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METHODOLOGY

Extracting single‑trial neural interaction 
using latent dynamical systems model
Namjung Huh1*, Sung‑Phil Kim2, Joonyeol Lee3,4 and Jeong‑woo Sohn1,5* 

Abstract 

In systems neuroscience, advances in simultaneous recording technology have helped reveal the population dynam‑
ics that underlie the complex neural correlates of animal behavior and cognitive processes. To investigate these cor‑
relates, neural interactions are typically abstracted from spike trains of pairs of neurons accumulated over the course 
of many trials. However, the resultant averaged values do not lead to understanding of neural computation in which 
the responses of populations are highly variable even under identical external conditions. Accordingly, neural interac‑
tions within the population also show strong fluctuations. In the present study, we introduce an analysis method 
reflecting the temporal variation of neural interactions, in which cross-correlograms on rate estimates are applied 
via a latent dynamical systems model. Using this method, we were able to predict time-varying neural interactions 
within a single trial. In addition, the pairwise connections estimated in our analysis increased along behavioral epochs 
among neurons categorized within similar functional groups. Thus, our analysis method revealed that neurons in the 
same groups communicate more as the population gets involved in the assigned task. We also showed that the char‑
acteristics of neural interaction from our model differ from the results of a typical model employing cross-correlation 
coefficients. This suggests that our model can extract nonoverlapping information about network topology, unlike 
the typical model.
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Introduction
Information communication via spike trains of neu-
rons in populations is a core computational process that 
enables many brain areas to execute their roles, which 
include encoding of stimuli, decision-making, and high-
level cognition [1]. To understand these processes, 
therefore, the effects of spike trains across neuronal 
populations must be determined according to their spe-
cific network structures [2–6]. For this purpose, a vari-
ety of network theoretical models have been developed 
for the analysis of neuronal population dynamics and the 
description of network topology, e.g., modules, hubs, and 
rich-clubs [7–9]. From analyses of pairwise correlations, 

a recent study showed that the functional single neuron 
network of the macaque monkey frontoparietal area dur-
ing active behavior has a highly complex topology that 
includes small-worldness, hubs, and rich-clubs consisting 
of oscillatory neurons synchronized in specific frequency 
bands [9]. To infer neural network topology, many stud-
ies have focused on quantifying correlations in the num-
ber of spikes or in the spike times of pairwise neurons. 
One conventionally used quantification method is the 
cross-correlogram (CCG) coefficient, which measures 
the co-occurrence of spikes of the pairs within a given 
time bin [10]. To assess temporal correlations rather 
than the degree of synchronous firing, alternative quan-
tification methods can be applied, such as the correlation 
index [11] or spike-time tiling coefficient [12], which are 
derived from the temporal order of pairwise spike trains. 
Given sufficient data, it is also possible to make use of 
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nonlinear methods such as mutual information [13] and 
transfer entropy [14] in information theory.

Measuring sets of neural responses across trials is com-
mon to estimate the firing rates of spike trains because 
spikes are highly variable and noisy at the single-trial 
level. The averaged values across trials, however, obfus-
cate information of population dynamics at certain times 
in behavioral epochs or in the trials. Since estimating 
neural activities in single trials is challenging because of 
variability and deficient sampling, several studies have 
exploited the dimensionality reduction method adapted 
in the latent variable space rather than the neuronal 
space to measure population activities at the single-trial 
level [15–29]. Models with independent factors under-
lying population activities can extract neural popula-
tion states in single trials [15, 16]. Recent studies have 
reported analysis of single-trial population activities 
using linear dynamical models across time [17–20] or 
nonlinear dynamical models allowing switches of states 
at given times [21, 22]. Event-dependent dynamical sys-
tems models [22] are variant models compromising lin-
ear and nonlinear methods that allow switches at the 
cued times between adjacent epochs. In addition, artifi-
cial recurrent neural networks infer single-trial neural 
population dynamics based on the assumption that the 
networks can generate neural data using a machine-
learning method [23]. In nonhuman primates, population 
activities in diverse brain regions are low dimensional in 
many instances [19, 30–37]; therefore, it can be assumed 
that population activity in single trials can be estimated 
via a latent dynamical systems model with much lower 
dimensions than the population size.

Estimations of population activity are useful for elu-
cidating the slow-varying neural dynamics governed by 
shared inputs in a single trial; however, the recovery of 
transient changes evoked by other neurons’ spikes is lim-
ited because the temporal precision of the latent model 
is generally insufficient for capturing these interactions. 
The intrinsic timescale of spike effects is about tens of ms 
and below 200 ms at most [38], whereas neural popula-
tions sustain their activity in the same-shared activity 
space within an epoch that generally lasts longer than 
hundreds of ms [22]. To address this issue, it is possi-
ble to calculate CCGs of pairs of neurons by two differ-
ent ways that CCGs are calculated using spike trains or 
rate estimates. In typical fashion, CCGs are calculated 
using spike trains, but they include the effects caused by 
shared motives such as common inputs or synchroniza-
tion across the populations as well as the direct effects of 
the other neurons in the population. To quantify these 
shared terms, the CCGs can be calculated using esti-
mates of population activity inferred by a latent dynami-
cal systems model. The transient effects between pairs 

of neurons can be surmised by comparing two CCGs 
according to spike trains or estimates of populate activ-
ity. Estimates of population activity can then be revised 
in light of transient effects, and the degree to which both 
transient and shared effects contribute to the revised 
estimate can be evaluated.

In the present study, we applied the above-described 
method to a dataset from an open database in which data 
were simultaneously recorded from the anterior lateral 
motor (ALM) cortex of mice while they were executing a 
two-alternative-forced choice task [29, 39–43]. We found 
that neural interactions varied significantly over time in 
a trial and that neurons could be classified based on the 
degree of other neurons’ effects in each behavioral epoch. 
We also showed that network structures were depend-
ent on the task-related epochs, implying that interac-
tions between neurons were not stationary but instead 
adjusted to the relative importance of the epochs. Com-
pared with a model containing correlation coefficients, 
which are widely used to evaluate functional connectiv-
ity, our model could improve judgment of the underlying 
organization of transient neural activities.

Materials and methods
Application to mice ALM cortex neurons
We applied the above-described analysis method to a 
dataset from alternative choice tasks conducted in pre-
vious studies [29, 39–43]. In this research, trained mice 
reported pole position (posterior or anterior) by lick-
ing one of two targets (left in an ipsi trial and right in a 
contra trial) following a delay epoch after pole presenta-
tion. After a 1.3-s delay, mice responded to an auditory 
signal indicating the onset of the response epoch (Fig. 1a, 
upper panel). Extracellular spikes were recorded on the 
left-hemisphere ALM cortex using 32-channel Neu-
roNexus silicon probes (19 mice) or 64-channel Jane-
lia silicon probes (20 mice). The extracellular recording 
traces were bandpass-filtered (300–6000  Hz) and then 
sorted using JRclust if events exceeded an amplitude 
threshold. Based on spike width, cells were classified as 
pyramidal cells (width > 0.5 ms) or fast-spiking interneu-
rons (width < 0.35 ms). For a more detailed explanation of 
the electrophysiological recording method, consult the 
studies cited earlier [40, 42, 43]. To assess the effects of 
ensemble inputs from other neurons, we analyzed only 
the sessions that included > 15 neurons (9 of 40 sessions).

Estimating the dynamics of ALM cortex neural activities
Neural dynamics are highly complicated and stochastic, 
resulting in diverse responses even in comparable cases. 
To resolve these difficulties, the extraction of shared neu-
ral activity (SNA) in a low-dimensional latent space has 
been developed to determine the dynamics of population 
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activity as an alternative to directly assessing raw neural 
activities. For this purpose, we used a previously intro-
duced model [22], i.e., an event-dependent linear dynam-
ical systems (EDLDS) model that allows switches of 
behavioral epochs as follows:

The latent variable x(t) is an NL-dimensional vec-
tor ( NL : the dimension of the latent space) updated by 
matrix W (s) in the s-epoch (s: sample, delay, response). 
The term W0(t) represents random fluctuation independ-
ent of the term updated by matrix W (s) in the latent 
space. The rate estimate r(t) is an NP-dimensional vec-
tor ( NP : the number of neurons in the population) cal-
culated by the projection matrix V (s) in the s-epoch. The 

(1)r(t) = V (s)x(t)+ r0 + V 0(t)

(2)dx(t)/dt = W (s)x(t)+W0(t)

term V0(t) denotes the residual that is not explained by 
the latent variables.

Temporal interaction estimated with CCGs. Since the 
EDLDS model captures slow-varying dynamics of the 
neural response, neural components that reflect tempo-
ral fluctuations must be introduced into the model. One 
such possible component is the interaction between neu-
rons over a finite time scale. We assumed that a neuron 
was affected by all the other neurons in the population 
and that the rate estimate calculated in Eq.  1 could be 
revised by the integration of these interactions. Accord-
ingly, we calculated CCGs between all pairs of neurons 
from their spike trains Cij(kτ ) as follows:

where j ( i ) is the index of a reference (a target) neuron 
affecting (affected by) the other neuron. M and Nm

j  are 

(3)Cij(kτ ) =
1

M

∑M

m=1

1

Nm
j

∑Nm
j

l=1
nmi

(

tmjl , k
)

/τ

Fig. 1  Schematics of the behavioral task and examples of neural activities and cross-correlograms. a In a sample epoch, the pole is presented 
at one location (posterior or anterior) and mice are trained to lick a corresponding port to report pole location in a response epoch, which was 
signaled by an auditory cue after a 1.3-s delay epoch (upper panel). Examples of spike trains in a single trial (middle panel); the number of spikes in 
time bins and the rate estimate of neuron N15 (lower panel). b An example of the differences among cross-correlograms (upper panel), spike trains 
(middle panel), and rate estimates (lower panel). Neural activities of the target neuron (N15) are aligned based on the different reference neurons 
(N2: black; N7: magenta; N12: cyan)
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the number of trials and the number of spikes of the ref-
erence neuron during trial m, respectively, and nmi

(

tmjl , k
)

 
denotes the number of spikes of the target neuron 
included in the k-th time lag range 
tmjl + (k − 1)τ ≤ t < tmjl + kτ after the l-th spike time tmjl  
of the reference neuron. We found similar results with 
various temporal precisions from τ = 15ms to τ = 45ms 
for the transient effects; thus, we heuristically selected 
the temporal precision τ = 25ms because the results of 
analysis using this value showed greater distinction in 
neural interactions according to the epoch. In a similar 
manner, the estimated CCG (ECCG) from the SNA of a 
latent model CE

ij (kτ ) can be represented as:

where 〈rmi
(

tmjl , k
)

〉 denotes the mean rate estimate of the 
target neuron in the k-th time lag range 
tmjl + (k − 1)τ ≤ t < tmjl + kτ after the l-th spike time tmjl  
of the reference neuron. In line with nmi

(

tmjl , k
)

/τ in 
Eq.  3, which denotes the rate in the range 
tmjl + (k − 1)τ ≤ t < tmjl + kτ derived from the spike 
trains of the i-th neuron, the counterpart 〈rmi

(

tmjl , k
)

〉 in 
the ECCG (Eq.  4) is the rate in the same range derived 
from the rate estimate of the i-th neuron (Eq. 1). The dif-
ference between the CCG and ECCG (i.e., the DCCG) 
�Cij(kτ ) can then be represented as follows:

Optimization of neural activities
SNA effectively describes the slow-varying population 
activity governed by the shared inputs. However, recov-
ering the transient changes evoked by the spikes of the 
connected neurons is difficult due to the short time vari-
ability of the interaction effect compared with the tem-
poral precision of the latent model. For increasingly 
accurate estimates that include these transient effects 
over a relatively short time scale, the rate estimate in 
the given time bin of the latent model can be corrected 
using the CCG and ECCG. Since the interaction between 
neurons might change across times or trials, we allowed 
the CCG and ECCG to depend on both variables. We 
calculated the CCG and ECCG from the spike trains in 
the neighboring 20 bins of 20 trials (we obtained similar 
results using different values, e.g., 15 or 30 bins or trials; 
data not shown). For simplicity, we used only one-time 
lag before and after the spike of the reference neuron 
( Cij(τ ),Cij(−τ ) ) and then the corrected rate estimate 
rTi,C(t) as follows:

(4)CE
ij (kτ ) =

1

M

∑M

m=1

1

Nm
j

∑Nm
j

l=1
�rmi

(

tmjl , k
)

�

(5)�Cij(kτ ) = Cij(kτ )− CE
ij (kτ)

where δ+
({

tj
}

, t
)

= 1 or 0 ( δ−
({

tj
}

, t
)

= 1 or 0) if 
neuron j fires (or does not fire) in the time lag range 
[t, t + τ ] ( [t − τ , t] ), T denotes the time bin index of the 
latent model, and 0 ≤ t < Sbin ( Sbin : time bin size of the 
latent model). We used Sbin = 67.4 ms following a previ-
ous study [22]. The rate estimate rTi  represents the SNA 
of the i-th neuron in the given time bin T  . Because of 
the effects of the other neurons’ spikes, the mean of the 
corrected rate estimate rTi,C(t) in the given time bin T 
becomes different from the rate estimate rTi  . To resolve 
this disagreement, we normalized the corrected rate esti-
mate to match with the SNA; the transient SNA (TSNA) 
rTi,TSNA(t) was then represented as follows:

where 〈rTi,C(t)〉 is the mean of rTi,C(t) in the given time bin 
T  . Since the contributions of transient effects to the neu-
ral response vary depending on the time bin, we found 
the optimal degree of SNA and TSNA contributions by 
maximizing the likelihood L({ti}) of the target neuron’s 
spike times in a given time bin as follows:

where {ti} denotes the spike trains of neuron i 
and δt,{ti} = 1 or 0 if t ∈ {ti} or does not, respec-
tively. The probability P(t) of firing at time t 
is calculated using the soft-max selection rule 
P(t) =

(

αrTi,TSNA(t)+ (1− α)rTi (t)
)

δt , where 
α = 1/(1+ e−Q) . We set a discrete time step of 
δt = Sbin/60(Sbin = 67.4  ms: time bin size of the latent 
model) for all calculations in this work. The parameter 
α denotes the degree to which TSNA contributes and 
it is determined by Q. The optimized neural activity 
(ONA)rTi,ONA(t) is then represented as follows:

where α∗ denotes the value maximizing L({ti}) , i.e., 
α∗ = 1/(1+ e−Q∗) and Q∗ = argmaxQL({ti}).

(6)

rTi,C(t) =
∑

j �=i

[

δ+
({

tj
}

, t
)

(

Cij(τ )

CE
ij (τ )

)(

CE
ij (τ )

∑

j �=i C
E
ij (τ )

)

rTi

+δ−
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tj
}

, t
)

(

Cij(−τ )

CE
ij (−τ )

)(

CE
ij (−τ )

∑

j �=i C
E
ij (−τ )

)

rTi

]

(7)

rTi,TSNA(t) =
rTi

�rTi,C(t)�

∑

j �=i

[

δ+
({

tj
}

, t
)

(

Cij(τ )
∑

j �=i C
E
ij (τ )

)

rTi

+δ−
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tj
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, t
)

(

Cij(−τ )
∑

j �=i C
E
ij (−τ )

)

rTi

]

(8)L({ti}) =

Sbin
∑

t=1

(

δt,{ti}P(t)+ (1− δt,{ti})(1− P(t)
)

(9)rTi,ONA(t) = α∗r
T
i,TSNA(t)+ (1− α∗)r

T
i
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Neural interactions estimated by Kullback–Leibler 
divergence
To assess how SNA varies by the transient effects of other 
neurons, we compared the probability distributions of the 
spike trains, i.e., Kullback–Leibler divergences, between 
the ONA and SNA (i.e., the DONA) DKL

T (PONA
T (t)|PSNA

T ) 
as follows:

where PSNA
T  ( PONA

T (t) ) denotes the probability of fir-
ing for SNA(ONA) at time t in the given time bin T  . To 
identify interactions induced by a single reference neu-
ron’s spike train but not by all other neurons (as with 
DONA), we defined the pairwise Kullback–Leibler 
divergence between ONA and SNA (i.e., the PDONA) 
DKL
T

(

PONA(sn)|P
SNA(sn)

)

 as follows:

where sn is an n-dimensional vector with 0 or 1 denot-
ing spike existence or nonexistence of the target neuron i 
in the time step δt after n-consecutive spike times of the 
reference neuron j ( S(n) : the entire space including all the 
possible cases of sn ) closest to the time bin T, whereas 
tkj  denotes the k-th spike time of the reference neuron j, 
and δ1,sn(k) = 1 or 0 if the k-th element of sn ( sn(k) ) is 1 
or 0, respectively. P(sn) represents the probability of the 
series of the target neuron firing or not firing after the fir-
ing of the reference neuron. Hence, PDONA measures 
how each of the reference neuron’s n-consecutive spikes 
modify the probability of the target neuron firing after 
the moment at which the corresponding reference neu-
ron spikes. We tested various cases of n spikes of refer-
ence neurons (from n = 5 to n = 8); we chose to use n = 6 
and excluded cases in which the number of spikes by the 
reference neuron was < 10 in the trial (we obtained simi-
lar results for n = 5, 7, or 8; data not shown).

Logistic regression analysis for decoding lick responses
We evaluated how the neural interaction improved per-
formance in decoding lick responses through logistic 
regression analysis, including spike counts and DONA 
(full model), as follows:

(10)

DKL
T

(

PONA
T (t)|PSNA

T

)

=

Sbin
∑

t=1

PONA
T (t)log

(

PONA
T (t)

PSNA
T

)

(11)

DKL
T

(

PONA(sn)|P
SNA(sn)

)

=
∑

sn∈S(n)

PONA(sn)log

(

PONA(sn)

PSNA(sn)

)

(12)P(sn) =

∏n
k=1

(

δ1,sn(k)ri

(

tkj

)

δt + (1− δ1,sn(k))(1− ri(t
k
j )δt)

)

∑

sn∈S(n)

∏n
k=1

(

δ1,sn(k)ri

(

tkj

)

δt + (1− δ1,sn(k))(1− ri(t
k
j )δt)

)

where the log-odds for the probability of the lick of the 
left target in the ipsi trial ( Pipsi ) were fitted using the 
log of the spike counts ( log(Nsp) ) and the log of DONA 
( log(DONA) ). By comparing Akaike’s information cri-
terion (AIC) between the full model and reduced model 
including only the spike counts, we determined the opti-
mal model for decoding lick responses.

Cross‑correlation coefficients
To compare DONA with a typical measure of neural 
interaction, we calculated the cross-correlation coef-
ficients of neuron pairs in the given time bin. For direct 
comparison with DONA, we defined a normalized cor-
relation coefficient (NCC) ρi , which assumes the mean 
correlation between a single neuron i and all the other 
neurons as follows:

(13)

log
(

Pipsi/(1− Pipsi)
)

= c0 + csplog
(

Nsp

)

+ cDONAlog(DONA)

where NP is the number of neurons in the population 
and ρij is the cross-correlation coefficient between neu-
ron i and neuron j.

Results
Population activities and CCGs
To demonstrate the neural interactions in an ALM cor-
tex, we analyzed neural data collected from mice as they 
executed a delayed response task (Fig. 1a, upper panel). 
ALM neurons showed complex and variable activities, as 
shown in the example raster plot and firing rates from a 
single trial (Fig. 1a, middle and lower panels). For exem-
plification of different CCGs from the spike trains and 
rate estimates, we provide CCGs for three different pairs 
of neurons. N15 is the target neuron affected by the other 
neurons, i.e., the reference neurons; we show the effects 
of only three reference neurons, N2, N7, and N12, on 
the target neuron for the purpose of improving visibility. 
Examples of CCGs, ECCGs, and DCCGs for three refer-
ence–target pairs are shown in Fig.  1b. Both the CCGs 

(14)ρi =

√

√

√

√

∑

j �=i

ρ2
ij

NP − 1
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and ECCGs were sustained over hundreds of ms as they 
moved farther away from the reference neuron’s spike 
time (time = 0). DCCGs, however, approached zero after 
a few bins (about tens of ms), implying that the DCCG 
captures the transient effect near time zero by offsetting 
the shared effects of both the CCG and ECCG remaining 
in the longer time range.

Localized neural interaction terms at specific behavioral 
epochs
In our analysis, DONA is a quantity with which we can 
judge how the probability distribution of the ONA dif-
fers from that of the SNA, which is acquired from the 
latent model (Eqs.  1–2). Figure  2a provides an example 
of the optimization of the activities of the target neuron 
N15 (Fig.  1b), including all the effects of the other (ref-
erence) neurons, with parameter α deciding the degree 
of SNA and TSNA contributions (Fig. 2b). Since ONA is 

the optimal neural activity between the transient com-
ponent from other neurons and shared components due 
to behavior, larger values of DONA can be interpreted 
as more interactions occurring with the other neurons. 
Neuron N15 in Fig. 2c, for example, shows more interac-
tions with other neurons during the sensory (indicated by 
S) and response (indicated by R) epochs compared with 
the interaction observed during the delay epoch (indi-
cated by D). For pairwise interactions, we showed PDO-
NAs of three pairs, which represent the effects of three 
reference neurons N2, N7, and N12 on the target neuron 
N15 shown in Fig. 1b (Fig. 2d). It should be noted that the 
DONA of the target neuron N15 in Fig. 2c was the inter-
action integrated with all other neurons, although we 
only showed the results of the three reference neurons to 
improve visibility. To characterize the neural interactions 
of all neurons, we classified them in conformity with the 
epochs in which their DONAs were maximized. First, 

Fig. 2  Examples of rate estimate revision and Kullback–Leibler divergence. a, b For neuron N15 shown in Fig. 1, optimized neural activity (ONA; 
lower panel) was calculated using transient SNA (TSNA; solid line in upper panel), shared neural activity (SNA; magenta line in middle panel), and 
the parameter α that regularized their contributions. The dotted lines in the upper and middle panels represent the TSNA and SNA included in ONA, 
as determined by α . c, d Examples of Kullback–Leibler divergence of a single neuron (DONA) for neuron N15; pairwise Kullback–Leibler divergence 
of single pairs of neurons (PDONA) of the reference neurons N2 (black), N7 (magenta), and N12 (cyan) to the target neuron N15. The vertical lines 
demark the behavioral epochs, i.e., S: sensory epoch; D: delay epoch; and R: response epoch. Examples are the averages of all the trials in the given 
session. Shaded regions denote the standard error of the mean (SEM)
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to quantify the effect over time in a trial, we averaged 
DONA across trials. Neurons were considered to show 
more interactions with other neurons in an epoch if the 
magnitudes of DONA in the epoch (20 bins per epoch) 
were larger than the DONA magnitudes in the other two 
epochs (Wilcoxon rank sum test, p < 0.05). In an exam-
ple session shown in Fig.  3a (session no. 37), DONAs 
were significantly larger; therefore, they were well local-
ized in specific epochs. Among 22 neurons, 6 (27%), 5 
(23%), and 5 (23%) showed more interactions with other 
neurons in the sample, delay and response behavioral 
epochs, respectively. For the neurons of all sessions (157 
neurons in 9 sessions), most (111 of 157; 70.70%) showed 
maximum values of DONA consistently in single epochs 
(Fig.  3b). This result implies that the effects of neural 
interactions on single neurons are rather concentrated 
on a moment of information processing than on being 
maintained throughout the entire trial. The remaining 
neurons showed larger values of DONA during the two 

epochs (26 of 157; 16.54%) or no larger values (20 of 157; 
12.74%).

Tendency of increases of neural interactions 
toward the end of a trial
To determine the overall variation of DONA during the 
progress of epochs, we simply averaged DONA values for 
all the neurons regardless of their statistical significance 
in epochs (Fig.  3c). The mean DONA value increased 
and reached a peak soon after the response onset. Sig-
nificantly more neurons showed larger DONA values in 
the latter epochs, in agreement with the results of mean 
DONA values (p < 0.05, χ2 test; Fig.  3d). The number of 
neurons with larger DONA values was 33, 50, and 68 of 
157 total neurons during the sample, delay, and response 
epochs, respectively; thus, there were significant differ-
ences between the behavioral epochs (p < 0.05 between S 
and D and between D and R, both χ2 tests).

In the dataset used for this analysis, Hidehiko et  al. 
[43] categorized neurons in the ALM cortex into four 

Fig. 3  Epoch-dependent neural interactions and proportions of neurons with larger neural interactions. a Example DONAs of neurons showing 
significantly larger values of DONA in the sample (left), the delay (middle), and the response (right) epochs (S: 6; D: 5; R: 5) for 22 neurons from 
session 37. b Mean DONAs for all the sessions are sorted in the same manner as in (a) and the shaded region represents the standard error of the 
mean (SEM). c Mean DONAs for all the neurons regardless of significance in epochs. d Percentage of neurons with significantly larger DONA values 
in each epoch (*p < 0.05)
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functional groups, namely contralateral ramping-up, ipsi-
lateral ramping-up, ramping-down, and the rest based 
on the selectivity of the lick responses and the neurons’ 
ramping activities. We investigated whether the neu-
ronal interaction term DONA was related to these func-
tional neuron groups. According to the categorization of 
Hidehiko et al. [43], we placed 52, 17, 19, and 69 neurons 
into the contralateral ramping-up, ipsilateral ramping-
up, ramping-down, and remaining groups, respectively. 
Secondly, we calculated PDONAs between neurons 
belonging to the same functional groups and the dif-
ferent functional groups separately. As was the case for 
DONA, pairs of neurons were considered to show larger 
interactions in an epoch if the magnitudes of PDONA in 
the epoch (20 bins per epoch) were larger than the mag-
nitudes in the other two epochs (Wilcoxon rank sum 
test, p < 0.05). The proportion of pairs with larger values 
of PDONA in each epoch is shown Fig.  4a (filled and 
empty bars show pairs of neurons in the same functional 
group and different groups, respectively). Significantly 
more pairs in the same functional group showed larger 
PDONA values in the latter epochs in accordance with 
the DONA results shown in Fig. 3d (Fig. 4a, black bars). 
In the same functional group, the pairs of neurons show-
ing larger PDONA values were 36, 73, and 121 of 184 
total pairs during the sample, delay, and response epochs, 
respectively (p < 0.01 between S and D and between D and 
R, both χ2 tests). However, for pairs of neurons belonging 
to different functional groups, there was no significant 
difference in the number of pairs with larger PDONA 

values between epochs (Fig.  4a, empty bars): 374, 403, 
and 437 of 1,125 total pairs during the sample, delay, 
and response epochs, respectively (p = 0.199 between S 
and D; p = 0.138 between D and R; both χ2 tests). These 
results imply that the increase in neural interactions in 
the latter epoch was due to increased functional connec-
tions between neurons in the same functional group.

The number of pairs of larger PDONA values was sig-
nificantly different in the sample and response epochs 
but not in the delay epoch (delay: p = 0.314, χ2 test). In 
the sample epoch, the proportion of pairs with larger 
PDONA values was significantly higher when neurons in 
the pairs belonged to different functional groups (p < 0.01, 
χ2 test). However, the opposite was true in the response 
epoch in which the proportion of pairs of neurons in 
the same functional group was higher (p < 0.01, χ2 test). 
We also reanalyzed the data for each group separately 
(Fig.  4b). The numbers of pairs of neurons in the con-
tralateral ramping-up, ipsilateral ramping-up, and ramp-
ing-down group were 150, 18, and 16 of 184 total pairs of 
neurons. It should be noted that we did not analyze the 
fourth group (the rest) separately because neurons in the 
fourth group were just the remainders that could not be 
classified into any of the three groups discussed above. 
Although the results for the contralateral ramping-up 
group were identical to those of all the groups shown 
in Fig. 4a (Fig. 4b, left panel), the PDONAs of the other 
groups had different distributions when compared with 
the overall tendency to increase along the epoch (Fig. 4b, 
middle and right panels). In the contralateral ramping-up 

Fig. 4  Analysis of PDONA based on defined groups of neurons. a Percentage of pairs of neurons for which PDONAs had significantly larger values 
in an epoch. Filled and empty bars represent pairs of neurons that belong to the same and different groups, respectively. b Percentage of pairs of 
neurons calculated in the same manner as in (a), but for pairs of neurons in contralateral ramping-up (left panel), ipsilateral ramping-up (middle 
panel), and ramping-down (right panel) groups (*p < 0.05; **p < 0.001; n.s.: not significant)
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group, the pairs of neurons showing larger PDONA val-
ues were 26, 54, 117 of 150 total pairs during the sam-
ple, delay, and response epochs, respectively (p < 0.01 
between S and D and between D and R, both χ2 tests). 
In the ipsilateral ramping-up group, the pairs of neurons 
showing larger PDONA values were 2, 13, 4 of 18 total 
pairs during the sample, delay, and response epochs, 
respectively (p < 0.01 between S and D and between D 
and R, both χ2 tests). In the ramping-down group, the 
pairs of neurons showing larger PDONA values were 8, 6, 
0 of 16 total pairs during the sample, delay, and response 
epochs, respectively (p = 0.48 between S and D; p < 0.01 
between D and R; both χ2 tests). This suggests that neu-
rons classified in different groups show different response 
patterns. In addition, the interactions between these neu-
rons also show different tendencies according to epoch.

Enhanced decoding capability for behavioral responses 
due to neural interactions
We performed logistic regression analyses with the spike 
count Nsp and DONA to test whether neural interactions 
enhanced the performance when decoding lick responses 
(Fig.  5a; see Material and methods). The probability of 
the response was significantly dependent (p < 0.05 in 
the logistic regression) on DONA in 10.53% of neurons 
(p < 0.05, binomial test) and on the spike count in 71.58% 
of neurons (p < 0.01, binomial test), as shown in Fig. 5a. 
We compared the full model including both DONA and 
spike counts, which we expected to be optimal for sin-
gle neurons, with the reduced model including only 
spike counts. Comparing the AICs of the two models, we 
found that the full model was optimal in a considerable 
number of neurons (21.13%; Fig. 5b). Thus, it seems that 
DONA can convey more information than spike count 
alone. In Fig. 5c, d, we compare the dynamics of DONA 
and spike counts according to lick responses by showing 
a representative example of a single neuron for which 
the probability of the response depended significantly on 
both DONA and the spike counts of the neuron in the 
delay epoch.

Disparate trends of cross‑correlation compared with DONA
To compare the localization trends of DONA (shown in 
Fig.  3a–c) with an existing and typical measure of pair-
wise interactions, we calculated NCCs for each neuron 
(Fig. 6; see Materials and methods). To enable the direct 
comparison of these measures, the results of NCC were 
arranged for the neurons sorted in the same manner 
shown in Fig.  3a–c. If NCC values could extract simi-
lar features of network topology as DONA, we would 
see a resemblance between NCC and DONA values in 
terms of localization to epochs. However, NCCs did not 
show such a localization tendency and the mean NCC 

showed no patterns along the epochs, unlike the mean 
DONA (Fig.  6b, open circle). These results suggest that 
DONA might extract nonoverlapping features related to 
the neural interactions in the population that cannot be 
extracted by the typically used correlation measure.

Discussion
In the present study, we present a method by which to 
extract single-trial neural interactions using rate esti-
mates obtained by a latent dynamical model. We applied 
this method to a dataset containing data from mice 
cortical neurons [22, 39–43]. The model applied in this 
method was able to evaluate the proportions of shared 
neural activities and transient effects evoked by other 
neurons; thus, it showed that inferred measures could 
trace the variation of neural interactions along epochs. 
Most neurons were maximally affected by other neu-
rons in a specific epoch and, on average, neural interac-
tions increased as an epoch progressed. To demonstrate 
the novelty of our method, we compared its performance 
to that achieved using cross-correlation coefficients; we 
showed that our model could reveal hidden features of 
the neural network that were not accounted for by a typi-
cal method in which pairwise interactions are estimated.

Fig. 5  Analysis of optimal models via logistic regressions including 
DONA and spike counts Nsp . a Percentage of neurons for which 
spike counts or DONAs were significantly associated with the 
probability of the lick response (p < 0.05 in the logistic regression). 
The dotted line represents the significance level (binomial test, 
p < 0.05). b Percentage of neurons for which the optimal model 
(smaller AIC) in the logistic regression was the model including only 
spike counts and the full model including spike counts and DONA. 
c, d Example dynamics of the spike counts and DONAs of a neuron 
for which the probability of the lick response depends significantly 
on both variables of the neuron in the delay epoch. Solid and open 
circles represent the mean values of left and right lick responses, 
respectively, whereas shaded regions denote the standard error of 
the mean (SEM)
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Obstacles must be overcome to ensure that our method 
can be generally applied to neural population data in 
different regions of the brain when performing diverse 
tasks. First, a number of existing models [15–29] have 
been established by which to analyze single-trial neural 
population dynamics and provide different rate estimates 
to certain extents. It might also be more challenging to 
estimate neural activities in single trials for tasks that 
require higher computational capabilities [21], although 
many studies have shown that population activities could 
be reduced to low-dimensional shared spaces [25, 30–
37]. In such tasks, latent dynamical models provide sub-
optimal rate estimates and the consequential inference of 
neural interactions will mislead the coordination of the 
neural network. Hence, it will be necessary to analyze 
how discrepancies in rate estimates change the proper-
ties of DONAs or PDONAs and how the suitability of 
DONAs or PDONAs can be judged when using diverse 
datasets with varying levels of difficulty.

Second, timescales describing SNA and TSNA will 
vary according to types of neuron or task [22, 38]. Fur-
thermore, correlations between neurons are identified in 
accordance with the timescale of their pairwise effects 
[12]. Consequently, it is vital that the temporal precision 
of the rate estimates and the transient effects are chosen 
appropriately to allow confident interpretation of neural 
interactions. In the present study, we chose the temporal 
precisions heuristically so that the analysis model showed 
results that were more distinctive. Therefore, we cannot 
exclude the possibility that models with different tem-
poral precisions might provide new information about 

neural interactions. Additionally, for real-time process-
ing, such as in brain–machine interfaces or closed-loop 
brain stimulations, temporal precisions must be auto-
matically regulated depending on the given neural data. 
Thus, for the general application of our method, it will be 
essential to identify techniques and criteria by which to 
define temporal precisions according to the characteris-
tics of the neural data.

Third, we only compared our methods to cross-corre-
lation coefficients. A number of other measures exist for 
quantifying interactions that have various uses related 
to the characteristics of neural data or the purposes of 
analysis [10–14]. To validate the effectiveness of DONA 
and PDONA as measures for inferring neural interaction, 
comparisons to other measures, including the degree of 
synchronous firing or the temporal correlation of neu-
ral pairs, will be required to identify the similarities and 
differences. Indeed, we should be open to the possibility 
that combinations of single-trial rate estimates and meas-
ures of correlations might provide more information 
about network structure.

We anticipate that this study will be extensible for 
further research into neural population dynamics. Our 
developed method can provide novel insights into types 
of neurons or neural pairs based on neural interactions, 
just as neurons are classified into certain types based on 
their functional roles or responses in specific epochs or 
sessions [43]. Here we applied our method only to spike 
data with binary values. For its application to continuous 
datasets, such as those containing EEG or fMRI data, fur-
ther research will be required. In particular, we must be 

Fig. 6  Normalized correlation coefficients (NCCs) for neurons sorted in the same manner shown in Fig. 3a, b. Open circles in (b) denote the mean 
NCCs of all neurons (the same format used in Fig. 3c)
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able to define the shared activities and transient effects of 
continuous datasets in line with the measures applied in 
this work.
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