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Methods for sequential design of computer experiments typically consist of two phases.

In the first phase, the exploratory phase, a space-filling initial design is used to estimate

hyperparameters of a Gaussian process emulator (GPE) and to provide some initial global

exploration of the model function. In the second phase, more design points are added

one by one to improve the GPE and to solve the actual problem at hand (e.g., Bayesian

optimization, estimation of failure probabilities, solving Bayesian inverse problems). In this

article, we investigate whether hyperparameters can be estimated without a separate

exploratory phase. Such an approach will leave hyperparameters uncertain in the first

iterations, so the acquisition function (which tells where to evaluate the model function

next) and the GPE-based estimator need to be adapted to non-Gaussian random fields.

Numerical experiments are performed exemplarily on a sequential method for solving

Bayesian inverse problems. These experiments show that hyperparameters can indeed

be estimated without an exploratory phase and the resulting method works almost as

efficient as if the hyperparameters had been known beforehand. This means that the

estimation of hyperparameters should not be the reason for including an exploratory

phase. Furthermore, we show numerical examples, where these results allow us to

eliminate the exploratory phase to make the sequential design method both faster

(requiring fewermodel evaluations) and easier to use (requiring fewer choices by the user).

Keywords: Gaussian process emulators, sequential design of computer experiments, adaptive sampling,

hyperparameter estimation, Bayesian inference

1. INTRODUCTION

Methods for Sequential Design of Experiments (SDoE) exist for a variety of problems, such as
optimization (called Bayesian optimization) (Kushner, 1964; Jones et al., 1998; Williams et al., 2000;
Mockus, 2012; Shahriari et al., 2016; Frazier, 2018), contour estimation (Ranjan et al., 2008; Picheny
et al., 2010), estimation of failure probabilities (Bichon et al., 2008; Bect et al., 2012; Balesdent
et al., 2013), value of information analysis (Myklebust et al., 2020), and Bayesian inverse problems
(Sinsbeck and Nowak, 2017; Damblin et al., 2018; Teckentrup, 2019). In all of these methods,
the expensive-to-evaluate model function is described by a Gaussian process emulator (GPE).
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FIGURE 1 | The performance of a sequential design of experiment is highly

sensitive to the choice of the GPE. Copyright © 2017 Society for Industrial and

Applied Mathematics and American Statistical Association. Reprinted with

permission from Sinsbeck and Nowak (2017). All rights reserved.

Alternative to using a GPE, other emulators like neural networks
were successfully applied to the same kind of tasks (e.g., Snoek
et al., 2015). Here, for SDoE, we focus on the GPE as typical
stochastic emulator (Sinsbeck and Nowak, 2017) to sequentially
determine the design points for a series of model evaluations.
The GPE itself can be thought of as an input to the sequential
design method.

In such techniques, the choice of the GPE is crucial: any
sequential design method will only work well if the chosen GPE
is a good description of the true model function. This issue
is exemplarily highlighted in an earlier study by Sinsbeck and
Nowak (2017). In that study, a Bayesian inverse problem was
solved using an SDoE method. To test the sensitivity, GPEs
with different covariance functions were compared in their
performance. Figure 1 shows the errors in the target quantity
(i.e., the posterior probability of model parameters) over the
number of model evaluations. Each data line corresponds to
a different GPE. We can observe that, with the right GPE, a
small error can be achieved within 30 model evaluations (GPE
1 and GPE 2). A poorly chosen GPE, at the same time, leads to
an error that does not even decrease within the first 30 model
evaluations (GPE 6). In summary, the performance of sequential
design methods is highly sensitive to the choice of the GPE.

A GPE is fully described by its mean and covariance functions,
so by choice of GPE we actually mean the choice of a parametric
function for both mean and covariance and the choice of
the corresponding parameter values. Examples for parametric
functions are a mean of constant zero and a covariance of
Matérn type (e.g., Handcock and Stein, 1993; Stein, 1999; Diggle
et al., 2003; Minasny andMcBratney, 2005; Diggle and Lophaven,
2006). In the following we will refer to the parameters of the GPE
as hyperparameters. The Matérn covariance function has three
hyperparameters: a standard deviation, a correlation length and
a smoothness parameter.

The most straight-forward approach for obtaining the
hyperparameters is splitting the whole computing procedure into
two phases: In the first phase, the so-called exploratory phase,
the model function is evaluated on a space-filling set of design

points, the so-called initial design. From these model responses,
the hyperparameters are estimated, for example via themaximum
likelihood method. The initial set of design points is specifically
chosen for exploring the parameter space and for estimating the
hyperparameters. Then, in the second phase, the actual sequential
design is carried out: using the found hyperparameters, the
corresponding GPE is used to solve the actual problem. Design
points in this second phase are chosen by the sequential sampling
strategy and are specifically selected to solve the problem at
hand. Since SDoE methods are mostly used in problems that
require local accuracy, these new design points are typically not
space-filling, but concentrate in problem-driven areas of interest.

Usually, hyperparameters are iteratively re-estimated in the
second phase in order to update the GPE using the evaluated
design points (see e.g., Bect et al., 2012). Yet, the two phases
are typically separate. Our hypothesis is that such a two-phase
procedure is disadvantageous in two ways: first, it makes the
procedure unnecessarily complicated, and second, it requires
more computer time than necessary:

1. The exploratory phase complicates the use of the method
by introducing more choices: how many model evaluations
should be spent in the first sampling phase (Ranjan et al., 2008;
Loeppky et al., 2009; Bect et al., 2012), and where should the
model be sampled?

2. The exploratory phase requires computer time. It seems
wasteful to first select inputs with the sole purpose of finding
the hyperparameters and non-adaptive exploration and then
to select some more with the sole purpose of solving the
problem at hand.

Computational resources are always limited, and various
approaches were proposed on how to optimally allocate them
to achieve both global exploration and local exploitation (e.g.,
Sóbester et al., 2005; Chen et al., 2016). The purpose of this
article is to investigate whether there are synergetic effects
between the iterative structure of SDoE methods and the task of
estimating hyperparameters that can be used to alleviate the issue
of budget allocation. Can we find appropriate hyperparameters
dynamically without an exploratory phase, i.e., while the GPE is
already in use for solving the problem at hand? If we can do so,
then we might be able to eliminate the exploratory phase and
thereby make sequential design methods both faster and easier
to use.

Note that the exploratory phase can only be eliminated
under one additional condition: often, an exploratory phase
has a second purpose besides estimating hyperparameters, and
that is guaranteeing that the parameter domain is explored
to a certain extent. This can be useful if the problem is
multimodal. For example, when a Bayesian optimization method
is applied to an optimization problem with local optima,
then the exploratory phase can help find the global optimum.
If we intend to eliminate the exploratory phase, then we
have to make sure that the sequential sampling strategy itself
strikes a proper balance between exploration and refinement.
Whether this is the case depends very much on the chosen
method, and is out of scope of this article. Here, we will only
investigate whether hyperparameters can be estimated without
exploratory phase.
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As many models in hydro(geo)logy react monotonously to
changes in parameters, the resulting inverse problems tend to be
unimodal. Therefore, our research is highly relevant, in specific,
for hydro(geo)logical models. For such types of problems,
tailored approaches exist that, e.g., include monotonicity
information into the GPE (Riihimäki and Vehtari, 2010; López-
Lopera et al., 2018). Yet, an explicit consideration of whether
an expensive exploration phase is always necessary was missing.
We fill this gap, proposing our method specifically to users in
the applied sciences (see e.g., Erickson et al., 2018; Gramacy,
2020) like hydro(geo)logy. By estimating hyperparameters
dynamically under the condition above, our method releases
modelers from potential drawbacks associated to hyperparameter
estimation and therefore fosters easy access to using GPE in
applied modeling.

As mentioned earlier, SDoE methods exist for a range
of problem types, such as optimization, contour estimation,
estimation of failure probability, and so on. To keep the scope of
our article manageable, we restrict the numerical experiments to
the problem type of solving Bayesian inverse problems. Whether
the results can be generalized to the other problem types, is
discussed at the end of the article.

The article is structured as follows. In section 2, we summarize
the classical approach that includes an exploratory phase. In
section 3, we discuss the changes required in the algorithm
when hyperparameters are estimated without the exploratory
phase. Section 4 shows numerical examples from the area
of hydro(geo)logy to demonstrate the exploratory-phase-free
estimation of hyperparameters. In section 5, we investigate,
whether the previous results allow us to eliminate the exploratory
phase altogether. Finally, section 6 provides a discussion and a
summary. In the Supplementary Material, we provide additional
numerical examples.

2. SEQUENTIAL DESIGN OF COMPUTER
EXPERIMENTS WITH EXPLORATORY
PHASE

In this section, we describe the classical case, in which a sequential
design method is used in combination with an exploratory phase.
First, we introduce Gaussian process emulators (GPE) as the
main tool. Second, we outline the general structure of sequential
design of experiments (SDoE) methods. Third, we explain the
purpose of the exploratory phase. And fourth, we recap the
sequential design method for solving Bayesian inverse problems.
The first three sections are general and independent of the
problem type at hand. Only the last section is specific to solving
Bayesian inverse problems.

2.1. Gaussian Process Emulators
This section provides a very short introduction to our notation
for Gaussian process emulators. More details can be found in
the literature (e.g., Sacks et al., 1989; Kitanidis, 1997; Stein, 1999;
Kennedy and O’Hagan, 2001; Higdon et al., 2004; O’Hagan, 2006;
Rasmussen and Williams, 2006).

2.1.1. Conditioning
Let � ⊆ R

np be an input domain (e.g., a model’s parameter
space) and let u :� → R

no be a model function mapping input
parameters to somemodel output. The function u is usually given
in the form of some simulation software, and we assume that
each evaluation is computationally expensive. To emulate u, we
use a Gaussian process emulator U0 ∼ GP

(

m0, k0
)

with mean
functionm0 and covariance function k0.

Now, let x1, . . . , xn ∈ � be a number of points in
the input domain, at which the output u (x1) , . . . , u (xn)
is observed. Conditioning the (prior) GPE U0 to these n
observations leads to a conditioned emulator Un, which itself
is a GPE: Un ∼ GP

(

mn, kn
)

. To compute the conditional
mean and covariance function, we define the residual vector
r = [u (x1) −m0 (x1) , . . . , u (xn) −m0 (xn)] and the covariance
matrix Q by [Q]ij = k

(

xi, xj
)

, and for a point x ∈ �, we

define the covariance vector q (x) : =
[

k (x1, x) , . . . , k (xn, x)
]

.
We then obtain

mn (x) = m0 (x) + q (x)Q−1r⊤,

kn
(

x, x′
)

= k0
(

x, x′
)

− q (x)Q−1q(x′)⊤, (1)

which is well-known in hydro(geo)logy under the name of
Kriging, yet applied to a model output as a function of its
parameters, not to some parameters as a function of space.

If themodel output is multivariate (no > 1), then we construct
an independent GPE for each output component.

2.1.2. Mean and Covariance Functions
The results of this work hold for GPEs with any kind of mean
and covariance function. This section summarizes the mean
and covariance functions used in the numerical examples of
this article.

The mean function used for all GPEs in this article is the
constant zero mean: m0 (x) = 0. Alternatively, the mean could
also be set as unknown which is sometimes referred to as
ordinary Kriging, as polynomial function (universal Kriging)
or any other function like a simplified mechanistic model
(e.g., Machac et al., 2018).

The two types of covariance function used in this article are
the squared exponential covariance function (e.g., Santner et al.,
2003; Rasmussen andWilliams, 2006) and the Matérn covariance
function (e.g., Handcock and Stein, 1993; Stein, 1999; Diggle
et al., 2003; Minasny andMcBratney, 2005; Diggle and Lophaven,
2006; Rasmussen and Williams, 2006) with the former being
a special case of the latter. These are based on a normalized
distance d

(

x, x′
)

between two points x and x′, which can be
expressed as d

(

x, x′
)

=
∥

∥L−1
(

x− x′
)∥

∥

2. Here, the matrix L
contains correlation length information about the input domain.
If the model function is assumed to be isotropic, then L =
λI, i.e., matrix L is the identity matrix I multiplied with a
scalar correlation length parameter λ. If the model function is
assumed to be anisotropic with axis-aligned anisotropy, then
L is a diagonal matrix with the individual correlation length
parameters on the diagonal: L = diag

(

λ1, λ2, . . . , λnp
)

. Non-
axis-aligned anisotropic cases are possible, too, but will not be
considered in this article.
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With a distance d, the squared exponential (SE) covariance
and Matérn covariance have the following form:

kSE
(

x, x′
)

= σ 2 exp

[

−d(x, x′)2

2

]

kMatérn
(

x, x′
)

= σ 2 2
1−ν

Ŵ (ν)
·
(√

2ν d(x, x′)
)ν

Kν

(√
2ν d(x, x′)

)

.

Here, σ 2 is a variance parameter, and ν is a smoothness parameter
(only present in theMatérn covariance function). Furthermore,Ŵ
denotes the gamma function and Kν denotes the modified Bessel
function of the second kind. Thereby, kSE

(

x, x′
)

is the limit of
kMatérn

(

x, x′
)

for ν → ∞.
We call the parameters that define the mean and covariance

function hyperparameters (as opposed to the elements of �,
which are called input parameters) and denote them as θ . To
indicate the dependence on the hyperparameters, the mean and
covariance functions will be calledmθ and kθ .

2.2. Sequential Design of Computer
Experiments: General Structure
Comparing SDoE methods from the literature (Kushner, 1964;
Jones et al., 1998; Williams et al., 2000; Bichon et al., 2008;
Ranjan et al., 2008; Picheny et al., 2010; Bect et al., 2012; Mockus,
2012; Balesdent et al., 2013; Shahriari et al., 2016; Sinsbeck and
Nowak, 2017; Ginsbourger, 2018), we find that they all share
the same general structure. They all revolve around a quantity
of interest QoI = q (u) that depends on a computationally
expensive function u. This quantity of interest can, for example,
be the location of the minimum of u or a failure probability or
a posterior distribution. To obtain an accurate estimate of q (u)
while keeping the number of function evaluations of u small,
the function u is emulated by a GPE U0. During the SDoE, the
algorithm selects a sequence of design points x1, x2, . . . , xn ∈ �.
These are the parameter vectors for which the model function
u is evaluated. In the beginning, the first design point x1 is
selected and the function u is evaluated at that point, so we
obtain the first observation u (x1). Then, the emulator U0 is
conditioned to the observation u (x1). Based on the conditioned
emulator U1, the next design point x2 is selected, the function
u is evaluated and the emulator U0 is conditioned to u (x1) and
u (x2). This procedure is repeated, with more and more design
points being added, until an exit condition is met. After the
final iteration, the emulator U0 is conditioned to all observations
u (x1) , u (x2) , . . . , u (xn), and an estimate of q is computed based
on the final conditioned emulator Un. The computational rule
to make this estimate for q based on an emulator U is called an
estimator (Bect et al., 2012) and is denoted by q̂ (U).

The sampling strategy for selecting the next design point is
typically based on an acquisition function α. The acquisition
function is a function of x and of the conditioned emulator
from the previous iteration Ui−1. Its minimum defines the next
design point:

xi = argmin
x∈�

α(x,Ui−1).

The specific formula for the acquisition function depends on the
problem at hand.

Figure 2 is a flow chart showing the general structure of SDoE
methods. Note that the GPE U0 is an input to the method,
so U0 with its hyperparameters needs to be selected before the
sequential design can be started. This is the purpose of the
exploratory phase.

2.3. Exploratory Phase
Hyperparameters are usually estimated initially in a separate
sampling phase, called the exploratory phase (e.g., Jones et al.,
1998;Williams et al., 2000; Bichon et al., 2008; Ranjan et al., 2008;
Picheny et al., 2010; Bect et al., 2012; Balesdent et al., 2013). In this
phase, the function u is sampled on a space-filling set of design
points, the so-called initial design. The initial design is typically
chosen randomly (e.g., Bichon et al., 2008; Wang and Jegelka,
2017), quasi-randomly [e.g., latin hypercube sampling (Jones
et al., 1998; Williams et al., 2000; Ranjan et al., 2008; Picheny
et al., 2010; Bect et al., 2012; Balesdent et al., 2013)] or by hand
(e.g., corners of the domain Picheny et al., 2010). Using the model
responses on the initial design, the hyperparameters are found
via maximum-likelihood (ML) estimation or, if a prior exists,
via maximum-a-posteriori (MAP) estimation. Some authors
suggest to validate the hyperparameters to assure generalizability
(Jones et al., 1998; Forrester et al., 2008; Kleijnen, 2018). The
corresponding GPE is then conditioned to the model responses
on the initial design to form the prior GPE U0, see Figure 2.

While often not stated explicitly, the exploratory phase
has a second purpose besides estimating hyperparameters:
guaranteeing a minimum degree of exploration. This can be
useful, if the acquisition function on its own overemphasizes
refinement over exploration. An exploratory phase in the
beginning can compensate for this to some extent. This means
that, even if we can find appropriate hyperparameters without an
exploratory phase, we might not be able to eliminate it due to its
other purpose.

The iterative re-estimation of hyperparameters is then
conducted during the subsequent sequential design phase.

2.4. Sequential Design for Bayesian Inverse
Problems
In this section we briefly introduce our notation for Bayesian
inverse problems (Tarantola, 2005; Stuart, 2010) and present
the acquisition function and estimator used to solve such
problems sequentially.

We consider a model function u :� → R
n0 as before.

Additionally we define a random variable X with values in � that
describes the uncertainty in the model input. We assume that X
has a multivariate probability density function (pdf) π . Next, we
assume an additive error model. Ameasurable quantity is defined
by Z = u (X) + ε, where ε is a random error with (multivariate)
pdf pε . Once a measurement of Z is obtained (Z = z), we are
interested in computing the posterior pdf π ′ of X conditional to
the observation Z = z. According to Bayes’ theorem we find:

π ′ (x) = L (x) π (x)
∫

�
L (x0) π (x0) dx0

.
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FIGURE 2 | General structure of sequential design of experiments methods.

Here, L is the likelihood of measuring Z = z if X = x.
It can be computed as L (x) = pε (z − u (x)). The main
difficulty in computing the posterior pdf π ′ lies in the likelihood
function. Each evaluation of the likelihood function requires one
model evaluation.

An SDoE method for solving such Bayesian inverse problems
was developed by Sinsbeck and Nowak (2017). The method has
the general structure as described in section 2.2, so for brevity
we only provide the formula for the estimator q̂ (U) and the
acquisition function α. Details and derivations can be found in
the original article.

The quantity of interest in this case is the likelihood: q = L.
To write the formula for the estimator q̂ (U), we first expand
the previous notation of the likelihood, and add the model as
a second argument: L (x|u) = pε (z − u (x)) . Replacing the
model u by an emulator U leads to a random likelihood L (x|U).
The estimator that is optimal in the average L2-sense is the
average likelihood

q̂ (U) = EU [L (·|U)] . (2)

For the formulation of the acquisition function, we first
define a loss which measures the uncertainty about the
likelihood estimate:

l(U) =
∫

�

Var[L(x|U)]π(x) dx. (3)

Next, let U(x,y) be the GP we obtain after training U to the
additional point (x, y) with y = u(x). Ideally, we would like to
select a design point x, such that the loss l(U(x,y)) is minimized.
The model response y, however, is yet unknown. Fortunately, it
has a known distribution according to the current GP: Y = U(x).
Therefore, we define the acquisition function as the expected loss:

α(x,U) = EY [l(U(x,Y))].

In words, this acquisition function represents the residual
variance in the likelihood estimate after the next model
evaluation, averaged over the possible yet unknown
model responses.

The definition of this acquisition function α does not require
the random field U to be Gaussian. It is generally defined for
both Gaussian and non-Gaussian random fields. The numerical
computation of α, however, is only tractable in the Gaussian case,
because then conditioning is linear, see Equation (1), and the
conditional variance is independent of the model response. In
the general non-Gaussian case, the computation of α is infeasible
with current means.

3. HYPERPARAMETER ESTIMATION
WITHOUT EXPLORATORY PHASE

Hyperparameters are unknown at the beginning of the
algorithm. Therefore, we will model them as random variables.
With this change, our GPE U0 becomes a non-Gaussian random
field, because a mixture of Gaussian distributions with different
means and variances is not Gaussian anymore. Therefore, we
need to revisit all steps in the algorithm that involve the random
field. These are (i) conditioning the random field to model
evaluations, (ii) computing the acquisition function α and (iii)
computing the estimator q̂. These steps will be addressed in the
following sections.

3.1. Hyperparameters Are Random
We now consider the case where the modeler has decided to use
a mean function and covariance function of a certain type, but
does not know how to select the hyperparameters. Instead of
selecting fixed numbers, we make the hyperparameters random
themselves by assigning them a prior distribution (e.g., Higdon
et al., 2008; Snoek et al., 2012; Hernández-Lobato et al., 2014).
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We summarize all of the hyperparameters in a random vector
2 with pdf p2. Specific realizations of the hyperparameters will
use the lower-case θ . To denote the dependence of the mean and
covariance functions on the hyperparameters, we write mθ and
kθ . Furthermore, we denote the Gaussian subfield of U with any
given set of hyperparameters θ as U(θ).

If hyperparameters are completely unknown, it is also possible
to infer them with prior-free methods, such as maximum-
likelihood estimation. An argument for doing so is that finding a
prior itself is an additional modeling step that potentially can go
wrong. After all, it is not immediately clear why selecting a prior
is easier in practice than selecting specific hyperparameter values.
With the following subsections, we argue, why it is beneficial to
select a hyperparameter prior, and in the numerical experiments,
we demonstrate that it is possible to select an appropriate prior
according to some simple rules of thumb.

3.1.1. The Role of the Hyperparameter Prior
Here, the prior is not meant to be a Bayesian expression
of belief (Jaynes, 2003). We rather understand the prior as
a mathematical tool to avoid extreme values that might lead
to numerical problems. Such a prior is called a regularizing
prior (Gelman et al., 2017). At early stages in the iterative
procedure, when the model has only been evaluated a few times,
the prior is meant to center the hyperparameters on some
plausible values. With more model evaluations available, the
hyperparameter likelihood will become more informative and
the prior is expected to play a diminishing role. To achieve this
behavior, we select a prior with a relatively large variance.

3.1.2. Finding a Hyperparameter Prior
In this section, we provide a possible practical rule for
finding an actual hyperparameter prior. In the numerical
experiments in section 4, we will show that this rule
is good enough to provide good results. Of course,
other options are possible, too, such as Gamma priors
(e.g., Higdon et al., 2008; Hernández-Lobato et al., 2014).

All of the hyperparameters considered are strictly positive,
so we describe them with a log-normal prior. To find the
distribution parameters µ and σ 2 of the log-normal distribution
for each hyperparameter, we think in terms of (soft) upper and
lower bounds (blower, bupper) and set these to be the ±2σ -values
in log-space:

µ + 2σ = log
(

bupper
)

µ − 2σ = log
(

blower
)

.

With this construction, the two soft bounds roughly correspond
to the 5 and 95%-percentiles of the log-normal distribution. For
the individual hyperparameters, we suggest the following upper
and lower bounds:

• Correlation length l. The length of the input domain can be
expected to be a safe upper bound for the correlation length.
A GPE with that correlation length is essentially a constant
function, so larger values do not seem to be meaningful. As
a lower bound, we suggest using a value around 1/100th to
1/1.000th of the domain length. Expecting a correlation length

smaller than that would mean that the function u has some
very high frequency effects. That, in turn, would mean that
meaningful interpolation with few function evaluations is not
possible anyways. In those cases, GPE-based methods are not
expected to work efficiently and it is probably better to use a
different approach entirely.

• Variance σ 2. To find bounds for the variance, we can use the
measurement value z as an orientation, because it should be
a plausible realization of the GPE. Since we only consider
random fields with a zero-mean for simplicity, we use the raw
second moment of z as an anchor point. We multiply this
anchor point by at least a factor of 10 and 1

10 to obtain an upper
and lower bound, respectively.

• Smoothness parameter ν. We set the lower bound to
0.5. This is the well-known edge case, where the Matérn
covariance becomes an exponential function (e.g., Minasny
and McBratney, 2005). At this value or below, realizations
of the GPE are not differentiable, while most models are
differentiable in most parts of the parameter domain. For the
upper bound, we suggest the value 10. While it is desirable
to allow large ν values to describe very smooth functions,
very large values lead to numerical problems when evaluating
the covariance function. Here, the upper bound of 10 can be
understood as a regularization. The numerical examples will
show that this upper bound is good enough.
In cases where the model function is known to be
infinitely smooth, it is suggested to use a squared-
exponential covariance function and avoid the
hyperparameter ν altogether. Thereby, potential
difficulties in hyperparameter estimation can be reduced
(see e.g., Kaufman and Shaby, 2013).

3.2. Conditioning Non-gaussian Random
Fields
A GPE with random hyperparameters becomes a conditionally
Gaussian random field (Kitanidis, 1997). It is still a random
field, but generally a non-Gaussian one. Conditional to a specific
hyperparameter vector, it becomes Gaussian again. Such a non-
Gaussian random field can also be thought of as an uncountable
Gaussian mixture (Hennig and Schuler, 2012).

In the sequential design method, finding the hyperparameters
is a secondary goal that only serves the primary goal of solving
the problem at hand. Therefore, we do not need to find
the hyperparameters in a deterministic sense. We may retain
uncertainty about the hyperparameters as long as the effect on
the estimated quantity of interest q̂ is small. This leads us to two
possible ways of handling uncertain hyperparameters (Shahriari
et al., 2016):

The first way is to consider them as what they are—
random variables (e.g., Osborne et al., 2009; Brochu et al.,
2010; Snoek et al., 2012; Garnett et al., 2014). When the
model function is evaluated at a number of points, then these
observations

(

xi, u(xi)
)

define a marginal posterior distribution
for the hyperparameters. Usually there is no analytical expression
for this distribution, but its density function can be evaluated
pointwise, so we can approximate the distribution with a sample
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from a Markov Chain Monte Carlo (MCMC) method (Hastings,
1970). A posterior sample of the hyperparameters is useful in
two ways :

1. It allows us to approximate the conditioned random field as
a countable Gaussian mixture model. To do so, we draw a
posterior sample of the hyperparameters, construct a GPE
with each realization and then condition each GPE to the
model evaluations.

2. With such a sample, we can approximate any expected value
over the hyperparameters (E2

[

f (2)
]

, where f can be any
arbitrary function). In the following, we regard such integrals
over 2 as feasible (as long as the inner function f is easy
to compute).

The second way of handling uncertain hyperparameters is to
make a point estimate of them, typically the MAP estimate θMAP

orML estimate θML. While this approach neglects the uncertainty
about the hyperparameters, it has two advantages. First, it reduces
the random field to a Gaussian one and, second, it does not
require any sampling because the point estimates can be found
by optimization.

3.3. Computing the Acquisition Function
In this section, we present and discuss different methods for
computing the acquisition function, when hyperparameters are
random. The first method is to apply the acquisition function
to the non-Gaussian random field. Since this is not always
possible, we introduce three different simplified approaches:
dynamic MAP estimation, criterion averaging, and Gaussian
process linearization. These simplifications only require us to
evaluate the acquisition function on Gaussian random fields.
The first two simplified approaches are established and can be
found in the literature (see references in the following sections)
while the third one, Gaussian process linearization, is novel and
presented here for the first time.

3.3.1. Computing or Approximating the Full

Acquisition Function
Conceptually themost straightforwardway of handling unknown
hyperparameters is to incorporate them into the random field
and simply compute the acquisition function α (x,U) on the
resulting non-Gaussian randomfieldU. Whether this is tractable,
depends on the acquisition function.

In Bayesian Optimization, many acquisition functions have a
very simple form. Examples are the probability of improvement,
the expected improvement and Thomson-sampling (Thompson,
1933; Kushner, 1964; Shahriari et al., 2016). Applying these to a
conditionally Gaussian random field is possible either analytically
or with a Monte-Carlo (MC) approximation (more on that below
in section 3.3.3).

However, there are also acquisition functions where this is not
possible, most notably so called information-based acquisition
functions (e.g., Villemonteix et al., 2009; Bect et al., 2012;
Hennig and Schuler, 2012; Balesdent et al., 2013; Hernández-
Lobato et al., 2014; Sinsbeck and Nowak, 2017; Wang and
Jegelka, 2017). These acquisition functions quantify how much
information is gained by conditioning the emulator to a certain

model response. But since the future model response is not
observed yet, they consider the average over possible model
responses. This structure makes it infeasible to compute or
approximate such acquisition functions on a random field that
is only conditionally Gaussian.

3.3.2. Dynamic MAP Estimation
In this approach, we dynamically estimate hyperparameters
via their maximum-a-posteriori (MAP) estimate. This
approach is a Bayesian variant of the common re-estimation of
hyperparameters, specified by two characteristics: first, a new
hyperparameter estimate is made in each iteration. Second, there
is no exploratory phase, only those evaluations of u are used
that are made within the sequential design method anyway.
This means that, in the first iteration, the hyperparameters
are determined using only the hyperparameter prior. Then, in
the second iteration, the prior is combined with the likelihood
from the first evaluation. In the third iteration, the first two
evaluations are used, and so on. If we made a maximum-
likelihood estimate instead of a MAP estimate, then we would
obtain a prior-free method.

In this context, note that the re-estimation of hyperparameters
might require additional considerations. For example, Picheny
et al. (2010) argue that re-estimating hyperparameters can be
problematic: design points are specifically chosen, such that
the model response is close to the measurement (or, in the
case of their article, close to a threshold). That way, the
model function’s variance might be underestimated or the
hyperparameter estimate might be biased in other, unforeseen
ways. The article, however, does not provide an example of this
problem and in the current study we did not encounter any
such problems.

3.3.3. Acquisition Function Averaging
A second approach is to average the acquisition function
over the hyperparameters to obtain the so-called integrated
or marginalized acquisition function (e.g., Snoek et al., 2012;
Hernández-Lobato et al., 2014):

αaverage (x,U) : = E2

[

α(x,U(2))
]

,

where the hyperparameters 2 are distributed according to
the most current hyperparameter posterior. If the original
acquisition function α itself is a probability or an expected value
over the random fieldU, then, by the law of total probability/total
expectation, it follows that αaverage = α. Two examples for
such acquisition functions are the probability of improvement
and the expected improvement in Bayesian optimization (Snoek
et al., 2012). In most cases, however, αaverage will be different
from α. The acquisition function for Bayesian inverse problems,
as presented in section 2.4, is an example for this, because
it internally conditions the GPE to possible model responses,
which implies different hyperparameter posteriors. Therefore,
the hyperparameters cannot be averaged out analytically as
αaverage = α.

As argued in section 3.2, the computation of an expected value
over2 is feasible, if the computation of the inner term is feasible.

Frontiers in Artificial Intelligence | www.frontiersin.org 7 August 2020 | Volume 3 | Article 52

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Sinsbeck et al. Exploratory-Phase-Free Estimation of GP Hyperparameters

Here, this is the case, because for any realization θ , the emulator
U(θ) is Gaussian, and we assume the acquisition function to be
computable on GPEs. Besides the obvious MC-estimate of the
expected value (Brochu et al., 2010; Snoek et al., 2012), there also
exist approximation-based approaches (e.g., Garnett et al., 2014).

3.3.4. Gaussian Process Linearization
A third simplification is to replace the non-Gaussian random
field by a GPE with the same mean and covariance function.
Given the most current distribution of the hyperparameters
2, the overall mean and covariance function of U can be
computed as

m (x) = E [U (x)] = E2 [m2 (x)]

k
(

x, x′
)

= Cov
[

U (x) ,U
(

x′
)]

= E2

[

k2

(

x, x′
)]

+ E2 [(m2 (x)

−m (x)) (m2(x
′)−m(x′))

]

.

These can numerically be approximated via an MC-estimate
after drawing an MCMC sample of the hyperparameters θ ,
see section 3.2. Recall that mθ and kθ denote the mean and
covariance function of U(θ). Next, we define the linearized GPE
as Ulinearized ∼ GP

(

m, k
)

and obtain the acquisition function

αlinearized (x,U) : = α(x,Ulinearized).

We call this method linearization, because it allows us to use
the linear conditioning equations, see Equation (1). The second
term on the right-hand side of the covariance function translates
hyperparameter uncertainty into a larger covariance. That way,
the hyperparameter uncertainty enters the acquisition function
in a linearized way.

Furthermore, Gaussian process linearization is the only
approach that is, in principle, applicable to random fields that
are not even conditionally Gaussian, such as the square of a GPE
(compare Zinn and Harvey, 2003).

3.4. Estimating the Quantity of Interest
Similarly to the acquisition function, handling the estimator
q̂ depends on the type of problem at hand. In Bayesian
optimization, the estimator simply returns the design point
with the lowest value in the objective function. This does not
require any change if the emulator is non-Gaussian. In most
problem types, such as in estimation of failure probabilities
and in Bayesian inverse problems, the quantity of interest is a
probability or an expected value, so we can apply the law of total
probability/total expectation and obtain

q̂ (U) = E2

[

q̂
(

U(2)
)]

.

This expression can, again, be computed with an MC-estimate.
Alternatively, if the hyperparameters are handled as a point

estimate anyways, e.g., θMAP, then we could approximate

q̂ (U) ≈ q̂
(

U(θMAP)
)

.

If the hyperparameter posterior is very much concentrated, then
this can be a good approximation.

4. NUMERICAL EXPERIMENTS

With the numerical experiments in this section, we assess
whether hyperparameter can be estimated without an
exploratory phase (as mentioned earlier, this does not yet
mean that we can eliminate the exploratory phase, which
is tested in section 5). To evaluate the performance of our
methods, we compare them with random guessing and
the hypothetical case miracle, where hyperparameters are
already known.

Random guessing assumes that a hyperparameter prior is
available as described in section 3.1.2. From this prior, we
randomly draw hyperparameters and run the SDoE method.
This approach is supposed to show that just knowing the prior
is not enough. If random guessing performs poorly and the
exploratory-phase-free methods perform much better, then this
confirms that the hyperparameter prior did not contain hidden
information for solving the problem and, furthermore, that
finding a prior by hand is much easier in practice than finding the
hyperparameters themselves.

In the case miracle, we use hyperparameters that are expected
to be close to optimal. These were found by maximum
likelihood estimation from various samples (both space filling
and from the posterior of the inverse problem). Then, the
hyperparameters that performed best were selected by hand.
Since these hyperparameters are based on extensive sampling of
the model functions, they use information that is not available
in practice. Therefore, they serve as a “best-case” benchmark.
If the exploratory-phase-free methods perform similarly to the
miracle case, then we conclude that they successfully found good
enough hyperparameters.

As mentioned before, we will only test these exploratory-
phase-free approaches in an SDoE method for Bayesian
inverse problems. Whether the results are transferable
to other problem types will be discussed below in
section 6.1.

To compare the various approaches, we perform two
experiments. In the first experiment, we provide a general
overview of the performance of the different approaches.
In the second experiment, we examine a slightly higher-
dimensional problem with a larger number of hyperparameters.
To provide more evidence for the results of this work, two
more experiments are reported as Supplementary Material to
this article.

All experiments are written in python. MAP estimates
were found using the BFGS method (a local optimizer in the
standard scipy-library). For MCMC sampling , the package
Emcee (Foreman-Mackey et al., 2013) was used. It implements
the “Affine Invariant Markov chain Monte Carlo Ensemble
sampler” (Goodman and Weare, 2010).

The research code for all of the results is available online1.

1github.com/MichaelSinsbeck/paper_hyperparameters-without-exploratory-phase
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TABLE 1 | Soft bounds for the hyperparameter prior.

Corr. length λ Variance σ
2 Smoothness ν

blower bupper blower bupper blower bupper

Default 10−2 100 10−2 101 0.5 10

Wide upper & lower 10−3 101 10−3 102 0.5 10

Wide upper 10−2 101 10−2 102 0.5 10

Narrow 10−2 10−1 10−2 10−1 0.5 10

These bounds roughly correspond to the 5 and 95%-percentiles of the hyperparameters,

see section 3.1.2.

4.1. Experiment 1: Source Identification
In the first experiment, we consider a problem that has been
used as a test case in a number of publications on inverse
problems (e.g., Marzouk et al., 2007; Li and Marzouk, 2014;
Sinsbeck and Nowak, 2017). It consists of the two-dimensional
diffusion equation on the unit square [0, 1]2:

∂c(ξ , t)

∂t
= ∇2c(ξ , t)+ s (ξ) .

Here, t denotes time and ξ denotes coordinates in the spatial
domain (the unit square). Furthermore, c(ξ , t) is concentration
and s (ξ) is a source term, given as

s (ξ) = s0

2πh2
exp

(− |X − ξ |2
2h2

)

,

where X is the location of the source. Identifying X from
concentration measurements is the purpose of this inverse
problem. We assume a uniform prior for the source location
X ∼ U([0, 1]2). The other variables are deterministic with s0 = 2
and h = 0.05, and the initial condition is set to c (ξ , 0) = 0. On
the boundary, we impose no-flux boundary conditions.

At two time steps t1 = 0.1 and t2 = 0.2, the concentration
c is measured on a 3 × 3 grid spanned by the corners of the
domain, resulting in a total of 18 measurements, so the model
function u :R2 → R

18 maps a two-dimensional source location
to 18 concentration values. For each measurement, i = 1, . . . , 18,
an additive and independent normally distributed error εi ∼
N

(

0, 0.12
)

is assumed. A virtual measurement is generated by
setting the source position X = (0.25, 0.25), running the forward
simulation on a fine grid of resolution 2048 × 2048, and adding
random noise. For the solution of the Bayesian inverse problem
itself, the diffusion equation is solved on a 512 × 512 grid. The
two grid resolutions are different to avoid a so-called inverse
crime (Kaipio and Somersalo, 2007) (this is when the samemodel
is used for data generation and inverse, resulting in a particularly
well-posed inverse problem).

As a stochastic grid for the input parameter X, we choose a
regular 51×51 grid. This grid is used within the sequential design
for computing the stochastic integrals and also for optimizing
the acquisition function (by complete enumeration on this grid).
Furthermore, this grid is used for computing the reference
posterior and errors between approximate posteriors and the
reference posterior.

FIGURE 3 | Error plot: exploratory-phase-free methods vs. random guessing

and case miracle.

The model function is emulated by a GPE of Matérn type
with zero mean. The 18 output components of the model are
assumed to be independent and identically distributed, meaning
that we use the same hyperparameters for all 18 components.
For defining the hyperparameter prior, we use the procedure
presented in section 3.1.2. The soft bounds are summarized in
Table 1, in the first row under the name “default.”

4.1.1. Exploratory-Phase-Free Methods vs. Random

Guessing and Miracle
Figure 3 shows the error in estimating the posterior over the
number of iterations. The error is measured in terms of the KL-
divergence between reference posterior and estimated posterior
(discretized on the 51 × 51 stochastic grid). The plot shows
the error resulting from the various exploratory-phase-free
methods, from random guessing and from the miracle case (with
hyperparameters λ ≈ 0.34, σ 2 ≈ 0.034 and ν ≈ 5.5 found from a
large space-filling sample). The random guessing result is shown
as a line (geometric mean of the 21 errors) and a shaded area
(span of the 21 errors).

The plot shows that all three exploratory-phase-free methods
work drastically better than random guessing. With 30 model
evaluations, these methods achieve an error that is smaller
by a factor of 104 compared to the mean error achieved by
random guessing. The error plot of the three exploratory-
phase-free methods and of the miracle-case essentially show the
same performance: none of the exploratory-phase-free methods
performs systematically worse than the miracle case. In other
words, the parameter estimation comes as a byproduct and does
not require additional model evaluations.

For a more intuitive perspective, Figure 4 shows the final
designs of the three exploratory-phase-free methods. The
posterior mostly consists of one mode. All three methods focus
their design points almost entirely on this mode.

All three designs achieve an accurate likelihood estimate
even in those parts of the parameter domain that are largely
unexplored. This might seem surprising but it can be explained
as follows: Recall that the likelihood estimator is defined as
the average likelihood over the GP U, see Equation (2). This
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FIGURE 4 | Visual impression of the designs in experiment 1. The blue background shows the true posterior of the input parameters. It consists of one mode close to

(0.25, 0.25).

likelihood will only be large if, according to the GP U, it is
reasonably plausible that the model output is close to the data.
In this case, the likelihood estimates in the unexplored areas is
small which, in turn, means that the GP, despite its uncertainty, is
confident enough that the model output will not match the data
in these areas.

4.1.2. Computing Times
So far, we have only discussed the errors as a function of
number of model evaluations. This makes sense if the model is
computationally expensive. Still, each of the methods requires
additional computing time for finding the optimal design points.
This additional computing time is reported in Table 2.

The first three columns show what computations are carried
out in each iteration. The dynamic MAP estimate first optimizes
the hyperparameters and then computes the acquisition function
in each iteration. The linearization approach performs an
MCMC and then computes the acquisition function. The
average criterion approach first performs an MCMC and
then computes the acquisition function for each realization of
hyperparameters. In our case, we picked a small sample size
of 24.

The last column shows the overall computing time required
for finding the optimal design points (in 30 iterations). This
time is to be added on top of the time required for the model
evaluations. The table shows that a large part of the computing
time is taken by theMCMC sampler. The dynamicMAP estimate
does not require an MCMC and so is the fastest approach.
However, these differences can be regarded as small when
compared to the time required for evaluating the model function
u (by assumption u is computationally expensive).

In summary, we recommend the use of dynamic MAP
estimation for practical applications. While all three methods
achieve roughly the same error level, dynamic MAP estimation is
the fastest one and the easiest one to implement. In the following

TABLE 2 | Number of sub-steps required for each approach and corresponding

computing times (for 30 iterations).

# optimization of # MCMC # optimization of Computing

hyperparameters acq. function time [h:mm]

Dyn. MAP 1 - 1 0:10

estimate

Average - 1 24 7:34

criterion

Linearization - 1 1 4:42

experiments, we will only consider the dynamic MAP estimation
approach as the additional effort in the two other approaches does
not provide any benefit.

4.1.3. Sensitivity to the Prior
As explained in section 3.1.1, the approach of considering
uncertain hyperparameters is only useful if finding a prior is
easier in practice than finding the parameter values themselves.
Furthermore, we introduced the hyperparameter prior with the
intent that its influence diminishes as more and more model
evaluations are done. In this section, we assess the sensitivity of
the estimated solution of the inverse problem with respect to the
choice of the hyperparameter prior.

To do so, we compare four different variants of the prior
selected in the previous sections. The hyperparameter soft
bounds for the four priors are shown in Table 1. The case
“default” refers to the prior used before. The case “wide upper
& lower” expands all bounds of the correlation length and the
variance by a factor of 10. The case “wide upper” expands only
the upper bounds of the correlation length and the variance.
Finally, the case “narrow,” sets very narrow soft bounds for both
correlation length and the variance, covering only one order

Frontiers in Artificial Intelligence | www.frontiersin.org 10 August 2020 | Volume 3 | Article 52

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Sinsbeck et al. Exploratory-Phase-Free Estimation of GP Hyperparameters

FIGURE 5 | Error plot: comparison of different hyperparameter priors (with

dynamic MAP estimation).

of magnitude. The soft (95%) upper bound for the correlation
length with a value of 0.1 is deliberately chosen to not contain
the value found by the map-method in the first experiment
(which was approximately 0.34). To keep the results clear,
we only apply the dynamic MAP estimation methods for all
four priors.

Error plots are shown in Figure 5. The four plots show similar
error behavior and the differences are small compared to the
advantage gained from considering uncertain hyperparameters
instead of fixed ones. Overall, we conclude that the results
are not overly sensitive to the choice of a prior. This
means that, in practice, selecting a suitable hyperparameter
prior is feasible and much easier than finding appropriate
fixed hyperparameter values. This beneficial insensitivity is,
among others, thanks to the chosen lognormal prior, as it
does not exclude any values like a bounded distribution
would do.

4.2. Experiment 2: Sorption
In the second experiment, we consider a slightly higher-
dimensional problem with six input parameters. This time, the
model function can be considered anisotropic, which means that
each input parameter is expected to have a different influence
on the model output, so we assign each input an individual
correlation length. The estimation of individual correlation
length parameters is called automatic relevance determination
(Rasmussen and Williams, 2006; Shahriari et al., 2016).

This second experiment is based on simulations done by
Nowak and Guthke (2016) who provided us with input-output
data sets of their simulations. The current experiment is entirely
done on this data set, so no additional simulation runs were
carried out. Thus, the prior over the parameter domain is a
discrete distribution defined by a sample of 51,000 points. The
model output for each of these points is given in the data set as
well, so a model evaluation here is simply a table lookup. Since we
are measuring the computational effort in number of evaluations,
this setup still works as an exemplary test case and the results
are transferable to real cases, where the model function is an
actual simulation.

FIGURE 6 | Error plot: exploratory-phase-free methods vs. random guessing.

The simulation behind the data set considers the transport
of a contaminant through a low-conductivity clay layer in the
subsurface. The important processes here are diffusion and
sorption. Contaminant transport is modeled using the one-
dimensional diffusion equation. Sorption is modeled using the
Freundlich model (Nowak and Guthke, 2016; Fetter et al.,
2018). The six input parameters consist of material parameters
of the clay layer and the dissolved component (porosity,
density, solubility and molecular diffusion), as well as two shape
parameters within the Freundlich model. The output quantity of
the model is a time series of the contaminant concentration at the
lower boundary of the clay layer and consists of 20 concentration
values. Measurement data is generated synthetically by picking
one realization as the artificial truth and adding random noise.
The precise setup of the simulation can be found in the original
article by Nowak and Guthke (2016) but is not important for the
study at hand.

In this experiment, we use GPs with squared exponential
covariance. Furthermore, we use a random implementation of
the sequential design: we pick a random subsample from the base
sample of 51,000 points and use this subsample for computing
the loss, see Equation (3), via MC estimate and for finding the
minimum of the acquisition function via complete enumeration
on this subsample. To get reliable results, we repeat each trial
multiple times (random guessing: 21 times, all others 51 times)
and consider the geometric mean errors.

Figure 6 compares the dynamic MAP estimation approach
with random guessing and the miracle case. Errors are again
averaged over multiple trials to provide a more robust error.
We observe that picking hyperparameters at random is hopeless
in this experiment. Among the 21 random trials, not even one
was able to reduce the error at all. Our dynamic MAP estimate
approach shows a performance comparable to miracle: at early
times it lags behind the miracle case by about 4 iterations, later it
catches up.

In summary, this section demonstrated that we can
successfully find appropriate hyperparameters without
an exploratory phase. Results of two more experiments
are reported in the Supplementary Material. Next, we
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FIGURE 7 | Left: Error plot, comparison of methods with and without exploratory phase. Right: Final design after exploratory phase with 15 latin hypercube samples.

FIGURE 8 | Error plot, comparison of methods with and without

exploratory phase.

investigate, whether these findings allow us to eliminate the
exploratory phase.

5. CAN WE ELIMINATE THE
EXPLORATORY PHASE?

After seeing that hyperparameter can successfully be estimated
without an exploratory phase, we now assess, whether this means
that we can eliminate the exploratory phase. To do so, we
repeat the previous two experiments with exploratory phases of
different sample sizes, and compare the performance. After that,
we consider a new experiment (a variant of experiment 1), in
which the solution is bi-modal. This experiment illustrates that
the exploratory phase cannot always be eliminated. At the end
of the section, we discuss how one might potentially identify
whether or not the exploratory phase can be eliminated in a
modeling task at hand.

5.1. Exploratory Phase in Experiments 1
and 2
For experiment 1, we employ exploratory phases with sample
sizes 5, 10, 15 and 20. For the initial designs, we use
latin hypercube sampling (LHS). Here, LHS designs serve as
one representative of space-filling designs. Other flavors (e.g.,
maximin LHS) and other approaches (e.g., random sampling)
are possible, too. Furthermore, we compare two different modes:
first, with hyperparameters fixed after the exploratory phase and,
second, with hyperparameters re-estimated via MAP estimate in
every iteration.

The results are shown in Figure 7. Since the performance of
the exploratory phase depends on the random initial sample,
we repeated each design with 21 different initial designs. The
plot shows the (geometric) mean error of these repetitions.
The mean error looks smoother than the error of the other
methods. This, however, is only an artifact of averaging and
does not mean that an exploratory phase leads to a more robust
estimate of the hyperparameters. In fact, each individual run
of the 21 runs shows an error behavior that is as “unsmooth”
as in the three exploratory-phase-free methods. Error bars are
omitted here to avoid visual clutter. They are reported in the
Supplementary Material.

The plot shows that re-estimating hyperparameters in each
iteration works better than fixing them after the exploratory
phase. In both cases, however, the exploratory phase leads to
a larger error compared to the exploratory-phase-free methods.
Only in one case, the exploratory phase led to a similar
performance as the exploratory-phase-free methods—and that is
the case with an initial sample of size 5 and with re-estimation,
which is conceptually the closest one to exploratory-phase-free.

Note that Loeppky et al. (2009) suggest an initial sample
of size of 20 for this case (10 times the dimension of the
input). Following this suggestion here leads to a larger error
compared to leaving out the exploratory phase altogether. From
this we conclude that the context matters: while the suggestion by
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FIGURE 9 | Bi-Modal problem: error plot, comparison of methods with and without exploratory phase.

Loeppky et al. (2009) is useful in other uses of GPEs, it is actually
computationally wasteful in the context of sequential design of
computer experiments.

This experiment also shows that an exploratory-phase-free
approach is only really beneficial, if the model function is
computationally expensive and every model evaluation counts.
As we see in Figure 7, the effect of the initial design wears off as
the number of iterations increases.

Next, in experiment 2, we employ exploratory phases with
sample sizes 10 and 30. Here, initial samples are generated
randomly, because the input parameters are statistically
dependent (LHS designs are constructed for independent
random variables). The results, shown in Figure 8, are similar
to the one in the first experiments: with an exploratory phase,
the performance is strictly worse compared to our exploratory-
phase-free approach and smaller exploratory phases perform
better than larger ones. Furthermore, the results confirm the
common practice to re-estimate the hyperparameters being
better than keeping them fixed.

5.2. Exploratory Phase in a Bi-Modal
Problem
For this experiment, we solve the diffusion equation problem
(Experiment 1) again, but use different locations for the
temperature measurements. Instead of placing them on a 3 ×
3-grid, we place nine measurement points equidistantly along
the center line parallel to the x-axis. In this setup, we cannot
distinguish between heat sources in the top and bottom half, so
the resulting posterior will be symmetric with two modes.

Figure 9 shows error plots with and without exploratory
phase. Here we see, that the exploratory-phase-free methods
(including the miracle case) achieve a small error only after about
30 iterations. Yet, with an exploratory phase, the error decreases
right away.

To see why the exploratory-phase-free approach does not
improve in accuracy in early iterations, Figure 10 shows the
chosen design points. The first 30 design points all lie in the
lower half of the domain, refining around one of the two modes.
Only afterwards, the second mode is found and points are added

FIGURE 10 | Bi-Modal problem: design points after 30 and 50 iterations.

around it as well. While this may seem inefficient, it is still
a rational behavior: by construction, the GPE assumes the 18
output components to be statistically independent.When the first
mode is found, it is very unlikely to the GPE that a second mode
of similar accuracy exists, because this means that all 18 random
variables were close to the data. In other words: this behavior
is a rational consequence of the assumptions put into the GPE.
As the experiment shows, an exploratory phase can solve this
problem. Another solution might be to express a symmetry
assumption in the GPE or to make the 18 output components
statistically dependent.

This experiment highlights, that there are cases, where an
exploratory phase can be beneficial for purposes other than
hyperparameter estimation, so having an exploratory phase can
be valuable.

5.3. Recommendation
Most examples in this work show a better performance if the
exploratory phase is eliminated, while one example performs
better with exploratory phase. This example, however, was
specifically designed for this purpose. With these results, the
authors suggest to eliminate the exploratory phase if (i) the
model is computationally expensive and computational resources
are limited—while surrogate models are already particularly
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beneficial in this context, the elimination can save evenmore time
and resources— and (ii) the problem is expected to be unimodal.
As stated above, this is often the case in hydro(geo)logy, where
models tend to react monotonously to changes in parameters.
But, of course, monotonicity is not a strict requirement. A
problem can be unimodal without the model being monotonous.

6. DISCUSSION AND CONCLUSIONS

In this section, we discuss the generalizability of the results and
provide a summary.

6.1. Generalizability to Other Problem
Types
It remains an open question whether the results can be
transferred to other problem types, such as Bayesian optimization
or estimation of failure probabilities.

The authors conjecture that the results are transferable and
that an exploration-phase-free estimation of hyperparameters is
possible in other SDoE methods as well, but that the balance
between exploration and refinement is important: exploration
often creates larger distances between design points, while
refinement creates smaller distances. By mixing large and small
distances, the design points promise to be useful and informative
for the estimation of hyperparameters. Again, if the acquisition
function used in SDoE is designed to achieve a proper balance,
then this is possible.

6.2. Summary
In this article, we investigated whether GP hyperparameters in
sequential design of experiments methods can be estimated
without a dedicated exploratory phase. To do so, the
hyperparameters are re-estimated in each iteration, either
by MCMC sampling from their marginal posterior or by
maximum-a-posteriori (MAP) estimation. To make the
acquisition function computationally tractable, three different
simplified methods where presented: dynamic MAP estimation,
acquisition function averaging andGaussian process linearization.
All three of these methods showed a performance similar to the
so-calledmiracle-case, in which the optimal hyperparameters are
used from the start. This means that these methods require only
a few additional evaluation of the expensive-to-evaluate model
function to find hyperparameters that are good enough for the
task at hand (i.e., solving Bayesian inverse problems).

Furthermore, the numerical experiments show that
the methods’ performance is rather insensitive to the
hyperparameter prior. This means that, in practice, selecting
an appropriate prior is much easier than selecting the
hyperparameters themselves. This article formulates a specific
and practical rule for finding a hyperparameter prior and
the numerical experiments confirm that this rule works well
in practice.

From the three new methods, the dynamic MAP estimation
is the easiest to implement and also the fastest, because it
does not require an MCMC-sample from the hyperparameter
posterior. Given that all three methods achieve a similar
error, we can generally suggest the use of the dynamic MAP
estimation method.

Further experiments showed that the exploratory phase can
often be eliminated altogether. This could potentially simplify
the overall procedure and make it faster. This, however, is not
always the case. The limitations of eliminating the exploratory
phase were shown in a specifically designed counter-example.

The research code for all of the results is available
online1. Furthermore, the authors provide a python toolbox
for the presented methodology (i.e., sequential design for
Bayesian inverse problems, including hyperparameter estimation
methods) with an easy-to-use interface. It is called bali and
available on github as well2.
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