discussions. We noted that prove of identity in
clinical processes like diagnosis is essential if patients
and caregivers are to share sensitive information. For ex-
ample, a HIV-positive patient may be reluctant to
receive reminders on adherence to antiretroviral (ARV)
regimen through mobile phones. On the other hand, cli-
nicians may be reluctant to perform diagnosis and pre-
scription electronically to avoid compromising patient’s
privacy [1, 29].

Synchronism (X6)
Synchronism as a predictor variable was derived from
PVT-IT to measure degree to which time-critical pro-
cesses are completed with minimal delay [18, 22, 28]. In
medical practice, synchronism is crucial in emergency
cases like preeclampsia that require urgent clinical atten-
tion. Our pre-study experience revealed that delays in
detecting complications related to pregnancy and post-
partum are some of the major causes of deaths in devel-
oping countries [4, 5, 13]. Therefore, synchronization
was included as a predictor variable to measure degree
to which use of mobile phones and point-of-care devices
reduce delays in executing clinical tasks.

Representation (X7)
This variable was derived from PVT-IT [18, 22] and
Task Technology-Fit (TTF) [19, 21, 22] to investigate
capabilities of technology to simulate or present infor-
mation relevant to clinical processes [18, 22]. For
example in telemedicine, mobile phones may be inte-
grated with wireless sensors and multimedia tools to
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provide remote consultation between patients and doc-
tors. However, due to poor connectivity, it becomes diffi-
cult to provide such services in low-resource settings
[28]. In this study, we used representation as a predictor
variable to measure degree to which mHealth artifacts
could be used to simulate a clinical process like
diagnosis.

Reach (X8)
Inclusion of reach as a predictor variable was informed
by empirical findings relating to PVT-IT [18, 22]. The
variable is a measure of technology capability to provide
sufficient access to maternal care services at reduced
cost and time. In reviewed studies, it is evident that
most mHealth interventions fail to provide adequate
access to maternal care services and information due to
long distances, inadequate health facilities, and cultural
barriers [5–7, 28]. Therefore, we used reach to investi-
gate how mobile phones and point-of-care devices could
provide sufficient reach by reducing time and cost of
accessing maternal care services and information.

Monitoring (X9)
This variable was adapted from PVT-IT [18] to measure
capability of technology to monitor patient’s health sta-
tus. During antenatal and postnatal care, mothers are
required to make at least four visits to monitor their
progress. However, in remote areas, most patients fail to
honour such visits hence resulting to complications like
stillbirth and haemorrhage. To provide sufficient patient
monitoring in such places, mobile-based interventions
that use wireless body sensors may be considered.
Nevertheless, such interventions may not be feasible
due to limitations relating to poor infrastructure, cost,
privacy and cultural beliefs. In this study, we used the
variable to predict degree to which mobile devices
could be used to provide sufficient patient follow-up
in low-resource settings.

Fit (Y1)
In the context of this study, fit refers to perceived use-
fulness, suitability or benefits of a planned intervention.
Justification of including fit as a mediating variable was
informed by studies conducted by Goodhue and
Thompson [19], Strong et al. [21], and Overby and
Konsynski [22]. Our reasoning is that perception on fit
in terms of user, task and technology requirements
determine utilization of an mHealth intervention [14,
17–19]. We posit that the higher the perception on fit,
the higher the likelihood of utilizing an intervention.

mHealth utilization (Y2)
In this context, utilization is the behaviour of using tech-
nology to accomplish some tasks [19]. Justification of

including utilization as the outcome (dependent) vari-
able was based on the premise that intention to use or
usage of an mHealth system or product is influenced by
perceived fit [14, 15, 19, 21]. In this study, we used the
variable to measure the intention or utilization level of
an mHealth intervention [30–32].

TIPFit constructs as predictor variables
The ability to make predictions from a structural model
depends on knowledge of causal relationship between
predictor variables and the outcome [24]. Therefore, to
test the predictive power of TIPFit model, we converted
the causal relationships depicted using P1 to P10 into
Structural Equation Model (SEM). The structural model
comprises of a system of multi-linear regressions repre-
sented using the following equation:

Yj¼βiXiþεi

In the equation, Xi represents the predictor variables
(X1, X2…X9) hypothesized to influence fit [33–35]. The
Yj term denotes two variables, i.e., Y1 and Y2 that repre-
sents fit and utilization of mHealth respectively. The
term βi (β1 to β9) represent path coefficients P1 to P9
used to determine the effect of each variable on fit. Path
P10 on TIPFit is an aggregate coefficient used to measure
cumulative effect of fit on mHealth utilization. The error
term, i.e., i represents unexplained variations in each
of the predictor variable X1 to X9.
To measure the degree to which a variable predicts

changes in fit and utilization, we operationalized the
model into ten hypotheses. Table 1 lists a set of null
hypotheses denoted by H01 to H010 used to test the
causal relationships represented by paths P1 to P10 on
TIPFit model. Inferences from the hypotheses were
drawn from path weights (βi) computed using Partial
Least Squares (PLS) algorithm in SmartPLS [36].

Operationalizing TIPFit into structural path model
To test hypothesized cause-and-effect relationships, we
operationalized TIPFit into a path model consisting of
two parts namely measurement, and structural model.
Figure 2 shows how three of the nine variables were op-
erationalized into measurement, and structural models.
The measurement model represents predictor vari-

ables (X1 to X9) measured using manifest variables rep-
resented using initials in the leftmost boxes. The
manifest variables shown on the legend of the diagram
are scale items in the measurement instruments pro-
vided as Additional files 1, 2, 3, 4 and 5. The inner part
of the model comprises of path coefficients from β1 to
β9 hypothesized to influence fit. Consequently, β10 is
used as a measure of how fit as an intervening variable
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functionally determines utilization of an mHealth
artifact. It is this graphical model that formed the basis
for predicting fit and utilization of an intervention using
SmartPLS 2.0.

Study design
The study was conducted for a period of six months
starting from 5th May to 31st October 2014. This was
after we obtained ethical approval issued by the Kenyatta
Hospital/University of Nairobi Ethics Research Commit-
tee (KNH/UoN-ERC) on 23rd November 2013. Our
study setting was the Maternal and Newborn Healthcare
(MNH) section of a rural hospital called Kimbimbi
Sub-county Hospital. The hospital, located in Kirinyaga
County 110 km from Nairobi serves patients; most of
whom are farmers from Mwea Rice Irrigation and Settle-
ment Scheme.

Maternal care intervention
To develop mamacare, we employed user-centred design
to understand the study environment, user needs, and ma-
ternal care process. Figure 3 shows the approach used; a
customized model of agile development methodology.
During conceptualization phase, TIPFit was instru-

mental in measuring perceived fit of mobile-based inter-
vention as a basis for predicting post-deployment
utilization [14, 15]. Some of the user-centred techniques
employed to understand the target users and clinical
tasks in MNH include storyboards, mock-ups, interviews
and focus group discussions. Feedback obtained from
these interactions was used as the basis for the next
phase of designing mamacare; a mobile and web-based
prototype. Mamacare is an acronym derived from two
words, i.e., mama that stands for “mother” across many
languages, and care referring to maternal and newborn
healthcare.

Fig. 2 Operationalizing TIPFit into a graphical path model for analysis using path modeling software tools like SmartPLS

Table 1 Hypotheses for predicting fit and utilization of mHealth

Path Prediction hypotheses

H01 Attitude has no significant change on fit before, and after use of mHealth intervention

H02 Self-efficacy in use of mobile devices has no significant change on fit before, and after mHealth intervention

H03 Sensory requirements have no significant change on fit before, and after use of mHealth intervention

H04 Relationship requirement has no significant change on fit before, and after use of mHealth intervention

H05 Identification and privacy requirements have no significant change on fit before, and after use of mHealth intervention

H06 Synchronism requirement has no significant change on fit before, and after use of mHealth intervention

H07 Representation capability of technology has no significant effect on fit before, and after use of mHealth intervention

H08 Reach capability of technology has no significant change on fit before, and after use of mHealth intervention

H09 Monitoring capability of technology has no significant change on fit before, and after use of mHealth intervention

H010 Perceived fit has no significant change before, and after use of mHealth intervention

Source: Researchers’ TIPFit hypothetical model
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In design phase, we used unified modeling language
(UML) tools to align the planned intervention to user
requirements identified during conceptualization.
Figure 4 is a sample use case diagram that depicts inter-
action between mamacare and clinicians (caregivers) that
were involved in the study.
To improve access to maternal care services and infor-

mation through mobile, Fig. 5 shows a sample use case
diagram depicting interaction between mamacare and
patients.
During the build phase, we used web development tools

like HTML5, CSS3 and JavaScript to implement the web
portal used by caregivers to process and manage patients’
health records. The Short Message Service (SMS) module
was implemented using open source SMS Server Tools3
while the back-end was implemented using MySQL, Apa-
che web server and PHP. Figure 6 depicts the architecture
used to deploy mamacare in the study setting. The pri-
mary database server was installed in the hospital while a
backup server was hosted at University of Nairobi for re-
dundancy and security purpose.

To enhance user experience, the web interface was de-
signed to adapt to multiple device profiles depending on
the screen size and orientation. Figure 7 shows how the
same web portal appears on desktop computer and mo-
bile phone. This responsive behaviour makes mamacare
suitable for use in places with limited access to
computers.
Before mamacare was deployed, we agreed with

the hospital management that the system was com-
plementary to standard procedure for managing
antenatal and postnatal patients. The complementary
mechanism involved sending SMS messages on ap-
pointments, danger signs, safe delivery, nutrition and
preventive care to registered patients. Mamacare also
receives vital signs for temperature, blood pressure,
and blood sugar to enhance monitoring of mothers
and their children. Figure 8(a) shows vital signs re-
ceived via SMS while Fig. 8(b) shows a sample SMS
reminder on clinic appointment otherwise referred
to as “To Come Again (TCA)” in maternal care
context.

Fig. 3 Approach employed in the development of mamacare prototype that was used to support maternal and newborn care

Fig. 4 Use case model depicting the interaction between mamacare system and caregivers
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Design of repeated measures quasi-experiment
To measure the predictive power of TIPFit model, we
used quasi-experiment to repeatedly measure responses
from the same group of respondents before, and after
intervention. Despite shortcomings of quasi-experiments
in terms of internal and external validity, single-group
repeated measures design is desirable in clinical environ-
ment where randomization may raise political, ethical or
legal issues. In this regard, our study protocol approved
by KNH/UoN-ERC required use of study designs that
would not deny subjects benefits of the planned inter-
vention. This was the main reason that influenced choice

of single-group (within-subjects) repeated measures
design. In this design, each subject served as her own
experimental control hence making it possible to detect
the effect of predictor variables on fit and utilization of
mamacare. Figure 9 shows how the three measures were
taken before, and after exposure to mamacare interven-
tion for a period of six months.
Before the intervention, a pretest (T0) was used to

measure perceptions based on benefits of mamacare
communicated to participants during health education
sessions organized by the hospital. Three months after
the subjects were exposed to intervention, we conducted

Fig. 5 Use case model depicting the interaction between mamacare system and registered patients

Fig. 6 Mamacare deployment architecture. The clinicians and admin staff have controlled access to integrated web and mobile interface; while
patients can only receive or send SMS messages via their own mobile phones
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the first post-test (T1) to compare with predicted out-
come. To compare the initial post-test outcome with
reactions after prolonged use, we conducted the second
post-test (T2) using the same tools employed in the ini-
tial post-test evaluation.

Sampling and inclusion of study population
During the inception stage of this study, we visited the
Maternal and Newborn Healthcare (MNH) section of
Kimbimbi Sub-county hospital to review the antenatal
and postnatal registers. The reviewed registers had a
total of 226 women most of whom were receiving either
antenatal or postnatal care services. To get a representa-
tive proportion from this population, we used simple
random sampling with age, education, gestation, resi-
dence, and ownership of mobile phone as inclusion
criteria. Empirical findings from related studies have
shown that factors like age, environment, and education
influence individual’s attitude and ability to use technol-
ogy [16, 17, 26, 27]. The gestation factor was considered
because during pregnancy, women tend to change their

attitude and ability to perform tasks. The ownership of
mobile phone was also important because the purpose
of the present study was to investigate utilization of
mobile devices in maternal and newborn care. Therefore,
to get an optimal sample from the population of 226
registered patients, we used the following formula to de-
termine the optimal sample size:

n ¼ z2xpxqxN
e2 N‐1ð Þ þ z2xpxq

In the equation, n represents the sample size; z = crit-
ical value at 5% significance level; p = sample proportion
(degree of variability) set as conservative value of 50%; N
is size of finite population; e is the level of precision set
at ±5%; and q = 1 – p. By taking N = 226; z = ±1.96 based
on 5% significance level; p as 50% (0.5); e = 0.05; and q =
0.5 (1–0.5) we obtained our sample size as follows:

n ¼ 1:962 � 0:5� 0:5� 226

0:052 226−1ð Þ þ 1:962 � 0:5� 0:5
¼ 143

This implies that a sample of at least 143 subjects was
required for the study. After contacting these subjects
through mobile calls and SMS, only 95 women accepted
to attend a formal training session organized through
the hospital. During the two-hour training, benefits and
limitations of using mobile phones were communicated
to the participants. Based on this information, 79 partici-
pants were recruited after they agreed to participate in
the study by signing consent forms. The other 16 partici-
pants refused to participate due to issues relating to
financial constraints, attitude and privacy.
Although the number of participants recruited was

half of the expected, it was sufficient to get reliable infer-
ences. Goodhue et al. [37] demonstrated that a sample
of 40 subjects is sufficient to achieve reliable results in
PLS. Furthermore, Overby and Konsynski demonstrated

Fig. 7 Mamacare web portal on computer on the left; and mobile phone interface inset on the right. a Vital signs SMS. b SMS-based TCA reminder
(Esther is a pseudonym)

Fig. 8 a The screen image on the left shows vital signs sent as
SMS message to mamacare backend system. b on the
right shows a sample SMS reminder generated based on
maternal profile; and sent to a pseudonym (Esther) that
represents an actual patient receiving mamacare services
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that a sample of 60 subjects is sufficient to detect small
and medium effect [22, 38, 39].

Measurements
The study used three measures at different points in
time to investigate the predictive power of a hypothetical
model. The measurement instruments used before and
after intervention were based on indicators derived from
TIPFit model.
Before mamacare was deployed, we conducted a pre-

test as a baseline for predicting post-deployment
utilization based on perceived benefits. The measure-
ment instruments included basic demographic scale
items such as age, education and gestation assumed to
influence attitude and ability to use technology. Since
the same subjects were involved in the entire study, the
post-test scale items comprised of closed and
open-ended Likert-type questions on a scale of 1 to 5.
Samples of the pretest and post-test questionnaires used
are provided as Additional files 1, 2, 3, 4 and 5.
To take care of participants with low literacy level, two

research assistants were recruited from the local com-
munity to guide the respondents through the question-
naires in local languages.
To validate the data collection instruments, we used

composite reliability, and Cronbach’s alpha (α) to test in-
ternal consistency. We also analyzed validity of the
structural model using convergence and discriminant
validity. Given our relatively small sample, we performed
these tests using PLS algorithm in SmartPLS [36]. Table 2
gives a summary of composite reliability, and Cronbach’s
α values generated from the pretest (T0), and post-test
(T1 and T2) datasets.
The table shows that composite reliability for all the

variables were above the recommended 0.70. However,
the four values highlighted in Cronbach’s alpha column
were slightly less than 0.70. Despite these minor varia-
tions, the results indicate good internal consistency of
the pretest and post-test scale items.
The results also indicated that Average Variable

Extracted (AVE) for all the constructs were above

0.50. According to Chin and Newstead [38], proof of
convergent and discriminant validity requires the AVE
score for each construct to be above 0.50 (50%). Ana-
lysis from the three datasets indicates that each of
the eleven constructs has an AVE score above 0.50;
hence indicating that TIPFit model has good conver-
gence, and discriminant validity. This confidence in
the reliability and validity of the structure of the
model was a greenlight to path analysis and hypoth-
esis testing.

Data analysis
To analyze the pretest and post-test datasets collected
during the experiment, incomplete and wrongly filled
questionnaires were eliminated. The valid responses
were coded into numerical values and keyed into
Statistical Package for Social Scientists (SPSS) to de-
termine the frequency, percentage, and statistical
mean of each demographic item.
Regarding predictive modeling, the responses were

entered into Microsoft Excel spreadsheet and
exported into SmartPLS workspace for analysis using

Fig. 9 Repeated measures quasi-experiment to predict fi and utilization of mHealth interventions in low-resource settings

Table 2 Reliability test using composite, and Cronbach’s alpha

Predictor
variable

Composite reliability Cronbach alpha

T0 T1 T2 T0 T1 T2

Attitude 0.85 0.91 0.92 0.73 0.86 0.88

Efficacy 0.84 0.88 0.92 0.77 0.80 0.88

Sensory 0.85 0.89 0.81 0.75 0.81 0.67

Relation 0.88 0.85 0.86 0.80 0.73 0.75

Privacy 0.90 0.86 0.86 0.83 0.76 0.76

Synch 0.85 0.84 0.91 0.66 0.62 0.80

Represent 0.83 0.86 0.89 0.71 0.76 0.82

Reach 0.82 0.88 0.86 0.68 0.80 0.75

Monitor 0.92 0.91 0.91 0.82 0.79 0.80

Fit 0.94 0.93 0.93 0.88 0.84 0.85

Utilization 0.88 0.90 0.94 0.74 0.79 0.86

Source: Primary Data. [NB: The italicized values under Cronbach's alpha falls
below the recommended threshhold of 0.70]
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PLS [36–38]. In addition to path analysis, we used
Repeated Measures Analysis of Variance (RM-A-
NOVA), and Bonferroni post hoc test to draw reliable
conclusions from the study.

Results
Basic demographic characteristics
Most adoption studies have shown that demographic at-
tributes such as gender, age and education influence
one’s belief, attitude and ability to perform tasks using
technology [9, 14, 15, 17, 21, 22]. In this study, we ana-
lyzed these attributes to gain insight on characteristics of
the subjects that influence acceptance and use of the
planned mHealth intervention. From 79 participants
who participated in the pretest conducted before the
intervention, we obtained 73 valid questionnaires. The
six questionnaires that were disregarded were either
incomplete or wrongly filled. Analysis of age distribution
using SPSS showed that majority of the respondents
were aged between 20 and 25. Table 3 shows the age dis-
tribution of 73 valid responses; demonstrating that most
of the subjects were within the reproductive age between
20 and 35 years.
Analysis on education revealed that 34.2% of the sub-

jects have studied up to primary school level (Grade 8),
and 47.9% up to secondary (Grade 12) as shown in
Fig. 10. The pie chart also indicates that 15.1% have
studied up to college while only 2.7% have studied up to
university. This is a clear reflection that majority of the
subjects have low literacy skills that could have been a
barrier to effective use of mobile and point-of-care tech-
nologies [14–16].

Path analysis
To determine the ability of TIPFit in predicting fit
and utilization, we used SmartPLS to analyze path
weights of the structural model. This is because PLS
is variance-based structural equation models that does
not impose restrictions on sample size and normality
of distribution [37, 38]. Figure 11 shows the structural
model generated from the pretest dataset using scale
items as reflective indicators of their corresponding
predictor variables. The path weights represent

coefficients β1 to β10 in the equation model, and P1
to P10 on TIPFit model.
The coefficient of determination (R2) values of 0.802

and 0.639 indicate that the pretest model has high pre-
dictive power of 80.2% on fit, and 63.9% likelihood of
utilization. This assumption is based on Overby and
Konsynski [22] assertion that a structural model with
R2 > 0.25 is considered to have good predictive power.
After the subjects were exposed to an intervention,

dataset collected during the first post-test was cleaned
and analyzed using SmartPLS. Figure 12 shows the path
weights; R2 of 69.1% on fit, and 50.5% of actual
utilization. The observed variations between the pretest
predictions and actual outcome necessitated improve-
ment of mamacare to address issues raised by the users
during the first post-test evaluation.
Three months later, we conducted the second

post-test as a follow-up measure. However, due to
voluntary exit of six subjects, 73 out of 79 initial par-
ticipants filled the questionnaires. The post-test2
questionnaire was similar to that used in post-test1
but with additional questions for measuring user
satisfaction from enhanced mamacare. The enhance-
ments were mostly on the user interface, language
used to send messages, and SMS module for receiving
vital signs such as blood pressure, temperature,
haemoglobin and blood sugar. The vital signs were
used by caregivers to monitor health trends using
dynamic charts. This made it easier for caregivers in
MNH to easily detect pregnancy and postpartum
complications that require urgent attention.
Figure 13 shows the model path weights and coeffi-

cients of determination after modeling post-test2 dataset

Table 3 Distribution of participants by age categories

Age category Frequency Percent (%) Valid Percent

Valid 15–19 8 11.0 11.0

20–25 39 53.4 53.4

26–30 16 21.9 21.9

30–35 10 13.7 13.7

Total 73 100.0 100.0

Source: Primary data

Fig. 10 Distribution of participants by education level
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using SmartPLS. The results indicate marginal drop on
fit from 69.1% recorded in the first post-test to 60.3%.
Conversely, the results revealed slight improvement on
utilization of mamacare from 50.5% recorded in the first
post-test to 53.7%.
In summary, Table 4 shows structural model path

weights generated from the pretest and two post-test
datasets.
The table shows that attitude towards fit was positive

before and after intervention. However, Self-efficacy was
initially negative but marginally improved after pro-
longed use of mamacare. We also observe that path
weights obtained from sensory requirements were con-
sistently negative before and after the intervention. The
cumulative path weights between fit and mHealth
utilization shows high positive scores; indicating that fit
has strong influence on utilization before, and after
intervention.

Comparative analysis
Due to some inconsistencies observed from the struc-
tural path models, we used alternative methods in order

to draw reliable conclusions. First, we ran bootstrapping
algorithm available in SmartPLS to determine signifi-
cance of path weights. Table 5 gives a summary of t
values after bootstrapping the three path models at 5%
significance level.
Physical inspection on each column indicates temporal

changes in hypothesized causation. For example, attitude
was consistently positive and significant because its t values
were greater than the critical value of 1.96 (t > 1.96). Sen-
sory requirements variable consistently returned negative
outcomes.
These observations may be interpreted to mean that

attitude towards mobile use in maternal care was posi-
tive but may not sufficiently address sensory require-
ments. However, due to inconsistences observed in
synchronism, representation and monitoring, we opted
to use parametric tests as an alternative to structural
path modeling.

Bonferroni post hoc test
To analyze changes in usage behaviour before and after
intervention, we used Bonferroni post hoc test available

Fig. 11 Pretest (prediction) model generated from pretest dataset showing coefficient of determination (R2) and path weights. The yellow boxes
represent reflective indicators (manifest variables)
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in SPSS. This test is suitable in studies that seek to
establish effect of experimental treatment. Table 6 shows
summary of pairwise comparison between the pretest
and post-test1 (T0-T1); post-test1 and post-test2 (T1-T2);
and pretest and post-test2 (T0-T2).
The table shows that there is significant differences

between the pretest and post-test1 in sensory require-
ments, identification and privacy, synchronism, moni-
toring, fit and utilization of mHealth. However,
comparison between T1 and T2 shows significant dif-
ferences in self-efficacy, and monitoring variables.
These findings suggest that reactions before the inter-
vention had better predictions after stable use of
mamacare. We therefore assume that after improve-
ment of mamacare, usage behaviour almost matched
pretest predictions on utilization of mamacare. To in-
vestigate these variations, we further analyzed the
three datasets using Repeated Measures ANOVA
(RM-ANOVA).

Repeated measures ANOVA
Three essential requirements for using RM-ANOVA
are inspection of underlying data for normality of
distribution, outliers and sphericity. Although the re-
sults from these tests showed the three datasets

satisfied the first two requirements, there were some
violations of sphericity. Table 7 shows a summary of
RM-ANOVA statistics after correcting violations of
sphericity in six variables that have p values less
than 0.05.
Visual inspection on RM-ANOVA column indicates

that there is no significant differences in four variables
with p values less than 0.05. These are attitude, sensory
requirements, representation, and reach. This inference
implies that mamacare intervention did not change par-
ticipants’ perception on these predictor variables. In
summary, Table 8 shows conclusions drawn from Re-
peated Measures ANOVA results to either support or
reject hypothesized relationships.
From these inferences, we conclude that attitude, sen-

sory requirements, representation and reach variables
estimated actual outcome observed after exposing the
study cohort to mamacare intervention.
By comparing these results with those drawn from

structural path models, we observe similarities and some
inconsistences. Despite these variations, conclusions
drawn from both structural modeling and parametric
analyses demonstrate that TIPFit model is capable of
predicting utilization of mHealth interventions in the
early design stage.

Fig. 12 Post-test model generated from initial post-test evaluation showing the coefficients of determination and path weights
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Discussions
This study used repeated measures quasi-experiment on
a single group to measure the power of TIPFit model in
predicting utilization of mHealth interventions. To valid-
ate the model, a pretest was administered on a study
cohort of 79 subjects before exposure to mamacare
intervention. The intervention involved sending and
receiving SMS alerts and reminders on maternal care
services through mobile phones.

Predictive power of TIPFit model
The study findings revealed interesting trends before
and after exposing the study subjects to mamacare

intervention. Inferences on the pretest and post-test
structural path models revealed that user’s perception on
fit constantly dropped after exposing the subjects to the
intervention. Moreover, results from RM-ANOVA
revealed the intervention had significant change on
seven predictor variables. These are self-efficacy, rela-
tionship, identification and privacy, synchronism, moni-
toring, fit and mamacare utilization.
These results are a confirmation to Davis and Venkatesh

assertion that; evaluating user acceptance during design
can be used to predict post-implementation acceptance
and use of a new system [40]. Furthermore, the study
shows some similarities to the findings by Bhattacherjee
and Premkumar [15] in their study on predicting usage

Table 5 Significance test results for the bootstrapped path weights

Test Att Self Sens Rel Prv Sync Rep Reac Mon Fit

T0 2.38 −1.71 −1.79 5.07 0.75 2.28 1.43 −0.37 2.73 20.48

T1 2.96 −0.83 −3.53 1.09 3.40 1.30 3.91 5.09 0.30 19.52

T2 3.16 0.08 −3.65 −0.59 2.14 − 0.25 1.94 3.64 3.86 20.39

Source: Primary Data

Table 4 Summary of path weights from pretest and post-tests
models

Test Atti. Self Sense Rela Priv Syn Rep Reach Mo Fit.

T0 0.19 −0.11 −0.08 0.54 0.07 0.17 0.12 −0.03 0.38 0.79

T1 0.21 −0.06 −0.15 0.08 0.20 0.13 0.31 0.24 0.02 0.71

T2 0.22 0.01 −0.18 − 0.04 0.19 − 0.02 0.15 0.29 0.26 0.73

Source: Primary Data. [NB. The italicized entries in the Fit column indicates
that the values are cummulative path weights from the 9 predictor variables
X1 to X9]

Fig. 13 Post-test model generated from the second post-test showing R2 and path weights. The model indicates a marginal improvement on
utilization of mamacare

Mburu and Oboko BMC Medical Informatics and Decision Making  (2018) 18:67 Page 13 of 16



from belief and attitude. Therefore, the findings from this
study confirms that predictive approach to user accept-
ance testing at the design stage can be used to estimate
post-deployment utilization [11, 14, 15].

Strengths of the study
One of the strengths of this study is emphasis on use of
open source software to implement mamacare that runs
on low-end mobile devices. Mamacare back-end was
implemented using Apache web server, MySQL data-
base, PHP, and SMS Tools3 gateway. To make the
front-end adaptive to multiple device profiles, we used
Twitter bootstrap; a framework that supports HTML5,
CSS3 and JavaScript. This makes mamacare a low-cost
digital health solution for supporting maternal and new-
born care in low-resource settings.

Another strength of the study is the predictive ap-
proach used to develop and evaluate mamacare proto-
type. This approach is a unique contribution to
requirements engineering and user-centred system de-
velopment methodology. The study also demonstrates
how to apply structural equation modeling to predict
utilization based on the understanding of user’s behav-
iour, healthcare processes, and technology contexts.

Study limitations
Theoretical models focusing on fit do not give sufficient
attention to the fact that system artifacts must be uti-
lized before they deliver performance impacts [19].
Moreover, there is no evidence that quality of an
mHealth system leads to increased voluntary utilization.
In our pre-study [13], we observed poor systems being
utilized extensively in low-income settings due to donor
funding, social benefits, ignorance, and availability. For
this reason, we argue that increased utilization of
mHealth innovations in low-resource settings may not
necessarily result to improved quality of health out-
comes. This is because there are other socioeconomic
and technical factors that influence delivery of health-
care services such as the cost of care, infrastructure, gov-
ernance, culture, and skilled workforce. Unfortunately,
TIPFit model does not consider these factors but only
focuses on the three elements of people, process and
technology used to evaluate success of information
systems.
Another limitation of this study was on the design

used to predict utilization. Although single-group
repeated measures design used is closer to randomized
experiments, the datasets collected from the same sub-
jects may have had likelihood of reporting bias. To

Table 7 Test of overall treatment effect using RM-ANOVA

Sphericity RM-ANOVA: Effect Remarks

Predictor χ2 p-value F ratio p-value Eta2 p < 0.05

Attitude 0.534 0.766 2.595 0.078 0.036 Not sign.

Self-Efficacy 3.432 0.180 3.258 0.041 0.045 Significant

Sensory 5.109 0.078 1.233 0.295 0.018 Not sign.

Relationship 22.076 < 0.001 4.038 0.029 0.055 GG: Sign.

ID and Privacy 9.980 0.007 7.462 0.001 0.098 GG: Sign.

Synchronism 13.683 0.001 8.022 0.001 0.104 GG: Sign.

Representation 10.664 0.005 2.373 0.105 0.033 GG: Not Sign

Reach 5.034 0.081 1.117 0.330 0.016 Not sign.

Monitoring 20.082 < 0.001 13.384 < 0.001 0.162 GG: Sign.

Fit 8.516 0.014* 10.144 < 0.001 0.128 GG: Sign.

mHealth use 1.350 0.509 4.152 0.018 0.057 Sign.

Source: Primary Data

Table 6 Comparison of sample means using Bonferroni post-hoc test

Predictor
Variable

Pretest Post-test1 Post-test2 Mean differences (p-value)

x̄ =μ SE x̄=μ SE x̄=μ SE T0 - T1 T1-T2 T0 –T2

Attitude 1.56 0.06 1.39 0.06 1.54 0.06 0.11 0.17 0.99

Efficacy 1.55 0.07 1.35 0.06 1.55 0.06 0.10 0.04 1.00

Sensory 2.23 0.12 1.98 0.12 2.11 0.08 0.05 0.21 0.39

Relation 1.81 0.09 1.53 0.06 1.66 0.06 0.11 0.17 0.99

ID. & Privacy 1.89 0.09 1.51 0.07 1.58 0.06 0.01 0.86 0.01

Synchronism 1.84 0.10 1.43 0.07 1.61 0.06 0.00 0.09 0.09

Representation 1.63 0.07 1.47 0.06 1.52 0.05 0.11 0.83 0.48

Reach 1.74 0.07 1.59 0.08 1.65 0.06 0.47 0.93 0.64

Monitor 1.66 0.08 2.00 0.00 1.60 0.06 0.00 0.00 0.92

Fit 1.77 0.09 1.36 0.06 1.54 0.06 0.00 0.06 0.06

mHealth Use 1.69 0.08 1.43 0.07 1.51 0.06 0.02 0.74 0.18

Source: Primary Data
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maximize on internal and external validity, it is import-
ant to observe caution in sample selection, and time dif-
ference allowed before taking measurements. This
explains the reason why this study lasted for six months.
Some of the shortcomings of longitudinal studies are
high cost, and decrease in number of subjects due to
natural attrition or voluntary withdrawal.

Conclusions
This study concludes that there is a myriad of mHealth
projects that have failed to inspire utilization due to
poor alignment to user needs, clinical tasks, technology
and environmental context. To address this gap, we
demonstrated that measuring intended users’ percep-
tions on a planned intervention is crucial to predicting
acceptance and use.
In practice, it is crucial for developers of mHealth

systems to ensure that user-centred evaluation is
performed thoroughly in the early design stage. This
is because perceived benefits and user expectations
measured during the design stage could provide
valuable insights on post-deployment utilization of
the intervention [40].
In terms of policy, this study demonstrates that in-

creased utilization of mHealth innovations has the po-
tential to accelerate attainment of Universal Health
Coverage (UHC) and Sustainable Development Goals
(SDGs) in developing countries. However, success of
mHealth interventions depends on how value is driven
by aligning the artifacts to health needs and expectations
at the design stage.
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Table 8 Conclusions drawn from RM-ANOVA analysis

Predictor H0 Prediction hypotheses Conclusion drawn
(p < 0.05)

Attitude H01 Attitude has no significant change on fit before, and after use of mHealth intervention Nonsignificant - accept

Self-Efficacy H02 Self-efficacy has no significant change on fit before, and after use of mHealth intervention Significant - reject

Sensory H03 Sensory requirements have no significant change on fit before, and after use of mHealth
intervention.

Nonsignificant - accept

Relationship H04 Relationship requirement has no significant change on fit before, and after use of mHealth
intervention

Significant - reject

Identification
and Privacy

H05 Identification and privacy has no significant change on fit before, and after use of mHealth
intervention

Significant - reject

Synchronism H06 Synchronism requirement has no significant change on fit before, and after use of mHealth
intervention

Significant - reject

Representation H07 Representation capability of technology has no significant effect on fit before, and after
use of mHealth intervention

Nonsignificant - accept

Reach H08 Reach capability of mHealth technology has no significant change on fit before, and after
use of mHealth intervention

Nonsignificant - accept

Monitoring H09 Monitoring capability of technology has no significant change on fit before, and after
use of mHealth intervention

Significant - reject

Fit for Use H010 Perceived fit has no significant change before, and after use of mHealth intervention Significant - reject

Source: Primary data
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