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Abstract: Studies enabled by metabolic models of different species of microalgae have become signif-
icant since they allow us to understand changes in their metabolism and physiological stages. The
most used method to study cell metabolism is FBA, which commonly focuses on optimizing a single
objective function. However, recent studies have brought attention to the exploration of simultaneous
optimization of multiple objectives. Such strategies have found application in optimizing biomass
and several other bioproducts of interest; they usually use approaches such as multi-level models
or enumerations schemes. This work proposes an alternative in silico multiobjective model based
on an evolutionary algorithm that offers a broader approximation of the Pareto frontier, allowing a
better angle for decision making in metabolic engineering. The proposed strategy is validated on a
reduced metabolic network of the microalgae Chlamydomonas reinhardtii while optimizing for the
production of protein, carbohydrates, and CO2 uptake. The results from the conducted experimental
design show a favorable difference in the number of solutions achieved compared to a classic tool
solving FBA.

Keywords: cell metabolism; FBA; multi-objective optimization; nsgaii

1. Introduction

Microalgae are unicellular photosynthetic organisms. They are capable of capturing
gases such as CO2 from internal combustion engines and industries, and converting it
into oxygen [1]. Furthermore, some strains of microalgae have the ability to thrive un-
der stress conditions while removing oxygen peroxide, nitrates, and phosphates present
in wastewater [2], making microalgae suitable for several bioremediation strategies. In
addition, microalgae CO2 capture through photosynthesis and its transformation into
several industrial raw materials such as carbohydrates, lipids, proteins, pigments, aromatic
compounds, etc., is a more economical and attractive renewable source [3,4].

A large number of strains of microalgae have been studied, finding several metabolic
pathways involved in the synthesis of many secondary metabolites. However, the pro-
duction rate of these metabolites varies from one species to another or even in the same
species, according to different environmental and metabolic conditions. The production of
the secondary metabolites depends on many factors, such as the type of microalgae and
the culture conditions, temperature, pH, lighting, and nutrient sources [5].

So far, metabolic models built from genomic sequences allow a quantitative view
of the transport and metabolism of compounds within a target organism. In addition,
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these metabolic models have long been used to generate optimized design strategies for an
improved production process [6].

Most metabolic models of microalgae focus on studying a single objective function,
e.g., biomass. For the particular case of metabolic networks in steady-state, Flux Balance
Analysis (or FBA) is the most commonly used optimization method for their study [7,8].
Equation (1) defines the associated FBA linear optimization problem [8], where v is the
flux vector across the reactions. The stoichiometric matrix Sm×n represents the metabolic
network, where there is a metabolite per row and a reaction per column. The value of the
cell Sij is the stoichiometric coefficient of the metabolite i involved in reaction j [7], and the
LBj, UBj are the lower and upper bounds for the fluxes allowed in the metabolic system.
The steady-state assumption is established by Sv = 0 [9].

FBA max F(v) = vbiomass
Subject to

S· v = 0
LBj≤ vj ≤ UBj, ∀j ∈ {1, . . . , n}

(1)

The solution space for FBA is defined by Equation (1), and within it optimizes a
single bioproduct of interest, usually biomass. Such is the case of the application of
FBA on photosynthetic organisms models, including Synechocystis sp. PCC 6803 [10,11],
Synechococcus sp. PCC 7002 [12,13], Cyanothece sp. ATCC 51142 [14], C. reinhardtii [15],
Anabaena sp. UTEX 2576 [16], Chlorella vulgaris UTEX 395 [6], Chlorella variabilis [17],
Chlorella protothecoides [18], and Arabidopsis thaliana [19] to estimate fluxes and yields.

However, despite the widespread use of FBA to predict fluxes in large-scale networks,
it is not always accurate in predicting fluxes in vivo [20]. Moreover, most metabolic
models satisfy n > m, meaning that multiple solutions might be found. This situation
becomes more complex in simultaneous bioproducts optimization. A recent trend that
works in metabolic analysis involves optimizing several objectives to engage in the study
of more than one bioproduct of interest [21–23]. In the past decade, this method can
be traced back to the work of Zomorrodi and Maranas [24]. There, they developed the
computational framework OptCom for FBA of microbial communities. The foundation of
the framework is multi-level optimization; it optimizes problems embedded one another
in a hierarchical structure for the sake of reaching optimum values for the final chosen
bioproduct. Budinich et al. [21] extend FBA for microbial communities by defining a Multi-
Objective FBA (MOFBA) in order to study multiple trade-offs between nutrients and growth
rates. More recently, Andrade et al. [22] and Pelt-KleinJan [23] proposes a multi-objective
formulation of FBA that considers nutrient limitations for metabolic analysis.

Multi-objective optimization has been exploited in a wide variety of fields in science
and engineering [25,26]. MOFBA, in particular, appears in medicine, where Zhang and
Boley [27] proposed a non-linear MOFBA to explain the impact of the objectives cells in
the Warburg effect in different cell types. Moreover, the works [21,24,27] simulate genome-
scale metabolic models for microbial ecosystems as a single strain exchanging; they use
multi-objective flux equilibrium analysis, and flux variability analysis (MO-FVA).

The main goal for multi-objective optimization is a good approximation of the Pareto
frontier, cf. [28]; Figure 1 illustrates this within a metabolite context in a bi-objective function
maximizing carbohydrates and proteins [29]. In this field, Multi-objective Evolutionary Al-
gorithms (MOEAs) are widely recognized. Mainly, the algorithm NSGAII (Non-Dominated
Sorting-based multi-objective EA) proposed by [30,31] has been quite effective when hand-
ling two or three objectives [32,33]. Based on the survey in [34], the only related work that
uses NSGAII for FBA optimization is by Costanza et al. [35].
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Figure 1. Two-objective Pareto frontier.

An overall view of the previous analysis indicates that the motivation for using
multi-objective optimization in FBA lies in improving the prediction capability of FBA.
However, the revised approaches do not adequately exploit the versatility of metaheuris-
tics to approximate the Pareto frontier under a moderate consumption of computational
resources. In other words, using a metaheuristic can better approximate the Pareto frontier,
and provide a greater diversity of solutions than the previous approaches [25,26].

Hence, this work proposes a novel implementation of the metaheuristic algorithm
NSGAII [30] for microalgae growth optimization. The novelty in the proposed NSGAII
includes an original encoding scheme or genotype and an original fitness evaluation
function. While in [35], NSGAII uses a knockout vector as genotype or encoding scheme,
and OptKnock (cf. [36]) as fitness evaluation, the proposed NSGAII uses an original encoding
scheme that generalizes the previous one, and an original fitness function evaluation based
on FBA. The proposed encoding scheme is a generalization because the associated solutions’
search space includes the knockouts. The use of FBA instead of OptKnock as a fitness
function might significantly impact the performance of the algorithm because instead of
solving a costly combinatorial optimization problem as in OptKnock, it solves a simpler
linear equation system.

The conducted experimental design demonstrates the validity against a glyclolysis
module of a reduced metabolic network for microalgae Chlamydomonas reinhardtii [20].
Moreover, the proposed NSGAII is compared against FBA, and the results show that while
the quality of the solution remains, the proximity to an ideal point is improved statistically
and it achieved a greater diversity of solutions. Hence, the main contributions are the
novel multi-objective optimization problem for metabolic analysis and the metaheuristic
algorithm to solve it.

2. Results

Table 1 summarizes the performance of NSGAII and FBA. Column 1 shows each
configuration considered. Column 2 shows the quality of solution Q achieved by NSGAII.
Columns 3 to 5 show the value of Q for FBA considering as objectives each of the bio-
products chosen in the associated configuration. Finally, Column 6 presents the number of
solutions produced by NSGAII; this number denoted F0, is the number of non-dominated
solutions reported by the algorithm.

The solution quality was statistically compared between NSGAII and the distinct
solutions reported by FBA for each configuration, and each objective took the lead. The
null hypothesis H0 was tested: the medians of the differences between the two group
samples are equal. Using the Wilcoxon statistical test with a significance level set to 0.01,
and as pairs of group samples (NSGAIIMinEuclid, FBAObj1), (NSGAIIMinEuclid, FBAObj2),
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(NSGAIIMinEuclid, FBAObj3), the obtained p-values were 0.000018, 0.000026, and 0.000087,
respectively. These results mean a rejection of H0, indicating a difference between the
quality results of NSGAII and FBA, favoring NSGAII due to its lower values.

Table 1. Report on best Euclidean distances to the ideal point.

Euclidean Distance to Ideal Point

Config. QNSGAII QFBA
Obj1

QFBA
Obj2

QFBA
Obj3

|F0|

C0 7.16 10.12 10 10 349

C1 8.07 10.12 10 10 158

C2 11.56 14.23 14.14 14.14 2501

C3 11.56 14.23 14.14 14.14 1701

C4 7.12 10.12 10 10 217

C5 8.34 10.12 10 10 359

C6 8.19 14.23 10 10 617

C7 10 10.12 14.14 10 53

C8 10 10.12 14.14 10 68

C9 10 14.27 10 10 147

C10 8.25 14.31 10 10 397

C11 8.24 14.31 10 10 279

C12 7.13 10.12 10 10 218

C13 0 0 0 0 125

C14 8.16 10 10 14.14 1821

C15 8.16 10 10 14.14 1646

C16 0 0 0 0 189

C17 0 0 0 0 216

C18 9.98 10 10 10 160

C19 0 0 0 0 88

C20 0 0 0 0 171

C21 8.20 10.06 10.06 10 202

C22 7.13 10.12 10.12 10 325

C23 7.13 10.12 10.12 10 465

C24 0 0.06 0.06 0 81

C25 0 0 0 0 125

C26 8.17 10 10 14.14 1597

C27 8.18 10 10 14.14 1199

C28 0 0 0 0 175

C29 0 0 0 0 280

C30 0 0 0 0 391

C31 8.27 10 10 10 276

C32 7.17 10 10 10 261

C33 0 0 0 0 122

C34 0 0 0 0 55

C35 0 0 0 0 90

C36 0 0 0 0 25
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The results in Table 1 show that NSGAII improved FBA in terms of quality. Considering
multiple objectives, NSGAII obatined closer solutions to the ideal point than those obtained
by FBA. Moreover, the statistical test confirms that there is indeed a significant difference
among these results. In addition, the good performance of NSGAII with respect to the
diversity indicator D is also confirmed according to the values shown in Column 6, where
the number of solutions ranges from a few dozens to several hundred, depending on the
configuration, while classical FBA usually offers only one solution when Flux Variance
Analysis (FVA) is not used.

Figures 2–5 offer a perspective of the behavior of NSGAII concerning the spread
indicator S applied to the results achieved in the configuration C0. All these figures show
the ideal point in purple color, the three solutions reported by FBA in green color, and all
the solutions reported by NSGAII are in blue circles. From these graphics, three main
observations must be commented on: (1) first, the solutions of NSGAII describe the real
contour of the Pareto frontier, while the solutions by FBA are only extreme points; (2) there
exist solutions closers to the ideal point even though FBA warranty optimal solutions;
and (3) the solutions of NSGAII are widely spread in the Pareto frontier. Hence, from the
previous observations, it can be noted that NSGAII spread improves that of FBA; this
behavior is repeated in all the remaining configurations.

Figure 2. Pareto approximation for configuration C0 with respect to the objectives (v10, v14, v18).
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Figure 3. Pareto approximation for configuration C0 with respect to the plane formed by objectives
(v10, v14).

Figure 4. Pareto approximation for configuration C0 with respect to the plane formed by objectives
(v10, v18).
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Figure 5. Pareto approximation for configuration C0 with respect to the plane formed by objectives
(v14, v18).

A closer numerical look at the differences between NSGAII and FBA under configura-
tion C0 is shown in Table 2. This table compares the fluxes achieved by FBA in each case
against some selected solutions reported by NSGAII.

Some additional insights arise from the previous results. Let us begin with the variety
of configurations used in the comparison; this demonstrates the versatility of NSGAII to
adapt to different circumstances and its capacity to improve the analysis of the metabolic
network given the larger number of solutions produced for each of them.

After that, evolutionary approaches require fewer resources than FBA when dealing
with multiple objectives; for example, it has the advantage of spending less time and
memory. Approaches such as NSGAII allow a greater power of choice in the decision-
making process also due to the variety and number of solutions, and the possibility of an
easier recognition of the most important fluxes in a network and their influence and impact
rather than not having a methodology.

Finally, by analyzing sets of several tens or hundreds of solutions simultaneously
instead of just one through the classical approach, it is possible to have a better perspective
of what is happening in cell metabolism.
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Table 2. Results.

QFBA
Obj1

QFBA
Obj2

QFBA
Obj3

QNSGAII
Obj1

QNSGAII
Obj2

QNSGAII
Obj3

QNSGAII
Euclid

BY
OBJECTIVE

v10 0 10 0 0 9.99 3.93 5.099

v14 10.12 0 10 10.11 0.045 6.68 5.019

v18 0 0 0 0 0 0 0

EUCLIDEAN 10.12 10 10 10.119 10 7.49 7.15

OBJECTIVE

v10 10 0 10 10 3.8× 10−9 6.60 4.90

v14 0.48 10.6 0.6 0.48 10.55 3.91 5.58

v18 10 10 10 10 10 10 10

FLUXES

v1 10 10 10 10 10 10 10

v2 10 10 10 10 10 10 10

v3 0 0 0 0 0 0 0

v4 0 0 0 0 0 0 0

v5 10 10 10 10 10 10 10

v6 10 10 10 10 10 10 10

v7 0 10 0 0 9.99 3.93 5.099

v8 10 0 10 10 3.8× 10−9 6.60 4.90

v9 10 0 10 10 3.8× 10−9 6.60 4.90

v10 10 0 10 10 3.8× 10−9 6.60 4.90

v11 0.24 10.3 0.3 0.24 10.27 3.65 5.34

v12 0.48 10.6 0.6 0.48 10.55 3.91 5.58

v13 0.48 10.6 0.6 0.48 10.55 3.91 5.58

v14 0.48 10.6 0.6 0.48 10.55 3.91 5.58

v15 0.24 0.3 0.3 0.24 0.27 0.26 0.24

v16 0.24 0.3 0.3 0.24 0.27 0.26 0.24

v17 0.24 0.3 0.3 0.24 0.27 0.26 0.24

v18 10 10 10 10 10 10 10

3. Discussion

Figure 6 is an oversimplifying of the Chlamydomonas reinhardtii metabolic network
(detailed in Figure 7). The representation of Figure 6a are values obtained by optimizing the
v14 flux using FBA. Figure 6b–d correspond to results obtained from NSGAII. From these
results, it can be seen that a cell always produces a compromise between the amount of
biomass, carbon reserves, and its respiration process. Everything that occurs inside is dis-
tributed in distinct ways and proportions. The advantage of the proposed implementation
of NSGAII is that one execution of the algorithm produces several fluxes distributions,
in contrast with FBA which only produces one, the solutions’ set from NSGAII improve a
researcher’s sight view of the physiological scenario under different conditions.

The growth on acetate as a carbon source of Chlamydomonas reinhardtii synthesizes CO2
as a product of metabolism, as seen in all fluxes distributions shown in Figure 6a–d, denoted
v18. In this case, the metabolism of carbon acts as a source of energy for biomass growth.

Figure 6c shows that the protein value of 6.60 is greater than the flux of carbohydrates
that corresponds to 3.9, indicating a low accumulation of carbohydrates in favor of more
significant protein production. This result concurs with the reported higher protein content
observed when Chlamydomonas reinhardtii is cultured heterotrophically [15].
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Figure 6d shows a slightly more uniform distribution of fluxes compared to the
ones shown in Figure 6a, where all the fluxes are directed to the production of carbohy-
drates, compromising the entire flux of proteins v10, leading to a state lacking growth in
the biomass.

NSGAII can also produce solutions with similar fluxes’ values to those obtained from
FBA. For example, in Figure 6b, values are almost equal to those in Figure 6a, where the pro-
duced fluxes point to the generation of Carbohydrates and CO2. However, these solutions
compromise protein production, such situation implies null growth and an undesirable
condition for a real process, as discussed in previous experimental research [15,37].

Figure 6. The distribution fluxes of objective function. Subfigure (a) shows the optimization of the v14

flux using FBA; subfigures (b–d) correspond to different fluxes distributions obtained from NSGAII
optimizing v14, v10 and v18 simultaneously.

Figure 7. Metabolic network of Chlamydomonas reinhardtii.
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4. Materials and Methods

This section presents the proposed implementation for NSGAII, and the experiment
conducted to validate it in the solution of MOFBA. It is organized into three subsections.
First, it shows the proposed approach. After that, it presents the case study. Finally, it ends
with the description of the experimental design used to test NSGAII.

4.1. Proposed Evolutionary Approach Based on NSGAII

Traditionally, the optimization of metabolic networks considers a steady-state approxi-
mation in which the metabolite concentrations are assumed to be constant. Since in the
majority of the real-world metabolic networks the number of reactions (denoted by n) is
higher than the number of metabolites (denoted by m), there is a large number of com-
binations of reaction fluxes that satisfy such systems. This section presents the proposed
multi-objective FBA and a novel evolutionary approach that solves it, efficiently producing
a proper approximation of the Pareto frontier with a quite diverse set of Pareto solutions
that can improve decision-making in metabolic engineering.

The novel features included in this research are: (1) a novel encoding scheme for
an FBA solution; (2) an original fitness evaluation based on classic FBA that guides the
approximation of the Pareto front on MOFBA; and (3) a novel adaptation of the NSGAII
framework to solve the particular MOFBA defined under the previous characteristics, so
that feasible solutions can be achieved.

4.1.1. Multi-Objective Optimization Model for FBA

Equation (1) shows the classic formulation for FBA. The solution of such an approach
will yield a solution that maximizes the biomass. This work proposes the use of Equation (2)
as the multi-objective alternative. It has a slight variation compared to Equation (1) which
consists of the optimization of a set of bioproducts {vb1 , . . . , vbm} instead of a single one.
Equation (2) also considers the stoichiometric matrix S, the fluxes vector v, the steady-state
condition Sv = 0, and w.l.o.g. that all objectives are to be maximized.

MOFBA max F(v) = (vb1 , . . ., vbm )
Subject to

S· v = 0
LBj≤ vj ≤ UBj, ∀j ∈ {1, . . . , n}

(2)

MOFBA, as defined in Equation (2), cannot be solved using traditional linear solvers.
Instead, enumerative schemes or approximated approaches must be used to achieve the
Pareto frontier. The following section shows the novel evolutionary approach proposed in
this work to solve this problem.

4.1.2. Evolutionary Approach for MOFBA

This work proposes the use of a novel ensemble encoding the solution of MOFBA
(as defined in Equation (2)) and its solution using NSGAII to solve the MOFBA. Given
that NSGAII is an evolutive algorithm, it requires the definition of the following features:
(1) encoding scheme; (2) fitness evaluation function; (3) genetic operators; (4) constraint
handling strategy; and (5) population’s initialization method. The proposed ensemble of
these components to handle MOFBA is detailed in the remainder of this section.

Proposed Encoding Scheme W . Let us consider a metabolic networkMN consti-
tuted by a set of reactions V , and two subsets VM,V b ⊆ V , where VM ∩ V b = ∅, that
represent the reactions of the metabolites of interest for a decision-maker. Moreover, let
v = (v1, . . . , vn) be the fluxes vector for V and let us assume that exist initial lower and
upper bounds LBi, UBi for each vi, 1 ≤ i ≤ n. Then, the encoding schemeW proposes the
redefinition of the bounds of each vi associated with a reaction in VM ∪V b using two values
(Ii, ∆i). The new bounds are computed as LBnew

i = Ii and UBnew
i = (UBi − Ii)∆i + Ii. All

the remaining fluxes will keep their bound values unchanged. In other words, the solution
encodes changes in the bounds so that FBA solves MN using a prespecified bioprod-
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uct, which in this work is assumed to be vb
1. The resulting encoding vector w is of size

2|VM|+ 2|V b|. Table 3 shows a graphical example of w applied to a case with |V| = 7,
and |VM| = |V b| = 3. Having as initial bounds LBi = 0, and UBi = 10, and considering
VM = {v1, v2, v3} and V b = {v4, v5, v6}, the use of w will results in the new bounds
(LB, UB) = {(5, 7.5), (0, 7.5), (2, 8.4), (10, 10), (2.5), (6.25), (7.5, 8.75)}. Let us point out that
any application ofW over a reaction i uses its initial values for LBi, UBi.

Table 3. Proposed solution’s encoding for MOFBA.

Encode Solution w
Decision Variables Objectives︷ ︸︸ ︷ ︷ ︸︸ ︷

1 2 3 4 5 6 7 8 9 10 11 12

LBvM
1

∆vM
1

LBvM
2

∆vM
2

LBvM
3

∆vM
3

LBvb
1

∆vb
1

LBvb
2

∆vb
2

LBvb
3

∆vb
3

5 0.50 0 0.75 2 0.80 10 1.00 2.5 0.50 7.5 0.10

Fitness Evaluation Function (or FEF). Given that the information required on the
bio-products is associated with specific reactions, the aptitude of a solution obtained by
NSGAII on MOFBA is evaluated considering their fluxes values. Hence, the criteria or
objective functions to be optimized will be the fluxes of the reactions corresponding to the
chosen bioproducts of interest in V b and denoted (vb

1, . . . , vb
m). The proposed FEF requires a

leading bioproduct. Then, having an encoded solution w, and taking as leading bioproduct
vb

1, FEF uses the redefined bound produced by the encoding schemeW and vb
1 to create

a single-objective metabolic model that can be solved by FBA. From the solution of the
previous model, the corresponding flux values for {vb

1, . . . , vb
m} are taken as the objective

values resulting from the encoding w.
Genetic Operators. These operators create new solutions by dynamically and ran-

domly varying the values of decision variables on existing solutions. Their selection was
due to their success in solving problems involving real-valued decision variables [38].
The chosen operators for mutation, crossover, and selection were Polynomial Mutation [39],
SBXCrossover [40], and a simple yet reliable random selection, respectively.

Constraint Handling Scheme. The ensemble for NSGAII considers a feasibility con-
straint. This constraint is violated whenever FBA in the fitness function reports unfeasibility.
The latter arises because the bounds defined by an encoded solution might cause no feasible
solution exists. This work uses the constraint handling method proposed in [41] to over-
come this situation. As the generations evolve in NSGAII, the competition among solutions
will always prefer feasible solutions, despite the non-domination status. In the long run,
such a strategy tends to eradicate unfeasible solutions at the final report of the algorithm.

Initialization method. A randomly generated initial population was considered as the
input for NSGAII.

In general, the novel idea behind the previous ensemble is that NSGAII exerts selective
pressure toward the Pareto frontier using the genetic operators, the ranking based on non-
domination, the diversity control established by the crowding distance, and an adequate
constraint handling strategy. The solutions, which indirectly define the flux values for
vector v in FBA, will dynamically evolve in the algorithm, and those with better aptitude
(i.e., that are feasible and improve the best the chosen bioproducts of the reactions) are kept
for future generations. The final set of solutions provided by NSGAII represents a wider,
more spread, and more promising combination of the reaction fluxes values that a decision
maker can take as an advantage for their research.

The following section details the validation process for this proposed ensemble
of NSGAII.
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4.2. Case of Study: Metabolic Network of Chlamydomonas reinhardtii

This work analyzes the FBA of an essential module of the microalgae Chlamydomonas
reinhardtii. Figure 7 presents the related metabolic network, and Table 4 the correspon-
ding reactions. This case presents three bioproducts of interest: proteins, carbohydrates,
and CO2 (denoted here as v10, v14, and v18). Moreover, these networks show three primary
substrates: acetate, E4P, and X5P (or v1, v16, and v17, respectively). Optimizing the three
bioproducts (v10, v14, v18) having as control decision variables (v1, v16, v17) is the base to
validate NSGAII. The next section presents specific details on the performed experiment.

Table 4. Reactions derived from the metabolic network Figure 7.

Name Formula Name Formula

v1 : –> acetate v10 : PROT –>
v2 : acetate –> ACCOA v11 : T3P <=> F6P
v3 : acetate –> CIT v12 : F6P <=> G6P
v4 : CIT –> v13 : G6P –> CARB
v5 : ACCOA –> OAA v14 : CARB –>

v6 : OAA <=> PEP + CO2 v15 : E4P + X5P –> F6P +
T3P

v7 : PEP <=> T3P v16 : –> E4P
v8 : PEP –> PYR v17 : –> X5P
v9 : PYR –> PROT v18 : CO2–>

4.3. Experimental Design

The experimental method evaluates the performance of NSGAII and compares it
against the classical FBA. The hypothesis under consideration was that the decision-making
on metabolic analysis can be improved using the evolutionary approach. The considered
indicators that assess such improvement were the quality of the solutions, their diversity
D, and their spread, or S concerning the Pareto frontier when considering the optimization
of multiple fluxes. During the experiment, it was assumed that the study cases have the
initial bounds limits in every reaction set to LB = 0, UB = 100.

Besides the set of bioproducts of interest, the configuration C0 = {v10, v14, v18}, the ex-
periment extends the analysis to the additional set of 36 configurations presented in Table 5.
Each configuration represents a different set of bioproducts of interest. Demonstrating a
good performance on such number of configurations would indicate that the evolutionary
approach is versatile, and can easily be adapted to analyze metabolic networks under
distinct contexts.

The quality of a solution, denoted Q, is measured as the Euclidean distance to an Ideal
Point. Each configuration defines the ideal point and the best flux value resulting from FBA
using each bioproduct of interest. For example, with the configuration C0 the ideal point
would be formed by the three optimal flux values reported by FBA, optimizing v10, v14,
and v18, respectively.

The diversity of solutions, or D, is assessed by the number of distinct solutions
achieved by the evolutionary approach. Let us recall that FBA only provides an optimal
solution. Finally, the spread or S will be graphically demonstrated by showing a broad
distribution of solutions approximating the Pareto frontier.
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Table 5. Experiment’s additional configurations of the reactions fluxes apart from C0 = {v10, v14, v18}.

No. Configuration No. Configuration No. Configuration

C1 {v10, v14, v2} C13 {v10, v18, v2} C25 {v14, v18, v2}
C2 {v10, v14, v3} C14 {v10, v18, v3} C26 {v14, v18, v2}
C3 {v10, v14, v4} C15 {v10, v18, v4} C27 {v14, v18, v2}
C4 {v10, v14, v5} C16 {v10, v18, v5} C28 {v14, v18, v2}
C5 {v10, v14, v6} C17 {v10, v18, v6} C29 {v14, v18, v2}
C6 {v10, v14, v7} C18 {v10, v18, v7} C30 {v14, v18, v2}
C7 {v10, v14, v8} C19 {v10, v18, v8} C31 {v14, v18, v2}
C8 {v10, v14, v9} C20 {v10, v18, v9} C32 {v14, v18, v2}
C9 {v10, v14, v11} C21 {v10, v18, v11} C33 {v14, v18, v2}
C10 {v10, v14, v12} C22 {v10, v18, v12} C34 {v14, v18, v2}
C11 {v10, v14, v13} C23 {v10, v18, v13} C35 {v14, v18, v2}
C12 {v10, v14, v15} C24 {v10, v18, v15} C36 {v14, v18, v2}

The development of the proposed NSGAII for MOFBA was done by combining
the FBA implementation from COBRAPY [42], and the NSGAII implementation from
PyMETAL [43]. Both technologies were integrated into a Python script, the following
NSGAII values as parameters: (1) the population size was set to N = 100; (2) the stop
criterion was defined as a maximum number of evaluations of 10, 000; (3) for the Polyno-
mialMutation, a mutation probability of 0.083 and a distribution index of 20 was set; and
(4) for the SBXCrossover a crossover probability of 1.0 with a distribution index of 20 was
set. Given the stochastic nature of NSGAII, each configuration was solved 31 times in order
to have a representative sample of the solutions.

5. Conclusions

This study carried out the maximization of multi-objective functions of the production
of proteins, carbohydrates, and CO2 as a basis to demonstrate the use of multi-objective
optimization with the NSGAII algorithm in a part of a reduced metabolic network of
the microalga Chlamydomonas reinhardtii. The results obtained were compared with FBA
analysis, achieving a similarity between the maximization of FBA when only a single
objective function is maximized, but it also shows a broader perspective of the study of
metabolic fluxes when there are multiple objective functions, NSGAII provide not only
solutions closer to the ideal point in quality but also a better diversity and spread of them.
Moreover, as far as we know, this is the first approach using evolutionary algorithms for
metabolic analysis.

The use of the NSGAII algorithm to facilitate the understanding of the behavior of the
metabolism when using multi-objective analysis must take into consideration that a possible
decision-maker in the case study is interested in a broader set of combinations of fluxes in
the reaction, by maximizing or minimizing different objective functions simultaneously,
to explore a wide set of solutions of which those that may be more convenient for the
investigation of a species are more easy to extract; in addition, we obtained a broader
perspective of the study of metabolic fluxes by knowing how the different settings assigned.

For future work, the NSGAII evolutionary algorithm will be applied to a much larger
microalgae metabolic network, using different configurations by maximizing different
objective functions and comparing the results with FBA, observing the different solutions
according to the requirements, and taking the most suitable solutions according to the
needs of the model. In addition, the use of the NSGAII algorithm compensates production
between the fluxes of the metabolites of interest and the fluxes of biomass production.
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