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Abstract

Communication is an integral part of human life. Today, optical pulses are the preferred 

information carriers for long-distance communication. The exponential growth in data leads to 

a “capacity crunch” in the underlying physical systems. One of the possible methods to deter 

the exponential growth of physical resources for communication is to use quantum, rather than 

classical measurement at the receiver. Quantum measurement improves the energy efficiency of 

optical communication protocols by enabling discrimination of optical coherent states with the 

discrimination error rate below the shot-noise limit. In this review article, the authors focus on 

quantum receivers that can be practically implemented at the current state of technology, first 

and foremost displacement-based receivers. The authors present the experimentalist view on the 

progress in quantum-enhanced receivers and discuss their potential.

I. INTRODUCTION

The communication capacity crunch is upon us,1,2 owing to the exponential expansion 

of the Internet. With monthly Internet traffic of 200 exabytes at the time of writing, the 

underlying communications systems will no longer be able to support the service reliability 

and Internet traffic congestion will only worsen as the exponential trend continues. Claude 

Shannon analyzed and described the limits of a communication channel.3 He found a 

universal relation between information capacity, available channel resources, and noise. 

The connection between information and physics turns out to be even more fundamental. 

This connection is now well-established as a result of the progress in information theory 

and computer science, on one hand,4,5 and quantum physics on the other.6 With physical 

measurement at the heart of communication, the fundamental communication channel limits 

are related to fundamental properties of measurements.
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Quantum theory established tools that quantitatively connect physical measurement and 

communication. In 1962, Gordon found the maximal capacity of electromagnetic (bosonic) 

channels from first principles.7 The connection between the channel’s physical resource 

and its capacity was solidified in the subsequent work.8–15 On one hand,9,10 there is a 

fundamental limit of measurement accuracy that leads to occasional errors in discriminating 

between physical states used for communication called Helstrom bound (HB). On the other 

hand, it was found that commonly used detection techniques such as homodyne/heterodyne 

measurement even with the ideal components are limited by measurement noise7,11–15 due 

to the quantum nature of the photoelectric effect and the Poisson photon statistics of the 

coherent light.16 This inherent noise is called shot noise. This noise prevents reaching the 

rate of errors prescribed by Helstrom’s work.

Thus, at least potentially, quantum measurements can surpass the capabilities of classical 

measurements and improve channel capacity (to within Gordon’s bound). A new field of 

research was born. The main goal of this research is to use quantum effects to surpass the 

shot-noise limited measurement. First practically attainable quantum measurement-based 

receivers were proposed in 1970s.17,18 This pioneering work was followed by further 

theoretical and experimental research, for instance.19–26 The field became particularly 

active in the late 2010s as highly efficient, low dark noise single-photon detectors became 

available.27

Although there are reviews on discrete quantum state discrimination,28–33 there is no 

comprehensive review of experimental efforts in state discrimination of the continuous-

variable states. In this review, we focus on the state-of-the art quantum measurement 

schemes and communication protocols for classical communications with finite sets of 

continuous-variable states, such as coherent states. Because we primarily describe receivers 

that have been practically implemented, the central attention is devoted to coherent 

displacement-based receiver designs. Averting the capacity crunch in global communications 

may require paradigm-shifting research and engineering efforts. Quantum measurement 

could provide new tools that will help take full advantage of communication channels—up 

to the theoretical maximum—and thus enable this paradigm shift.

This review is organized as follows. In Sec. II, we briefly review the theoretical foundations 

of classical and quantum-enabled channels. We introduce a simple classification of the 

communication channels based on the type of encoding and the type of measurement. In 

Sec. III, we discuss conventional and novel communication protocols used for coherent 

optical communication. We compare power limited and bandwidth limited encodings and 

the trade-off between their resource efficiencies. In Sec. IV, we discuss displacement-based 

quantum receivers for discrimination of coherent states. The two main classes of the 

receivers are considered: receivers with adaptive displacement and passive displacement 

receivers. In Sec. V, we outline research efforts beyond displacement receivers and beyond 

the use of coherent states in noiseless communication channels. Section VI summarizes 

advantages and challenges of the potential widespread use of quantum measurement for 

communication and concludes the review.
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II. THEORY OF DETECTION; CLASSICAL SHOT-NOISE LIMIT AND 

QUANTUM HELSTROM BOUND

A. Quantum-enabled channels

Quantum theory revisited the fundamentals of communication. The calculation of 

information capacity limits of conventional communication channels from the first principles 

became possible. Then, questions on using quantum enhancement to improve conventional 

communication channels emerged. Although we expect a higher capacity for a quantum-

enabled channel, additional steps may be required to take advantage of it. A communication 

link requires an encoding scheme that maps user information to physical states and a 

measurement device for a physical state detection. Thus, on the most practical level, 

quantum properties of physical states and measurement need to be considered, potentially 

limiting the practically accessible channel capacity. We will start from the most abstract 

analysis and then consider practical constraints.

In general, a quantum enabled channel supports (1) classical encoding and measurement, 

(2) classical encoding and quantum measurement, (3) quantum encoding and classical 

measurement, and (4) quantum encoding and measurement. The information capacity of 

quantum-enabled channels is bounded from above by Holevo’s theorem.8

From a quantum standpoint, electromagnetic waves are described by expanding them to a 

series of orthogonal modes and prescribing each mode a discrete number of excitations, i.e., 

photons. For the sake of simplicity, we assume communication via a single spatial mode, 

which is most commonly the case. Then, the number of orthogonal modes is directly related 

to the frequency bandwidth B of the channel. The average number of photons per state n 
is directly proportional to the average energy: E = ħωn. The average power is W = EB = 

nħωB. After substituting the maximal achievable entropy per optical mode to the Holevo 

theorem, one finds the capacity of a lossless and noiseless quantum-enabled channel:7

CQ = B log2 1 + W
ℏωB + W

ℏωlog2 1 + ℏωB
W . (1)

Therefore, the number of modes and the average energy of an optical state fully describe 

the physical resource use when electromagnetic waves are used as information carriers. This 

important result is referred to as Gordon capacity (or Holevo bound). To aid comparison, 

the channel capacity is often divided by the channel bandwidth. Then, normalized channel 

capacity CQ/B conveniently characterizes the spectral efficiency. Formally, the spectral 

efficiency is measured in bits, but often units bits/s/Hz are used to emphasize the physical 

meaning of C/B as a measure of data rate in bits per second over a channel with a bandwidth 

of 1 Hz. CQ/B is also used for classification of communication protocols34,35

CQ/B = log2 1 + W
ℏωB + W

ℏωBlog2 1 + ℏωB
W . (2)

In a classical limit, W ≫ Bħω, so the second term nearly vanishes, and the capacity 

becomes CQ ≈ CShannon = B log2(1 + W/(ħωB)). This result is identical to a classical 

channel capacity given by the Shannon limit, where W/(ħωB) is a signal to noise ratio.
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In a photon-starving regime, W ≪ Bħω capacity is mainly defined by the second term in 

(2). This result can be interpreted as follows. For low input power, one can use several 

orthogonal modes and, each time they send the entire available energy (a single photon) in 

one mode. The more modes are available, the more bits of information can be encoded per 

photon. For example, if one photon can be sent per time interval T, then for an available 

bandwidth B, one can divide this interval into M = BT slots. The information can be 

encoded by sending a photon in a particular time slot. The number of encoded bits is 

log2BT. Therefore,

COME = log2BT
T = W

ℏωBlog2 1 + ℏωB
W , (3)

where OME stands for orthogonal mode encoding. Spectral efficiencies CQ/B, CShannon/B 
and COME/B are shown as a function of energy efficiency defined as average number of 

photons used to transmit 1 bit of information in Fig. 1.

Note that this simple result is based on the assumption of a noiseless and lossless 

channel. In this ideal case only encoding using Fock states in conjunction with ideal photon-

number resolving (PNR) measurement can attain the Gordon capacity, Table I. Typically, 

optical channels exhibit a significant loss. The upper bound (2) can be corrected by 

changing assumptions. In particular, adding a model for losses leads to a different capacity 

bound.36–38 Any practical optical communication system requires physical states that are 

resilient to optical loss, at least to some extent. To this end, classical states, especially 

coherent states of light, are particularly useful. In this review, we focus on channels with 

classical encoding and quantum measurement.

To design a practical digital communication system, an encoding method to map digital 

information on transmitted physical states is needed. The set of states {|Ψj〉} is called an 

alphabet; it can be of an arbitrary length M. We assume equiprobable states and a noiseless 

channel, Table I. How well can the alphabet symbols be distinguished? To answer this 

question quantitatively, we use symbol error rate (SER), the probability that a transmitted 

symbol is received incorrectly, P. Helstrom determined that the lower bound on this error 

is related to an overlap of the alphabet states.10 One uses the square root measure (SRM) 

method8,23,39,40 to find the Helstrom bound (HB). This method relies on a Gram matrix 

defined as

Gmj = ψm ∣ ψj . (4)

Note that the dot product in (4) cannot be zero for coherent states. Indeed, in Fock basis, one 

writes

ψj = e− x 2
2 vacj + α 1j + 1

2α2 2j + ⋯ , (5)

where α is a coherent state parameter. Recall that 〈vacm|vacj〉 = 1 even if modes m and j 
are orthogonal. This property of coherent states is important for other applications such as 

quantum fingerprinting.41 Interestingly, even if the communication alphabet uses quantum 
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states with no vacuum component, any loss in a channel admixes the vacuum component to 

the initial state. The error probability bound for a quantum receiver can be written as the 

square root of Gram matrix elements

PHB = 1 − ∑
m = 1

M
G1/2

mm
2/M . (6)

In general, Helstrom bound cannot be found analytically. For some encodings, G1/2 has an 

analytical form. We will give examples of Helstrom bounds for typical encodings in Sec. III.

Because Holevo theorem bounds channel capacity and HB puts a limit on error rate, the 

two bounds cannot be directly compared. However, HB gives the resource use, i.e., the 

required power and bandwidth to reach a certain error probability. Thus, to benchmark an 

encoding, the error probability is fixed. Then the normalized data rate R/B and the required 

power are compared to the normalized channel capacity C(W)/B. Obviously, for sufficiently 

low SER PHB′  and a lossy communication channel, RHB/B < C(W´)/B, where W´ is the 

power required to achieve the SER PHB′ . It is very important to note here that HB merely 

establishes the lowest possible error probability, but does not guarantee a measurement 

method capable of achieving the HB. Hence, we expect that experimental spectral efficiency 

RE/B ≤ RHB/B < C(P)/B.

B. Classical channels

Unless OME is used, classically, the information capacity is given by the Shannon theorem3

CShannon = Blog2 1 + W
N .

This classical model does not specify the origin of channel noise N. Naively, this noise is 

a property of a communication channel and can be arbitrary small, which would result in 

the infinite channel capacity. In reality, noise is a fundamental property of any measurement. 

Because communication cannot occur without a physical measurement at the receiver, it is 

the measurement noise that would limit an otherwise noiseless channel. Although noise can 

be introduced ad hoc into a classical model of measurement, it is much more convenient 

to derive the minimal measurement noise using a quantum mechanical description of an 

otherwise classical measurement.7,42,43 A typical classical receiver measures the optical 

signal via heterodyne and/or homodyne measurements. In both cases, the signal undergoes 

interference on a beam splitter with a local oscillator (LO). The LO is a coherent state with 

the same optical frequency as the signal carrier in the case of the homodyne and a different 

frequency in the case of the heterodyne. After interference, the signal is detected on one or 

more detector(s). In all cases, there will be a current at the detector, and hence there will be 

shot noise. Assuming the detection efficiency of unity, the information capacity of coherent 

homodyne and heterodyne receivers is7
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Cheterodyne = Blog2 1 + W
ℏωB ,

Chomodyne = B
2 log2 1 + 4 W

ℏωB .
(7)

We see that the measurement-induced noise is proportional to the channel’s bandwidth, and 

the dependence of capacity on power and bandwidth in (7) is similar to the first term of the 

Gordon capacity, cf. Eq. (1).

For OME, a so-called direct detection measurement can be used. In principle, orthogonal 

optical modes can be physically separated without introducing extra noise or loss. Once 

separated, each mode can be separately measured with a detector. For instance, if spectral 

modes were used, a dispersive element such as a grating could be employed, followed by 

M spatially separated detectors. For pulse position multiplexing (PPM), when a position 

of a short pulse within a larger temporal window encodes information, one time-resolving 

detector is sufficient because modes are separated in time. A successful detection occurs 

when light is detected in one and only one mode. Although the exact analytical expression 

for the OME capacity in a classical Poisson channel is not known,44,45 channel capacity 

scales like W
ℏωB log2 1 + ℏωB

W  in a limit of weak optical input.46 This limit is identical to the 

second term of the Gordon capacity, cf. (3).

We see that CQ > Cheterodyne, Chomodyne, COME. Therefore, channel capacity of the quantum-

enabled channel exceeds that of the classical channel. In derivations above, one does not 

specify a modulation scheme to obtain channel capacity. Finding the upper bound for 

SER requires selecting a modulation scheme. The uncertainty due to shot noise on the 

detector12,47 leads to state discrimination errors. The lowest classically attainable symbol 

error rate is often referred to as shot noise limit (SNL), quantum noise limit (QNL), or 

standard quantum limit (SQL). We will give examples of SNL derivations for particular 

modulation protocols in Sec. III.

To benchmark an encoding, a SER P is fixed (at a sufficiently low value). Then the 

normalized data rate R/B and the required power can be compared to the normalized channel 

capacity C(W)/B. Thus, the highest attainable data rates for classical and quantum-enabled 

channels as well as Holevo bound and Shannon limit can be presented on the same graph. As 

we will see below, RSNL(W´)/B < RHB(W´)/B < CQ(W´)/B, where W´ is a fixed power. Note 

that because we explicitly assume the measurement method to compute SNL, the classical 

lowest possible error probability PSNL can in principle be achieved using ideal components, 

as opposed to PHB, because the ideal quantum measurement method might be unknown.

Table I summarizes channel capacity and SER bounds and the assumptions that are required 

to derive them.

III. CONVENTIONAL and NOVEL COMMUNICATION PROTOCOLS

In digital communications, the ratio between data rate and bandwidth R/B gives the spectral 

efficiency of the communication protocols. Two main families of modulation schemes are 
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generally distinguished: power-limited R/B > 1 and bandwidth-limited R/B < 1, Fig. 2. 

The power-limited family includes such encodings as pulse amplitude modulation (PAM), 

quadrature amplitude modulation (QAM), phase-shift keying (PSK), and others. In these 

modulation schemes, the bit rate R for a fixed signal pulse duration grows as log2M as 

the number of states in the alphabet M increases. Communication bandwidth B remains 

constant, which means that the spectral efficiency R/B improves with M. However, power-

limited modulation schemes using longer communication alphabets M require more power 

than these with shorter alphabets for reliable communication because it is generally harder 

to discriminate a larger number of non-orthogonal states. The maximal possible R/B is set 

by the power limit of the communication channel. While energy per symbol requirements 

increase as a power function of M, the number of encoded bits increases logarithmically. 

Thus, even though spectral efficiency R/B improves, energy requirements per bit increase 

exponentially.

The bandwidth-limited R/B < 1 family includes pulse position modulation (PPM), 

biorthogonal and simplex signal modulation, and orthogonal frequency-shift keying (OFSK). 

These encodings typically use classically orthogonal states. The number of bits carried with 

each signal pulse depend on the alphabet length as log2M, the same dependence as for 

power-limited protocols. However, the bandwidth occupied by orthogonal communication 

symbols grows linearly with the alphabet length M. The energy efficiency improves with M 
because each signal pulse carries more information, while the energy required for reliable 

discrimination does not depend on the number of orthogonal signals. The spectral efficiency 

R/B of bandwidth-limited protocols decreases as M/(log2M), Fig. 2. The largest M is given 

by the bandwidth limit of the communication channel.

We will discuss different modulation methods, review their theoretical limits for detection 

error rates, and compare their performance with the fundamental channel capacity. We 

will focus on encoding schemes that have been actively considered for quantum-enabled 

communication experiments.

A. Binary protocols

Binary protocols are well studied, and they are a rare case where analytical expressions 

for error rate limits can be found, see Table II. It is not surprising that the first quantum 

receiver outperforming SNL was proposed for the binary modulation.17 In addition, the 

first projection measurement that achieves the HB (or the optimal projection) was found 

for binary encodings.10,18 Here we discuss binary encodings based on amplitude and phase 

modulations.

The binary PSK (BPSK) uses two coherent states with opposite phases for encoding and 

encodes exactly one bit per symbol

s0 = − α ,

s1 = α .
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The corresponding constellation diagram is shown in Fig. 3. Fuzzy circles represent coherent 

states on a phase diagram, a distance from the state to the origin is proportional to the 

square root of the average number of photons in the state, and an average phase is 

measured as the angle between the positive direction of axis I and the vector from the 

origin to the center of the coherent state. Because both BPSK symbols s0 and s1 are states 

of the same optical mode, this encoding is non-orthogonal even if one can neglect the 

vacuum component, cf. (5). Faint states s can significantly overlap. The optimal classical 

discrimination of the BPSK signals can be achieved via a homodyne measurement. The only 

relevant measurement value for BPSK is the projection of the measured state on the in-phase 

quadrature (I axis in Fig. 3). The probability density function to receive a projection x when 

state si was sent is

p x ∣ si = 1
πexp − x − 2ℜ si

2 = 1
πexp −(x ± 2n)2 , (8)

where n = 〈n〉 = |α|2 is the average number of photons in a state si. A decision that the input 

state is s0 is made if the measured x < 0; otherwise, if x > 0, the decision is s1. Therefore, 

to find the probability of a discrimination error, we need to compute the probability of 

measuring x > 0 when s0 was sent (or the probability of measuring x < 0 when s1 was sent),

PSNL
PSK = ∫

0

∞
p x ∣ s0 dx = 1

2(1 − erf( 2n)) . (9)

The HB can be readily found as

PHB
PSK = 1

2 1 − 1 − e−4n . (10)

As we expect, PHB < PSNL.

The BPSK constellation is similar to a binary on-off keying (OOK) (i.e., s0 = 0, s1 = |α〉) 
when the origin is shifted to the center of the left state in Fig 3. Thus, we immediately get20

PSNL
OOK = 1

2 1 − e−n ,

PHB
OOK = 1

2 1 − 1 − e−n .
(11)

Note that the classical measurement of OOK states distinguishes coherent states from 

vacuum states, and this measurement does not require a heterodyne; PSNL
OOK is based on direct 

optical power measurement (direct detection). OOK requires four times higher peak energy 

and two times higher average signal energy than BPSK to match its quantum discrimination 

error rate bound, HB. This inefficiency can be explained by calculating the geometrical 

distance between signal vectors d01
PSK = 2α and d01

OOK = α.34
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Binary protocols can carry only one bit of information with each signal pulse. It may be 

beneficial to encode more than one bit of information per signal pulse, i.e., by using larger 

encoding alphabets.

B. M-ary PSK

A natural extension of BPSK is when more than two states are encoded in the phase of a 

coherent state. From symmetry considerations, the states are separated by equal phases Δϕ 
= 2π/M, where M is the number of states in the alphabet. As an example the constellation 

diagram of the 4-ary PSK is presented in Fig. 4. This modulation method encodes more 

than one bit per state, which may be beneficial for two reasons. First, when detectors are 

slow, a single measurement yields several (log2M) bits, so that the rate of information 

exchange improves. Second, the number of bits transmitted per optical mode in a unit time 

is higher; thus, spectral efficiency is higher. SNL and HB can be found analytically in 

integral form Refs. 23 and 34; see Table II. It is convenient to plot energy and bandwidth 

requirements of M-ary PSK protocols on one graph, where points with different M are 

connected to guide the eye, Fig. 2. Even though PSNL > PHB for all M, error probability 

bounds for classical and quantum detection grow fast with M for a constant energy per bit 

n/log2M.34,48 Unfortunately, the potential advantage of the quantum measurement PSNL/PHB 

also decreases with M. Therefore, quantum receivers are most effective for PSK protocols 

with relatively low M (see SNL PSK and HB PSK in Fig. 2).

C. M-ary orthogonal encodings

The information can be encoded in M orthogonal modes, where a single optical pulse 

occupies one such mode. Modes can be made orthogonal using non-overlapping time bins, 

non-overlapping frequency bands, polarization, and spatio-angular distributions. Particularly, 

pulse-position modulation (PPM) is a modulation scheme in which log2M bits are encoded 

in one of M time bins, Fig. 5. Because different symbols of the alphabet do not overlap in 

time, this encoding is classically orthogonal. Each time bin can be thought of as an optical 

mode; therefore, an M-ary alphabet occupies M modes. Because the duration of a signal is 

one T/M time bin, the required bandwidth for this protocol is M times broader than that 

for the flat-top pulse of duration T. Instead of using time bins, one can use symbols that 

are separated in frequency, in which case information will be encoded in spectral modes, 

and the required bandwidth will still be M times broader than that for the flat-top pulse of 

duration T. Linear expansion of bandwidth use is unavoidable for all modulation schemes 

using orthogonal modes. Other degrees of freedom, such as polarization or spatial modes, 

can be used when available.

Direct detection is classically the best detection strategy. Specifically, in PPM, modes are 

separated in time, so the arrival time of the pulse to the detector is sufficient for the physical 

separation of modes. For other encodings, mode separation may involve spectral filtering, 

spatial mode sorters, and so on. The classical error limit for ideal signal-shot-noise limited 

(background-free) detector operation, Table II, is proportional to e−n, i.e., the probability 

to detect vacuum states in all modes. There is no dependence of PSNL on M for large M. 

Therefore, for a given power, error per bit reduces with M as log2(M) (DD orthogonal in Fig. 
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2). This feature is used for photon-starved communications although the energy-bandwidth 

trade-off becomes inefficient for large M.

Even though heterodyne detection is not optimal due to larger shot noise, it is often used in 

optical communications for orthogonal frequency shift keying. Heterodyne noise increases 

with the bandwidth. On the other hand, noiseless physical separation of the closely-spaced 

frequency modes may be practically unfeasible. Interestingly, when heterodyne detection is 

employed, nearly all gain in bits per unit energy for large M is canceled by increasing noise 

(see SNL OFSK in Fig. 2).

As we discussed above, from the quantum viewpoint, faint coherent states are always 

nonorthogonal. A Helstrom bound is therefore above zero. Its value can be readily found, 

Table II (HB orthogonal in Fig. 2), and it can be shown that the PHB < PSNL.9 Therefore, 

orthogonal encoding receivers can also benefit from a quantum measurement.

D. M-ary coherent frequency shift keying

The M-ary coherent frequency shift keying (CFSK) encodes information in both the 

frequency and phase of coherent state pulses, |αm〉 = |α(ωm, θm)〉. The adjacent symbols 

m and m + 1 are separated by Δω in frequency space, and their initial phases differ by 

Δθ, so that |αm〉 = |α(ω0 + (m − 1)Δω, (m − 1)Δθ)〉. This alphabet is illustrated in the 

constellation diagram, Fig. 6. In this diagram, coherent states rotate with time around the 

origin with rates given by their detuning. The keying can be described by two parameters: 

Δθ and ΔωT. This parameter space contains the PSK modulation scheme: ΔωT = 0, Δθ 
= 2π/M and the orthogonal frequency shift keying (OFSK): ΔωT = 2π. The goal here 

is to reduce the bandwidth of the communication protocol while maintaining low error 

probabilities. Therefore, one is interested in small frequency separation: ΔωT < 2π. In 

this parameter space, states are nonorthogonal. Therefore, both PHB and PSNL cannot be 

expressed analytically. Numerical methods48,49 are used instead. Both Δθ and ΔωT can 

be adjusted to meet certain optimization goals. For instance, when optimizing for energy 

efficiency, minimal Helstrom bound is achieved with one set of parameters, the lowest 

shot noise limit requires another parameter set, and the minimal error rate is achieved in 

a quantum receiver with yet another one. Interestingly, as the numerical analysis of PHB 

shows, this keying balances energy requirements and bandwidth requirements at the same 

time, for 4 ≤ M ≤ 32, see Fig. 2. As a consequence, its rate graph crosses the R/W = 1 value. 

Therefore, this keying is neither power limited nor bandwidth limited.

For a properly optimized CFSK PSNL
CFSK < PSNL

PSK, which is expected, because the bandwidth of 

CFSK is wider than that of PSK. However, it may be difficult to build an efficient classical 

CFSK receiver in practice. Interestingly, it turns out that a time-resolving quantum receiver, 

discussed later, uses the same hardware for many encodings including PSK and CFSK. 

The only difference is the feedback algorithm encoded in firmware. Therefore, the quantum 

measurement can be used to provide bandwidth and power efficiency simultaneously in a 

practical way.
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IV. DISPLACEMENT-BASED QUANTUM STATE DISCRIMINATION

Quantum theory establishes a lower discrimination error bound than that accessible through 

classical measurement. However, the design of a practical measurement method does not 

directly follow from theory. In 1973, Kennedy proposed the first near-optimum receiver 

approaching Helstrom bound for binary coherent states.17 In less than a year, Dolinar 

proposed an improved receiver for binary coherent states.18 In both receivers, the input 

state is displaced from its original state through interference with a local oscillator, which 

can be practically accomplished with a heavily unbalanced (typically, 99:1) beam splitter. 

These two seminal papers have triggered theoretical and experimental research of quantum 

receivers.

Most theoretical and nearly all experimental reports to date take advantage of coherent 

state displacement in one way or another even though coherent state displacement is not 

the optimal quantum measurement for some encodings. As it has been shown recently, an 

optimal projective measurement may require ancillary quantum states or quantum nodes, 

such as a single atom. We cover this exciting work in Sec. V.

In this section, we discuss the experiments with coherent state displacement-based quantum 

receivers. To aid the reader, we present a simple classification of these receivers in Fig. 

7. The classification is based on the principle of operation. Coherent displacement can be 

either non-adaptive, where the local oscillator does not change throughout measurement (as 

in a Kennedy receiver) or adaptive, where the coherent state is actively controlled (as in a 

Dolinar receiver). The lowest level in the figure contains references (in bold) to experimental 

demonstrations and mentions a modulation protocol(s) used in the experiment.

At the time of writing, we are aware of OOK, BPSK, M-ary PSK, M-ary PPM, and M-ary 

CFSK experiments. To gauge the performance of quantum receivers, we compiled a table 

with the experimental results, Table III. The improvement from quantum measurement is 

typically measured as a ratio of the observed error rate to the classical SNL limit for 

a noiseless receiver with the same system detection efficiency as the quantum receiver, 

i.e., adjusted SNL. This measurement quantifies the so-called “quantum advantage” over 

a classical measurement under similar conditions. However, using this characterization 

method does not account for any inefficiency of the quantum measurement experiment. 

Some inefficiencies may be due to imperfect off-the-shelf components that were used, while 

other inefficiencies may be intrinsic to the chosen quantum measurement method. Thus, 

one could argue that a more relevant comparison of quantum versus classical receivers is 

to use the absolute SNL—the limit of the ideal classical receiver with unity efficiency. The 

error rates below the absolute SNL cannot be achieved by a classical receiver in principle. 

Although all quantum receivers surpass the adjusted SNL, not all of them achieve SER 

below the absolute SNL. We also compare input state energy required to achieve SER of 

10% for demonstrated quantum receivers versus the SNL-limited receivers where applicable. 

This comparison shows the possible reduction of energy requirements by switching to 

quantum receivers.
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A. Kennedy receiver

Helstrom determined the fundamental SER bound for the optimum receiver in 1968,10 

where the projection measurement on a quantum superposition state, often called 

“Shrödinger cat state” was proposed to reach the quantum limit for the binary coherent state 

encoding. The experimental implementation of the proposed optimal measurement is very 

difficult because it relies on a superposition basis and entanglement measurements.52 This 

method requires a very high-fidelity entanglement and a near-unit detection efficiency.53 In 

1973, Kennedy proposed the first receiver using a simple displacement operation on the 

input coherent state followed by photon detection.17 While the overall performance of the 

receiver falls short of the HB, the receiver achieves exponentially optimum performance 

and outperforms the shot noise limit.17 The receiver scheme proposed for BPSK states | + 

α〉 and | − α〉 is shown in Fig. 8(a). The input signal is displaced using a local coherent 

state and measured using a photon detector. The displacement occurs by interfering with 

the input signal with the local state on a beam-splitter. As shown in Fig. 8(a), the local 

state is set to | + α〉. The destructive interference occurs for the input signal | − α〉 which 

is displaced to vacuum |0〉, so no photon can be detected. The constructive interference 

occurs for | + α〉, such that the output is displaced to | + 2α〉. A brighter output makes 

the probability to detect a photon higher. Therefore, in the ideal noiseless case and with 

the perfect displacement no photons will be detected when the input state was | − α〉, but 

there is a probability (proportional to exp (− 4|α|2)) that no photons will be detected if the 

input state was | + α〉. This non-zero probability causes a discrimination error. In spite of 

the apparent simplicity of the method, experimental implementations54,55 fell short from 

outperforming the absolute SNL due to low system efficiency, non-ideal displacement, and 

dark noise at the detector. Modified Kennedy receivers use an optimized displacement and 

a more sophisticated discrimination algorithm. Those receivers unconditionally surpass the 

SNL in experiments,20,22 discussed below.

B. Dolinar receiver

Following the proposal of the first quantum receiver using non-Gaussian measurements 

to beat the shot-noise limit, Dolinar proposed a receiver18 that can reach the Helstrom 

bound for discrimination of binary coherent states. This receiver theoretically approaches 

the quantum limit in binary state discrimination by using the real-time quantum feedback 

with the so-called optimal displacement and photon counting measurements, i.e., without the 

need for a “cat-state” measurement.10 In contrast to the Kennedy receiver, the displacement 

amplitude β is changing constantly. The phase is adjusted every time a photon is detected, 

i.e., it is determined from the number of photons nt detected in the time interval [0, t).18,56 

For an on–off keying, the optimal displacement amplitude is given by57

β nt = α
2

eiπ nt + 1

1 − e− α 2t/T
− 1 . (12)

The discrimination decision is based on the total number of photons nT counted during the 

entire measurement [0, T], so that |α〉 (| − α〉) is chosen when nT is even (odd) as shown 

in Fig. 8(b). Formally, Eq. (12) diverges at the beginning of the pulse t = 0, which cannot 
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be practically implemented because of the finite energy of the LO and the saturation of a 

single-photon detector.

Yet, this issue can be practically alleviated in a laboratory environment. A binary 

Dolinar-like receiver with finite displacement amplitudes was successfully implemented 

experimentally in Ref. 57. In their work, authors demonstrated that for input signal with the 

low average number of photons (n <1) the OOK receiver not only surpasses the adjusted 

SNL, but also approaches the adjusted HB; for comparison, both SNL and HB were adjusted 

to the system efficiency.

Dolinar’s idea of adaptive feedback enabled multiple new quantum receiver configurations. 

Particularly, sub-SNL receivers for M-ary encodings were invented and experimentally 

demonstrated.

C. Novel quantum receivers and experiments

1. The optimized displacement receiver—A few attempts were made to modify 

Kennedy receivers to achieve a lower SER. One such enhancement is the optimized 

displacement receiver (ODR). Kennedy receiver displaces the input state by interfering it 

with the equal amplitude of the local state. In their theoretical paper, Takeoka and Sasaki 

proposed to adjust the displacement of the input signal using local state.58 Their ODR uses 

the local state with an amplitude β greater than the input signal amplitude α, Fig. 9(a). It is 

evident that due to unequal amplitude in the local state the input signal will not be displaced 

to vacuum. There are no other changes to the Kennedy design, cf. Fig. 8(a). Since larger 

displacement results in a higher probability of photon detection when input signal state 

is displaced to |α + β〉, the probability of detecting no photons e− |α + β|2 is reduced from 

that of the Kennedy receiver. However, because | − α〉 is no longer displaced to vacuum, 

there is a possibility to collect photons, which leads to errors. The trade-off between these 

“false” detections due to the non-ideal vacuum |β − α〉 and the reduced probability to get 

no clicks for the |β + α〉 state results in an optimization problem. The optimal displacement 

amplitude β minimizes the combined error probability. The experimental implementations 

of ODR has shown discrimination error rates below the SNL adjusted for the experimental 

conditions54,59 and unconditionally,20,22 i.e., in comparison to the absolute SNL. The most 

significant improvement in discrimination accuracy is shown for faint coherent states with 

|α|2 ≈ 1. The amplitude of the optimized displacement approaches the amplitude of the 

input state |β| → |α| as |α| → ∞. A similar optimization of displacement can reduce the 

discrimination error rate of adaptive feedback receivers for binary and M-ary alphabets as 

well.

The discrimination error rate of the ODR receivers can be further reduced with photon-

number resolving (PNR) measurements [Fig. 9(b)] and can extend the below-SNL 

performance of the receiver to higher input energies |α|2.22,60 A discrimination threshold 

is the particular number of detected photons during T. If the total number of detections 

is below that threshold, | − α〉 is received; otherwise, |α〉 is received. Note that with a 

notable exception of Refs. 20 and 22 where transition edge sensor (TES) detectors were 

employed, other receivers use a quasi-PNR detector. A conventional single-photon avalanche 
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photodiode’s (SPAD) clicks are counted. The total count of clicks corresponds to the number 

of photons to within the detector’s deadtime, afterpulsing, and dark count probability.27,61,62

2. Conditional pulse nulling receiver—Conditional pulse nulling (CPN) receivers 

are explicitly designed for pulse position modulation (PPM) which is widely used in photon-

starved free space communications due to its high energy efficiency. Dolinar proposed the 

CPN receiver in 1982.50 He theoretically showed that CPN performs near the optimum.50 

Almost three decades later, the CPN receiver has been experimentally demonstrated for 

a 4-ary PPM with the discrimination error below the adjusted SNL.51 The experimental 

scheme of the CPN receiver is shown in Fig. 10(a). The input signal is displaced to vacuum 

using the local state pulse. The decision strategy for 4-ary PPM is shown in Fig. 10(b). The 

receiver starts by nulling the pulse in position 1 (Fig. 5). Photon detection (failure) leads 

to the nulling of pulses in the subsequent steps. If no photons were detected in position 

1 (success), then the received state is |α1〉. The same strategy is repeated for subsequent 

positions. The green boxes represent the received state after a discrimination. Even in ideal 

experimental conditions, errors arise from the Poisson nature of the coherent states, cf. 

Kennedy receiver: the displacement of the input signal with a wrong local state does not 

necessarily lead to photon detection.

3. Multi-stage receivers—The optimal receiver for binary coherent states proposed by 

Dolinar18 requires feedback to adjust the LO as more information about the input state 

becomes available. A possible modification of the Dolinar receiver that makes it more 

experimentally feasible breaks the input into segments or stages either spatially [(11(a)] 

or temporally [(11(b)]. Then, the measurement result from each segment can be used to 

choose the best displacement state for the next segment. The number of stages is predefined. 

Switching rules can be represented as a decision-making tree that is typically precomputed. 

It can be shown63,64 that with the proper choice of the displacement intensity at each stage 

n (|βn|2 > |αi|2, cf. Dolinar receiver) and in the limit of infinite number of stages such 

a multi-stage receiver can optimally discriminate binary states. Thus, choosing the same 

intensity of the LO for all stages does not enable the HB-limited discrimination even when 

the intensity is optimized.

For example, the BPSK input state, |αi〉, is split into multiple copies with equal intensity, 

Fig. 11(a). Thus, the energy of the input to each stage is reduced by the factor of m. 

Each attenuated copy of the state is sent to a displacement setup. An optical delay is 

inserted in each stage so that the measurement on an n + 1th stage does not start before the 

measurement on the nth stage is completed. For the first stage, an arbitrary state of the LO is 

chosen. If the LO matches the input, the input state is displaced to vacuum, no photons will 

be detected; otherwise, a photon can be detected. To achieve close to optimal performance, 

the value of |βn|2 should be corrected at each stage, but the phase of |βj〉 only changes 

with photon detection. The potential drawback of this scheme is that the number of optical 

elements and single-photon detectors grows with the number of stages. An excessive loss of 

the optical signal occurs due to imperfect optical components. In addition, the alignment of 

the multistage setup may be complicated.
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A signal pulse can be divided into equal temporal intervals rather than spatially. In this 

case, just one LO with the feedback and one detector is needed. As before, the feedback 

is used to update the LO after each measurement segment with an equal duration T/m. 

Figure 11(b) shows the experimental scheme of the multi-stage receiver with temporal 

stages. The strategy tests the hypothesis that the most probable input signal is αi during 

each measurement segment. At the end of the signal pulse T, final Bayesian probabilities 

are computed, and then the hypothesis with the highest probability is used to make the 

discrimination decision. The main drawback of temporal segmenting is the need for faster 

detectors and electronic components. A deadtime of single-photon detectors is yet another 

obstacle.

The idea of adjusting the feedback after each photon detection can be generalized for 

M-ary communication protocols although the optimal feedback algorithm is not known. An 

M-ary discrimination strategy that uses m measurement stages where LO can be adjusted 

after each stage was proposed in Ref. 24. In this paper, the signal is split on a beam 

splitting tree, where each measurement stage has its own LO and detector. Formally, the 

Bayesian probabilities for the possible input state are calculated based on the outcome of the 

measurement (click or no click) in each stage. Bayesian probabilities are used to set the LO 

of the next stage to verify the most probable hypothesis. Finally, after all m measurement 

results are known, the Bayesian probabilities are updated one last time and the most 

likely hypothesis is used as the discrimination outcome. This proposal does not consider 

optimizing the LO intensity separately for each stage. The spatial multi-stage approach was 

further investigated theoretically for M = 3, 4 PSK in Ref. 65. In Ref. 66, authors investigate 

the theoretical performance of the 4-PSK receiver by adding PNR capabilities.

Temporal adaptive receivers can also be generalized to longer alphabets, Fig. 11(b). The 

temporal adaptive receiver design was used in the experimental demonstration of the 4-PSK 

quantum receiver that unconditionally surpassed the SNL limit.67 A similar design was 

used for the first demonstration of the 4-PSK receiver at a telecom wavelength.68 A more 

sophisticated version of this receiver counts the number of photons in each measurement. 

This approach enables more precise Bayesian calculations and especially helps with sub-

SNL measurements of mesoscopic input states. The information about the number of 

detected photons is particularly helpful against the experimental imperfections such as 

darkcounts, non-ideal visibility, etc. Thus, lower discrimination error probability can be 

achieved. In Ref. 69, a SPAD-based quasi-PNR detection was used. The authors extended 

the sub-SNL performance of their receiver to the inputs with more than 20 photons per 

pulse on average.69 They achieved the record SER (below 10−6). The similar quasi-PNR 

enhancement with a SPAD detector was used to optimize other multi-stage receivers.66,70–72 

Adjusting intensity of the LO is yet another path to sensitivity improvement. In Ref. 73, 

the theoretical model of displacement for M-ary receivers is optimized by optimizing 

|β|2 at each step and the unconditional error rate below signal-to-noise ratio (SNR) is 

experimentally demonstrated.

4. Time-resolving receivers—Another class of receivers consists of one displacement 

module and one single-photon detector and uses single-photon detection times for 

discrimination. Unlike multi-stage receivers, it provides instantaneous feedback to switch 
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the LO state right after each photon detection. By design, the receiver gets to test the 

unrestricted number of hypotheses and allocates the optimal time to verify each hypothesis. 

Owing to the nature of coherent states, with a sufficiently fast detector, the probability to 

detect more than one photon in the field is negligible. Therefore, PNR detection is not 

required.

The first receiver of this class was introduced by Bondurant.19 Type-I Bondurant receiver 

probes hypothesis in a simple sequential order and uses the hypothesis at time T as the 

discrimination decision, Fig. 12(a), while Type-II receiver uses the sequential order, but 

compares photon interarrival times to make the final discrimination decision. Bondurant 

receivers have a near-optimal performance for 4-PSK state discrimination, where a Type-II 

receiver outperforms the Type-I receiver at low input energies. The probing is executed 

by switching the local state from one hypothesis to next, α1 → α2… → αm, until all 

hypotheses are tested or no more clicks are detected. In a practical setting, a detection event 

can be induced by a dark count or non-ideal displacement. After any photon detection, the 

Bondurant receiver discards the hypothesis and will never test it again, leading to extra 

errors. A cyclic strategy can correct some of these errors. A cyclic receiver is similar to the 

Bondurant Type I receiver, except after testing the last state of the alphabet αM it switches 

back to the first state α1 and continues the measurement until the end of the pulse T.26 The 

cyclic receiver was demonstrated experimentally.74 The measured SER is unconditionally 

better than the SNL for 4-PSK, 8-PSK, 4-CFSK, and 8-CFSK encodings.

A much better result can be obtained if the time-resolving quantum receiver uses both 

instantaneous feedback and Bayesian inference.48 A Bayesian classifier uses the knowledge 

about prior local state and a photon arrival time to predict the most probable input state 

after each photon detection. This strategy converges to the right hypothesis with a minimal 

number of photon detections and it can be applied to any encoding.75 The strategy works 

best if the encoding is developed to take advantage of the instantaneous feedback.48,49 This 

holistic approach when both the receiver and the encoding are developed side-by-side has 

resulted in the record low error rates in discrimination of large alphabets with faint signals 

(|α|2 ≲ 1 photon per bit). This receiver is shown to perform unconditionally below the SNL 

for M ≤ 16 alphabets, the largest number of states in an alphabet reported to date.49

D. Summary of displacement receivers

In summary, a direct comparison of different displacement receivers is not always possible. 

For binary protocols, the optimal measurement is theoretically possible; measurement 

schemes that are asymptotically optimal have a clear advantage. For longer alphabet lengths, 

displacement measurements are not optimal. Theoretically, time-resolving protocols and the 

protocols that adjust LO intensity throughout the measurement are the most advantageous.

In experiment, practical considerations may play the decisive role. In general, based on 

experimental evidence, Table III, the protocols that take advantage of photon number 

resolution perform particularly well for brighter input states. Time-resolving protocols 

perform better with dimmer input states (with ≈ 1 photon/bit and lower). This is 

because detectors have deadtime and the feedback components have latency; therefore, 
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fewer feedback cycles may be practically advantageous. Other considerations include the 

following:

• • Transmission loss and detection efficiency. Both properties reduce system 

efficiency and reduce the unconditional advantage over the absolute SNL.

• • Alignment of the displacement reduces both conditional and unconditional 

advantage of the quantum measurement, but can be partially mitigated by 

including the inefficiency into the feedback model.

• • Background and dark counts similarly reduce both conditional and 

unconditional advantage of the quantum measurement, and can be partially 

mitigated by adjusting the feedback model.

We see that spatial multiplexing can remedy time delays, but it may introduce higher losses 

and alignment issues. The choice of the most optimal modulation protocol and the alphabet 

length may also depend on experimental and/or practical conditions. In making the choice, 

considering both conditional and unconditional performance of a receiver (Table III) is 

important because the conditional performance shows the degree of the advantage made 

specifically by a non-classical measurement whereas the unconditional performance reveals 

the system efficiency penalty.

V. NEW TRENDS

In Sec. IV, we discussed theoretical and experimental achievements in coherent 

state discrimination with displacement-based quantum receivers. The field of quantum 

measurement is very active, and many new ideas for using quantum measurement in optical 

networks have emerged. Here we briefly discuss new research directions that in our view 

have a significant practical potential.

A. Noisy communication channels

Realistic communication channels may distort and contaminate communication signals. 

Given that the theory of quantum receivers assumes noiseless channels, it is important 

to understand if quantum measurement advantage extends to channels with noise. An 

important realistic channel model is the non-Gaussian channel with bosonic phase noise. 

In Ref. 76, authors investigate a communication strategy over channels with phase noise 

and demonstrate that quantum measurement may be advantageous. In particular, authors 

optimize the displacement of the BPSK signals by varying LO amplitude, cf. Ref. 58, 

paired with a Kennedy-like receiver that takes advantage of PNR, cf. Ref. 60 [Fig. 13(a)]. 

They demonstrated SER below the homodyne limit adjusted for the system efficiency of 

72% in the presence of phase noise. A similar strategy for a channel with thermal noise is 

considered in Ref. 77. The authors theoretically demonstrate that a PNR-enabled Kennedy-

like receiver with the optimized displacement (see Refs. 58 and 60) can surpass the SNL 

when the average number of thermal photons is smaller than 0.2. Practical implementations 

of many quantum receivers require interferometric stability of the communication channel 

or a pilot signal providing the reference phase. In long-distance communication, it may be 

challenging to interferometrically stabilize the communication channel. In Ref. 78, authors 
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experimentally demonstrate a phase-tracking protocol for quantum receivers to correct for 

time-varying phase noise and keep SER below the SNL.

B. Discrimination of optical states other than coherent states

So far we considered coherent states as communication carriers. This is because coherent 

states of light are widely used for communication. Other types of states can be discriminated 

using quantum methods as well. The optimal discrimination of optical states with non-

Poissonian photon number statistics81–84 has recently attracted a lot of interest. In these new 

experiments, ancillary coherent states are used for displacement in a receiver. Clearly, the 

perfect displacement of a non-Poissonian state to a vacuum state with a coherent state is 

impossible. Still, the probability to detect at least one photon can be significantly increased 

for one type of input and significantly reduced for the other.

In Ref. 79, authors investigate a binary communication channel that uses squeezed vacuum 

states as information carriers. The information is encoded by displacing the squeezed 

vacuum state by D( ± α),16 resulting in two displaced squeezed states (DSS) |±DSS〉 with 

the opposite phases [cf. BPSK, see Fig. 13(b)]. Squeezing of one of the quadratures of the 

carrier gives a smaller overlap between the DSS states in comparison to coherent states 

with the same average number of photons. Thus, the discrimination error probability for the 

squeezed states, in theory, may fall below the Helstrom bound for BPSK with coherent states 

in the absence of loss. When the channel has some phase noise, but no significant loss, even 

a homodyne-based “classical” receiver can approach the quantum optimum.

In Ref. 85, the fundamental quantum limit for discrimination error probability between a 

coherent and a thermal optical state is computed. Additionally, error probability bounds for 

direct detection, coherent homodyne detection, and the Kennedy-like receiver are given. The 

generalization of the Kennedy receiver for discrimination of coherent and thermal states 

with a low average photon number is shown to closely approach the quantum limit.

The displacement-based discrimination strategies used by quantum receivers were recently 

adopted for the discrimination of single-rail qubits, a superposition of the vacuum state with 

a single photon. In Refs. 80 and 86, authors theoretically and experimentally investigate a 

receiver for orthogonal single rail qubits: | ± = ( |0 ± |1 )/ 2[see Fig. 13(c)]. Authors have 

shown that their setup can discriminate the superposition states using weak coherent states 

for displacement. Both input states have a certain vacuum and single-photon components. 

After coherent state displacement, the resulting states have distinct photon-number statistics, 

Fig. 14. This difference in mean photon numbers can be assessed with a single-photon 

detector. A feedback discrimination strategy generalized for single-rail qubits yields an 

SER below that of the perfect homodyne detection. These results can facilitate the 

implementation of quantum information processing protocols using single-rail qubits.

C. Quantum unambiguous state discrimination

Displacement-based quantum receivers can be employed for so-called unambiguous state 

discrimination (USD).71,87,88 Unlike a typical receiver whose goal is to provide the best 

guess for all input states, unambiguous state discrimination receivers aim to error-free 
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discrimination of states or reject the measurement as inconclusive if that cannot be done. In 

Ref. 71, sub-SNL USD is experimentally demonstrated for BPSK. At a later time, sub-SNL 

USD was extended to 4-PSK in Refs. 87 and 88.

D. Optimal quantum measurements

We saw that displacement receivers are optimal for some encodings. For other encodings, 

displacement receivers cannot reach the HB. There is an alternative to displacement 

measurements, however. For instance, an optimal projective measurement with the help of 

quantum states, such as cat states,89 has been proposed and experimentally implemented. To 

our knowledge, this work is the only experimental effort to date that enables a quantum 

receiver that is not based on coherent state displacement. Yet another idea is to take 

advantage of an ancillary quantum system, such as a single atom.90–92 In these proposals, 

the input light field is mapped on a discrete set of atomic states, followed by a projection 

measurement. Near-optimal discrimination of BPSK, M-PSK, and M-ASK (amplitude shift 

keying) encodings has been discussed. An efficient light field interaction with an ancilla 

atom is required, which may be challenging to experimentally implement with today’s 

technology. Another theoretical proposal shows how to design the optimal receiver for an 

arbitrary alphabet length and an arbitrary modulation scheme with the help of a universal 

quantum computer. The input signal is split to m copies each of which is transferred 

to the quantum computer. The quantum computer performs m unitary operations on the 

ancilla quantum register. The final state of the ancilla register is measured to arrive to the 

discrimination result.93 This idea uses two properties of coherent states: first, splitting a 

coherent state produces coherent states with the same properties, except for amplitudes; 

second, a coherent state with a sufficiently small amplitude is well approximated by a single-

rail qubit (cf. Refs. 80 and 86). The problem of discriminating coherent states is reduced 

to discriminating multicopy single-rail qubit states by a sequential coherent-processing 

receiver.94

E. Artificial intelligence in communication

One of the interesting future directions for quantum receivers is the possible use of 

the artificial intelligence for real-time feedback and discrimination. Recently, artificial 

neural networks were successfully applied to reduce the error probability of the classical 

communications system, achieving the classical optimal limit.95 Replacing or pairing 

Bayesian inference with artificial neural networks could optimize feedback strategy and 

reduce error rates of quantum receivers in practical settings.

VI. THE QUANTUM MEASUREMENT ENHANCED CLASSICAL INTERNET 

OF THE FUTURE? (IN LIEU OF CONCLUSION)

As it is evident by now, below-the-shot-noise limit discrimination error rates for coherent 

states have been achieved in many laboratories and for different encoding methods. 

Properties of displacement-based quantum receivers using non-Gaussian measurement 

were extensively studied. The field, however, is still in its early stage. Indeed, just one 

experimental report achieved SERs unconditionally below the classical limit at a telecom 

wavelength,68 while other proof-of-principle experiments either use visible light or cannot 
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unconditionally surpass the SNL.55 Conventional communication systems, on the other 

hand, are very successful, mature, and competitive. Let us discuss the possible future of 

quantum technologies for classical communication.

Figure 15 shows the channel resource use required for nearly fault-free communication (Pe 

= 10−5) using traditional modulation methods with ideal classical detection. This theoretical 

plot does not consider channel noise in a practical communication link, which would make 

energy requirements significantly greater. The sources of such noise include in-line optical 

amplifiers, cross-talk between wavelength-multiplexed channels, nonlinear effects in fiber, 

and dark noise of detectors. On the other hand, this plot does not take error correction 

into account, which can somewhat relax the energy requirements. Yet, we believe that this 

curve is a good estimation for the threshold of classical technologies. Some classical systems 

that are currently near this threshold use single-photon detectors96–99 because of their low 

dark noise.27 We see that quantum measurement could potentially reduce channel energy 

requirements from this threshold by more than one order of magnitude while not requiring 

more bandwidth.

In certain cases, for instance, for photon-starved communication links, reducing channel 

energy requirements may be the goal, which is achievable by switching to a quantum 

measurement at the receiver. However, reducing channel energy requirements does not 

automatically reduce the total energy consumption of the entire communication link. In 

fact, the total energy requirements of the state-of-the-art communication link using quantum 

receivers can be higher than that using classical receivers. Below we discuss if reducing 

the total energy consumption of communication systems using quantum measurement is 

fundamentally possible. We also list major technological obstacles that prevent such an 

energy reduction.

In order to tame the power needs of the telecom links, all components of a communication 

system should be taken into account. Power requirements of some electronic components 

scale proportionally to optical power used and those components dominate the power budget 

of fast (>10 GB/s) optical communication systems.100 Quantum measurement reduces the 

energy of light required to transmit one bit; thus, the power required for those electronic 

components excluding the receiver reduces proportionally. Displacement quantum receivers 

require significantly stronger LO than that for the ideal classical homodyne or heterodyne 

measurement. On the other hand, consider a long-distance fiber link where the optical loss is 

significant. The energy savings at the transmitter scale proportionally to loss and eventually 

overcome the additional optical power needs at the receiver. Certain single-photon 

detectors, such as SPADs, are less energyefficient than classical detectors, yet another 

issue with quantum receivers. A new generation of single-photon detectors particularly 

superconductor nanowire detectors can use significantly lower currents to reliably register 

photons than amplified classical detectors, ultimately dissipating approximately 5 aJ per 

photon detection.101,102 Therefore, on balance, long-distance communication systems can 

fundamentally be more energy efficient than classical systems. Significant energy savings 

could also come from a conceptual rethinking of the network topology. Currently, a series 

of optical amplification stations mitigate light loss in fiber. Amplification stations are used 

because they require less wall power to operate than a transceiver. If transceivers power 
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requirements could be dropped below that of an amplifier, the topology of the network 

would significantly change. Given that a large fraction of the optical noise in current 

networks is due to amplification and optical power-dependent effects (Raman cross-talk, 

cross- and self- phase modulation, etc.), the quantum-measurement-based communication 

system can be made nearly noiseless by reducing optical power. Such a nearly noiseless 

communication system can naturally support the coexistence of classical and quantum 

communication channels (such as quantum key distribution and entanglement distribution 

channels). This optimistic outlook faces serious technological challenges. Currently, even 

the best single-photon detectors at telecom can count fewer than 100 × 106 photons per 

second. In addition, adaptive algorithms employed in receivers may require extra time to 

execute. Thus, per-channel data rates may be slower than that of conventional receivers. 

Wavelength division multiplexing can alleviate this issue, but it will require denser channel 

“packing” than is currently used. Such packing would require better frequency stabilization 

of telecom light sources, multiplexers/demultiplexers with better resolution, etc. Some 

single-photon detectors, such as superconducting nanowire detectors, require a low ambient 

temperature to operate. Because these detectors generate very little heat when operating, 

hundreds of such detectors could share the same cooling module.102 Also, the efficiency of 

the state-of-the-art cooling systems is far from theoretically optimal, leaving a lot of room 

for improvement. Lastly, although most of the proof of principle experiments currently use 

one laser source for both signal and local oscillator, local laser sources with long coherence 

times and the phase control should be used to unveil the potential energy saving. To this 

end, new phase correction protocols are being actively considered. One such protocol78 

demonstrates phase estimation based on the output of quantum state discrimination, 

potentially requiring no exchange of phase information between the transmitter and receiver.

In conclusion, in light of the exponential growth of the Internet traffic and capacity 

crunch,1,2 the research of applied practical quantum measurement for communications is 

of urgent importance. We are cautiously optimistic that quantum technology will be used—

either on a global scale or at least for some niche applications in a near future. We hope that 

our review helped the curious reader to get acquainted with this exciting field.
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FIG. 1. 
Classical and quantum limits to channel capacity

Burenkov et al. Page 25

AVS Quantum Sci. Author manuscript; available in PMC 2022 May 06.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



FIG. 2. 
Resource use per bit for different communication protocols. Bandwidth and the theoretical 

minimum energy per bit requirements are shown for classical, quantum state discrimination 

of some communication protocols assuming a symbol error rate P = 10−5. The protocols 

with the same modulation method, but different alphabet lengths M are connected with 

colored lines. Power-limited protocols are above R/B = 1 line and bandwidth-limited 

protocols are below R/B = 1 line.
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FIG. 3. 
Binary phase shift keying constellation diagram.
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FIG. 4. 
M-ary phase shift keying constellation diagram example, M = 4.
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FIG. 5. 
M-ary pulse position modulation states, M = 4.
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FIG. 6. 
M-ary coherent frequency shift keying constellation diagram example, M = 4.
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FIG. 7. 
Classification of displacement-based quantum receivers. References to experimental 

demonstrations are in bold.
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FIG. 8. 
Schematic diagram of first quantum receivers for binary state discrimination. The 

displacement operation, D, uses a local oscillator state and a beam-splitter. (a) Kennedy-like 

receiver (non-adaptive) and (b) Dolinar-like receiver (with feedback).
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FIG. 9. 
Schematic diagram of modified Kennedy receivers. (a) Optimal displacement receiver 

(ODR) and (b) ODR with photon number resolution (PNR).
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FIG. 10. 
(a) Experimental scheme of CPN receiver for 4-ary PPM. (b) Decision strategy for 4-ary 

PPM. Broken arrows represent no photon detection and solid arrows represent photon 

detection after nulling. Green boxes are the received states after discrimination.
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FIG. 11. 
Schematic diagram of adaptive displacement receivers: (a) spatial adaptive displacement 

receiver and (b) temporal adaptive displacement receiver.
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FIG. 12. 
Time-resolving adaptive displacement receivers: (a) Bondurant/cyclic receiver and (b) time-

resolving receiver with Bayesian inference.
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FIG. 13. 
(a) Binary signals optimized for communication in the channel with phase diffusion. 

Reprinted with permission from DiMario et al., npj Quantum Inf. 5, 65 (2019). Copyright 

2019 Authors, licensed under a Creative Commons Attribution 4.0 International License;76 

(b) displaced squeezed states (DSS) with opposite phases, as described in Ref. 79; (c) 

Wigner functions of single-rail qubit states, reproduced with permission from Izumi et al., J. 

Phys. B 51, 085502 (2018).80 Copyright 2018 IOP Publishing. All rights reserved.
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FIG. 14. 
Photon number distribution of single-rail qubits before and after displacement, reproduced 

with permission from Izumi et al., J. Phys. B 51, 085502 (2018).80 Copyright 2018 IOP 

Publishing. All rights reserved.
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FIG. 15. 
Potential improvement in resource use of quantum-enabled communication over classical 

technology. The classical resource use is comprised of shot-noise limits (at Pe = 10−5) for 

M-ary PSK (values above R/W = 1) and M-ary PPM (values below R/W = 1), red curve. The 

potential, but optimistic, quantum bound is Gordon capacity, black curve.
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