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Purpose: Diabetic macular edema (DME) is a common cause of vision impairment and

blindness in patients with diabetes. However, vision loss can be prevented by regular eye

examinations during primary care. This study aimed to design an artificial intelligence (AI)

system to facilitate ophthalmology referrals by physicians.

Methods: We developed an end-to-end deep fusion model for DME classification and

hard exudate (HE) detection. Based on the architecture of fusionmodel, we also applied a

dual model which included an independent classifier and object detector to perform these

two tasks separately. We used 35,001 annotated fundus images from three hospitals

between 2007 and 2018 in Taiwan to create a private dataset. The Private dataset,

Messidor-1 and Messidor-2 were used to assess the performance of the fusion model

for DME classification and HE detection. A second object detector was trained to identify

anatomical landmarks (optic disc and macula). We integrated the fusion model and the

anatomical landmark detector, and evaluated their performance on an edge device, a

device with limited compute resources.

Results: For DME classification of our private testing dataset, Messidor-1 and

Messidor-2, the area under the receiver operating characteristic curve (AUC) for the fusion

model had values of 98.1, 95.2, and 95.8%, the sensitivities were 96.4, 88.7, and 87.4%,

the specificities were 90.1, 90.2, and 90.2%, and the accuracies were 90.8, 90.0, and

89.9%, respectively. In addition, the AUC was not significantly different for the fusion

and dual models for the three datasets (p = 0.743, 0.942, and 0.114, respectively).

For HE detection, the fusion model achieved a sensitivity of 79.5%, a specificity of

87.7%, and an accuracy of 86.3% using our private testing dataset. The sensitivity of

the fusion model was higher than that of the dual model (p = 0.048). For optic disc and

macula detection, the second object detector achieved accuracies of 98.4% (optic disc)

and 99.3% (macula). The fusion model and the anatomical landmark detector can be

deployed on a portable edge device.
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Conclusion: This portable AI system exhibited excellent performance for the

classification of DME, and the visualization of HE and anatomical locations. It facilitates

interpretability and can serve as a clinical reference for physicians. Clinically, this system

could be applied to diabetic eye screening to improve the interpretation of fundus imaging

in patients with DME.

Keywords: diabetic macular edema, hard exudate, optic disc and macula, deep learning, visualization

INTRODUCTION

Diabetes is a prevalent disease that affects ∼476 million people
worldwide (1). Diabetic macular edema (DME), characterized

by the accumulation of extracellular fluid that leaks from blood
vessels in the macula (2), is one of the complications of diabetes

mellitus. DME can appear at any stage of diabetic retinopathy
(DR) and is the leading cause of severe vision loss in working-age
adults with diabetic mellitus (3). The Early Treatment of Diabetic
Retinopathy Study (ETDRS) defined the criteria for DME and
demonstrated the benefits of laser photocoagulation therapy (4).
Currently, with the revolutionary development of intraocular
medication, intravitreal injections of anti-vascular endothelial
growth factor (anti-VEGF) and steroid agents are the first-line
treatment as alternatives to traditional laser photocoagulation
as they provide better vision recovery in patients with center-
involved macular edema (5–7).

Early diagnosis plays an important role in DME treatment.
Moreover, early management such as intensive diabetes control
may reduce the risk of progressive retinopathy (8). Early
diagnosis and preemptive treatment are facilitated by frequent
diabetic eye screening, which reduces the risk of progression to
blindness, and the associated socioeconomic burden. To date,
owing to developments in the field of ophthalmic imaging, the
detection of DME using optical coherence tomography (OCT)
imaging is the gold standard in the decision-making process
for DME treatment (9). However, limited by various factors,
such as the requirements of expensive equipment and highly
specialized technicians, OCT imaging is typically readily available
in high-income countries. In contrast, retinal photography
examination is feasible and affordable in low-income countries
and remote areas (10). However, the number of people with
diabetes worldwide is increasing yearly and is estimated to reach
571 million by 2025 (1). The rapid growth of diabetic patients is
expected to increase the diagnostic burden associated with DME
detection. As such, an efficacious and accurate automatic fundus
imaging interpretation system is urgently needed.

In the past decade, several studies have focused on DME
detection using feature engineering techniques, which extract
features by selecting or transforming raw data. Among them,
Siddalingaswamy et al. (11) identified DME by detecting hard
exudates (HE) and the macula. Subsequently, decisions were
made based on the distance between the HE and the macula.
Machine learning algorithms have also been applied in several
studies for feature extraction in DME classification (12–15).
The advantage of feature engineering is that it utilizes a
smaller training dataset to achieve satisfactory performance.

However, the identification of salient and useful features depends
on the experience of clinicians and is thus subjective and
limited. In contrast to feature engineering techniques, deep
learning, particularly convolutional neural networks (CNNs),
is gaining popularity and has achieved significant success in
medical imaging applications. This approach can automatically
learn feature extraction by using a backbone network mainly
comprising convolutional and pooling layers. Several studies
have shown that various architectures of CNN can be used
to effectively extract features in fundus images for subsequent
classification of DR or DME (16–21).

Moreover, given that deep learning models lack
interpretability and are viewed as black boxes (22), visualization
of the lesion in fundus images is an important issue. Lesion
visualization can improve the interpretability of non-
ophthalmologist physicians. In addition, visualization is
useful to physicians during an initial assessment before a patient
is referred to an ophthalmologist for further evaluation, thereby
substantially increasing the screening rate and reducing the
workload of ophthalmologists. In addition, lesion visualization
could help physicians to monitor the status and progression of
the disease.

Generally, deep learning models are implemented in cloud
computing environments or high-end computers, which provide
more computing power and memory space. However, this is
usually expensive and requires considerable network resources.
These factors limit the application of deep learning models
for medical image analysis in remote or resource-limited areas.
Thus, an edge device is potentially suitable for the application of
deep learning models for medical image analysis in these areas.
Previous studies have demonstrated the feasibility of deploying
deep learning models for medical image analysis on edge devices
(23–25). However, a system with multiple models for disease
classification and visualization requires more computing power
and memory. Thus, the implementation of such a system on an
edge device is challenging.

In this study, we designed an end-to-end deep fusion
network model to perform two deep learning tasks, one for the
classification of DME and the other for the visualization of HE
lesions. We used a private dataset and two open datasets to
evaluate the performance of this fusion model. We also added
a second object detector model to identify anatomical landmarks
(optic disc and macula). These models were deployed on an edge
device. The private dataset was used to assess the performance
of the models. Overall, this system could be used for diabetic eye
screening by non-specialist physicians or in remote or resource-
limited areas to improve the early diagnosis of DME. As a
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FIGURE 1 | The flowchart of our private dataset.

result, diabetic patients may be referred for early assessment and
appropriate treatment, which should lead to better outcomes.

MATERIALS AND METHODS

Private Dataset
We enrolled patients who had a diagnosis of diabetic mellitus
according to the ICD-9 codes 250.xx or ICD-10 codes E10-E14
between 2007 and 2018 from three medical centers in Taiwan.
Patients younger than 20 years of age and with unknown sex
were excluded. The retinal photographs were acquired from
ZEISS (VISUCAM 200), Nidek (AFC-330), and Canon (CF-1,
CR-DGI, CR2, or CR2-AF) fundus cameras with a 45◦ field-of-
view (FOV) and anonymized owing to the retrospective nature
of the study. We collected 347,042 fundus images from 79,151
diabetic patients. For the present study, we included image
with optic disc and macula to develop models. Blurred fundus
image, vitreous hemorrhage, vitreous opacity, image without
entire optic disc, image without entire macula, image without
optic disc and macula, other retinal diseases, and low-quality

image were excluded, and 101,145 fundus images from 51,042
diabetic patients were left for random sampling and annotations.
Finally, 35,001 fundus images from 15,607 patients formed our
private dataset for model development (The flowchart shown
in Figure 1). On our private dataset, the mean age of patients
was 57.6 ± 11.8 years and 54.5% were males and 45.5% were
females. Eight thousand four hundred and ninety-six patients
took only one image and 7,111 patients took more than one
image from each eye. The original dimension of the images were
522,728 pixels (724 × 722) to 12,212,224 pixels (4,288 × 2,848).
All images were the JPG image format.

Ethical Considerations
The study was reviewed and approved by the institutional review
board (IRB) of the three medical centers: Tri-Service General
Hospital (IRB: 1-107-05-039), Chung Shan Medical University
Hospital (IRB: CSH: CS18087), and China Medical Hospital
(IRB: CMUH10FREC3-062). Given that the identities of all
patients in three medical centers were encrypted before fundus
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TABLE 1 | Dataset profile for the classification task in the private dataset.

Training set Validation set Testing set

Class Number of

images

Number of

patients

Number of

images

Number of

patients

Number of

images

Number of

patients

Non-DME 18,921

(57.89%)

10,313 1,140

(90.05%)

1,140 939

(89.51%)

939

DME 13,765

(42.11%)

5,955 126

(9.95%)

126 110

(10.49%)

110

Total 32,686

(100.00%)

16,268 1,266

(100.00%)

1,266 1,049

(100.00%)

1,049

FIGURE 2 | The strategy to obtain a ground truth image. (A) The two boxes were annotated by first ophthalmologist. (B) The three boxes were annotated by second

ophthalmologist. In step 1, the IoU of the top two bounding boxes in (A,B) were larger than 0.15, then two larger areas were taken as the GT. In step 2, the IoU of

bottom boxes in (A,B) were <0.15, the area annotated by the second ophthalmologist was retained as the GT. After step 1 and 2, we obtained a GT image (C).

images were released, the requirement for signed informed
consent of the included patients was waived.

Annotations of Private Dataset
Annotating DME Classification for Fundus Image
We recruited 38 ophthalmologists to annotate the fundus
images. Each fundus image was annotated by a group of three
ophthalmologists. According to the criteria of ETDRS, DME was
defined as anyHE at or within 1 disc diameter (1DD) of the center
of the macula (4). Each ophthalmologist annotated images by
using our annotation tool. We used the majority decision of the
three ophthalmologists as the ground truth (GT) of the fundus
images. Further, the dataset was split into training, validation,
and testing sets by patient level to prevent the same patient
in different sets (Figure 1). Eight thousand four hundred and
ninety-six of 15,607 patients took only one image and were
randomly sampled to validation set (1,266 patients, 1,266 images)
and testing set (1,049 patients, 1,049 images). The rest of these
patients and 7,111 of 15,607 patients were reserved as a training
set (13,292 patients, 32,686 images). Table 1 lists the DME and
non-DME profiles of these three subsets.

Annotating HE Lesions in Fundus Image
The HE lesions in each fundus image were also annotated
by a group of three ophthalmologists (randomly chosen from
38 ophthalmologists) using a bounding box format. However,
three resulting annotations may be different from each other in
the number, size, and location of the boxes. We adopted the
following procedure to obtain a final GT image for training

purposes: (Step 1) The bounding boxes for the image labeled
by two ophthalmologists were compared. If an HE lesion was
annotated and the intersection over union (IoU) > 0.15, then
a larger annotated area was taken as the GT; (Step 2) The
bounding boxes of an image labeled by two ophthalmologists
were compared. If the HE lesion was annotated and the IoU
≤ 0.15, then both bounding boxes were retained as the GT.
After step 1 and 2, we obtained the first GT image as shown
in Figure 2. Step 3: First GT image was compared with the
image labeled by the third ophthalmologist according to the
same method in steps 1 and 2. Then, we obtained the final
GT image. In this study, ophthalmologists used bounding
boxes to annotate HE lesions in fundus image. The size of
the annotated bounding boxes in original images were 9–
5,196,672 pixels (9,791.57 ± 36,966.28 pixels). After resized the
image, the size of the annotated bounding boxes in model’s
input images were 1.50–190,008.85 pixels (1,002.99 ± 2,719.79
pixels). However, the annotated bounding boxes only indicated
whether existed HE lesions and location, not represented the
true size of HE lesions. Therefore, the size of the bounding
boxes was usually larger than the true size of the HE lesions. In
addition, the profiles of HE labels of the three subsets are shown
in Table 2.

Open Datasets
Two open datasets were used to evaluate the performance
and ability of the proposed model to adapt to
different datasets.
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TABLE 2 | The number of images were annotated HE lesions by ophthalmologists

in the private dataset.

Training set Validation set Testing set

Number of images with HE 22,108 583 365

Total 32,686 1,266 1,049

Messidor-1
TheMessidor-1 (26) dataset contained 1,200 fundus images from
three ophthalmologic departments in France and was annotated
with DR and the risk of DME. All images were acquired using
a Topcon TRC NW6 non-mydriatic retinal camera with a 45◦

FOV. Our grading scheme was slightly different from that
of Messidor-1, in which DME was graded according to three
categories, with 0, 1, 2 representing “no visible HE,” “HE presence
at least 1DD away from the macula,” and “HE presence within
1DD from the macula,” respectively. As previously indicated,
HE that occurs within 1DD of the center of the macula can
serve as a proxy for detecting DME; hence, grades 0 and 1 are
equivalent to non-DME and grade 2 is equivalent to DME in our
classification scheme.

Messidor-2
The Messidor-2 (26, 27) dataset, as an extension of the Messidor-
1 dataset, contained 1,748 (1,744 annotated as gradable) fundus
images. In this study, we used 1,744 graded fundus images from
the annotated Messidor-2 dataset by Krause et al. (28).

Deep Learning Models
Fusion Model Network
We use EfficientDet-d1 (29) as the object detector because
of its great balance between performance and resource usage.
Because EfficientDet-d1 employs the feature extraction part
of EfficientNet-b1 (30), we can readily use this aspect as the
backbone in the fusionmodel. Lesion detection was implemented
using bi-directional feature pyramid network (BiFPN). The
classification module consisted of three layers and included a
convolutional layer, a global average pooling layer, and a fully
connected (FC) layer. The architecture of the fusion model is
shown in Figure 3.

The fusion model is computationally efficient, as only one
convolution layer is needed to extract higher-level features
based on the output features obtained from the EfficientDet-d1
backbone. We denote Eob as the loss function of EfficientDet-
d1, Ecl as the loss function of the classification module, and the
loss function for the fusion model is given by Equation (1), where
ωob > 0 and ωcl > 0, which are hyperparameters used to linearly
combine the loss functions of the object detector and classifier.

Eloss = ωob × Eob + ωcl × Ecl

= ωob × Eob − ωcl[α(1− pt)
γ log(pt)] (1)

First, we use the equal weights for ωob and ωcl in the initial
training. Then analyzing the loss value obtained from the object
detection model and the classification model. Second, we use

the weighting factor (ωob and ωcl) that is inversely proportional
to the loss value of the classifier or object detector to balance
the loss, respectively. Finally, we retrain the fusion model using
ωob (= 0.5) and ωcl (= 100) to balance the loss obtained from
both models, and avoid overfitting in the classification model or
the object detection model. Our results showed that the setting
ωob =0.5 and ωcl =100 achieved a satisfactory balance. The
parameters α ≥ 0 and γ ≥ 0 were also heuristically set to address
the large class imbalance encountered during training. In general,
α, the weight assigned to the rare class, should be slightly reduced
as γ is increased (31). Here we used γ = 2, α = 0.25 as a default
setting. The variable pt is defined in Equation (2), where p is the
estimated probability for the binary classification.

pt =

{

p if DME is the class label
1− p otherwise

(2)

Dual Model Approach
For comparison with the fusion model, we implemented a dual
model, which consisted of two separate models including an
image classifier and an object detector. The two separate models
were trained and inferred separately. We used EfficientNet-b1
and EfficientDet-d1 as the image classifier and object detector,
respectively, in our dual model for a fair comparison. EfficientNet
stacked basic fixed modules and adjusted some hyperparameters
such as the number of layers, number of channels, and input
image resolution, using a neural architecture search. In addition,
EfficientNet achieved state-of-the-art performance on ImageNet
without using additional data.

Device and Hyperparameters
All images of private dataset, Messidor-1, and Messidor-2
dataset were preprocessed before feeding our model. Each image
was cropped to the fundus image with minimal black region
(Supplementary Figure 1) and saved in the JPG image format.
These cropped images were resized to input image sizes of 640
× 640 pixels. For image augmentation, we randomly flipped the
images of private dataset vertically or horizontally. We trained
and tested the model on an Intel Xeon E5-2660 v4 computer with
396 GB DRAM and NVIDIA Tesla V100 GPU using PyTorch
with an initial learning rate of 0.0001, a dropout rate of 0.2
and a batch size of 16, for both the fusion and dual models.
AdamW optimizer was used in the fusion model and dual model
(EfficientDet-d1). Adam optimizer was used in the dual model
(EfficientNet-b1). Values of weight decay of the fusion model,
dual model (EfficientNet-b1), and dual model (EfficientDet-d1)
were 0.01, 0.00001, and 0.01, respectively. Based on the setting of
dropout and weight decay in the fusion model and dual model
(EfficientNet-b1), the loss curves showed without overfitting in
training and validation loss (Supplementary Figure 2).

To validate the feasibility of deploying our fusion model on an
edge device, it was implemented on NVIDIA Jetson Xavier NX
with 8GB of memory using PyTorch.

Statistical Analyses
For the evaluation of performance in DME classification, we used
metrics of sensitivity, specificity, accuracy, and area under the

Frontiers in Medicine | www.frontiersin.org 5 April 2022 | Volume 9 | Article 851644

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wang et al. DME Detection by Fusion Model

FIGURE 3 | The architecture of the proposed end-to-end deep fusion model. The red arrow denotes the classification path, which forms the same architecture as

EfficientNet-b1. The blue arrow denotes the lesion detection path, which has the same architecture as EfficientDet-d1. The number (640, 320, 160, …) near each

feature map denotes its resolution.

receiver operating characteristic curve (AUC). All metrics were
listed with 95% confidence intervals (CIs). Receiver operating
characteristic (ROC) curves were used to illustrate the overall
performance using different cutoffs to distinguish between non-
DME and DME. A two-proportion z-test was used to compare
the two observed proportions obtained from the two models.
The DeLong test (32) was used to compare the AUCs. Statistical
significance was set at p < 0.05. In addition, we evaluated the
performance of lesion detection according to Tseng et al. (20).

RESULTS

We trained the fusion model and dual model using the private
dataset, and the performance was compared in three aspects:
memory usage and execution time, DME classification, and
HE detection.

Memory Usage and Execution Time
We investigated the demand for memory and the execution time
of the fusion and dual models to process one image from the
private testing dataset. We used a command-line utility tool
(Nvidia-smi) to evaluate the requirement of memory usage of the
fusion model and the dual model to process one fundus image.
In addition, the required time of processing one fundus image
was calculated by using Python code “time.time()”.Table 3 shows
that the fusion model required 1.6 GB of memory, whereas the
dual model required 3.6 GB of memory. The mean required time
of the fusion and dual model were 2.8 ± 1.5 s and 4.5 ± 1.8 s,
respectively. This was averaged over the full testing dataset. These
results show that the fusion model reduced the requirement

TABLE 3 | The data of memory usage and execution time for the fusion and the

dual models to process one image of the private testing dataset.

Resource consumption Fusion Model Dual model

Memory (RAM) 1.6 GB 3.6 GB

Time (mean ± standard deviation) 2.8 ± 1.5 s 4.5 ± 1.8 s

for memory usage and execution time compared to the
dual model.

DME Classification
The distribution of DME in a private dataset and two
open datasets (Messidor-1 and Messidor-2) are shown in
Figure 4. In Table 4, the performance of the fusion and dual
models was evaluated using the AUC, sensitivity, specificity,
and accuracy. The AUCs of both models were compared
using the DeLong test for the three datasets. The result
showed that there was no statistically significant difference
between the models (p-values of 0.743, 0.942, and 0.114
for the private testing dataset, Messidor-1, and Messidor-2,
respectively). Correspondingly, Figure 5 shows the results of
the receiver operating characteristic curves (ROC) of both
models for the three datasets. This result demonstrates that
the performance of the fusion model is similar to that of the
dual model.

HE Lesion Detection
We used fusion and dual models to detect HE lesions on our
private testing dataset. We evaluated the performance of these
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FIGURE 4 | Distribution of three testing datasets. (A) private testing dataset, (B) Messidor-1, and (C) Messidor-2, used to evaluate classification performance.

TABLE 4 | Performance of dual and fusion model for the three datasets.

Dataset AUC (%)

(95% CI)

Sensitivity (%)

(95% CI)

Specificity (%)

(95% CI)

Accuracy (%)

(95% CI)

Fusion model Private testing dataset 98.1

(97.3, 98.9)

96.4

(92.9, 99.9)

90.1

(88.2, 92.0)

90.8

(89.1, 92.5)

Messidor-1 95.2

(93.3, 97.1)

88.7

(83.7, 93.7)

90.2

(88.4, 92.0)

90.0

(88.3, 91.7)

Messidor-2 95.8

(94.5, 97.1)

87.4

(82.1, 92.7)

90.2

(88.7, 91.7)

89.9

(88.5, 91.3)

Dual model Private testing dataset 98.0

(97.2, 98.8)

96.4

(92.9, 99.9)

91.8

(90.0, 93.6)

92.3

(90.7, 93.9)

(EfficientNet-b1) Messidor-1 95.2

(93.2, 97.2)

85.4

(79.8, 91.0)

91.7

(90.0, 93.4)

90.9

(89.3, 92.5)

Messidor-2 95.1

(93.5, 96.7)

80.8

(74.5, 87.1)

92.7

(91.4, 94.0)

91.7

(90.4, 93.0)

FIGURE 5 | Receiver operating characteristic curves of fusion and dual model for the three datasets. (A) private testing dataset, (B) Messidor-1, and (C) Messidor-2.

models by using true positive, false positive, true negative, and
false negative to calculate the accuracy, sensitivity, and specificity.
Note that in the HE lesion detection, a true positive image
is defined as one of the predicted HE area having an IoU
> 0.15 compared to the GT location (as shown in Figure 6);
a true negative image is defined as both GT and prediction
without any lesion detection; a false positive image is defined
as GT without any lesion detection but with prediction; and
a false negative image is defined as GT with at least one
location but no prediction or any prediction location having

an IoU ≤ 0.15. In Table 5, the results of our private testing
dataset revealed that the sensitivity of the fusion model was
higher than that of the dual model, and the difference was
statistically significant (p = 0.048). In addition, the specificity
and accuracy of both models were not significantly different
(p = 0.433 and p = 0.998, respectively). This result indicated
that the fusion model could detect images with HE lesions more
accurately. Furthermore, for lesion visualization, our models
could output fundus image with the annotated HE lesion, as
shown in Figure 7.
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FIGURE 6 | An example image with predicted and GT bounding boxes. The

light blue boxes are the prediction result and the dark blue boxes are the GT

result. Examples of IoU > 0.15 are marked in image.

TABLE 5 | The performance of HE detection in dual and fusion models.

Sensitivity (%)

(95% CI)

Specificity (%)

(95% CI)

Accuracy (%)

(95% CI)

Fusion model 79.5

(75.4, 83.6)

87.7

(85.2, 90.2)

86.3

(84.2, 88.4)

Dual model

(EfficientDet-d1)

73.0

(68.4, 77.6)

89.2

(86.9, 91.5)

86.4

(84.3, 88.5)

Optic Disc and Macula Detection
Based on the preceding results, we established a novel
end-to-end fusion model that can simultaneously facilitate
disease classification and lesion detection. Clinically, anatomical
landmarks such as the optic disc and the macula are examined
by physicians to determine if there are HE lesions within 1DD
from the center of the macula. Thus, we constructed an object
detector to detect anatomical landmarks to facilitate advanced
visualization. We trained an object detector using YOLOv3
(33) to detect the optic disc and macula. The details of the
training process are provided in the Supplementary Material.
The accuracy of the object detector for the detection of the optic
disc and macula was 98.4 and 99.3%, respectively. Furthermore,
the object detector could identify the optic disc using a white
bounding box and an area within 1DD from the center of
the macula using a white circle. These outlined boxes and
circles can be integrated into the image results as shown in
Figure 7. Figure 8 shows that physicians can instantly ascertain
the presence of HE lesions within 1DD from the center of the
macula, thereby enabling them to more reliably diagnose DME.
Taken together, the results show that lesion visualization can
more readily account for the result of DME classification when
using the fusion model.

Implementation on an Edge Device
To verify the feasibility of implementing the entire workflow on
an edge device, we tested our fusion model and the anatomical
landmark detector on NVIDIA Jetson Xavier NX with 8 GB

FIGURE 7 | The fusion and dual model annotate HE lesions of two fundus

images from the private testing dataset. A fundus image was annotated by

fusion model (A) and dual model (B). A second fundus image was annotated

by fusion model (C) and dual model (D). HE lesions are identified using blue

bounding boxes.

FIGURE 8 | The integration of the visualization of the optic disc and the

macula in two fundus images with annotated HE lesions. (A) Fundus image

from Figure 7A annotated with optic disc and macula. (B) Fundus image from

Figure 7C annotated with optic disc and macula. HE lesions are represented

as blue bounding boxes. The white circle represents 1DD from the macula

center. The white bounding box represents the optic disc.

of memory. The fusion model and the anatomical landmark
detector required 7.4 ± 0.02 GB of memory and took 2.53
± 0.72 s to infer a single fundus image on average. However,
the combination of a dual model and an anatomical landmark
detector cannot be implemented on edge devices owing to their
memory constraints. In addition, we also tested the fusion model
on DME classification of the three datasets and HE lesion
detection using the NVIDIA Jetson Xavier NX with 8GB of
memory. The performance for DME classification and HE lesion
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FIGURE 9 | Overview of the proposed approach for implementing a system on an edge device that integrates DME classification, HE detection, and optic disc and

macula detection to assist in the interpretation of fundus image by physicians.

detection using the NVIDIA Jetson Xavier NX 8GB of memory
was the same as that of the Intel Xeon E5-2660 v4 computer, as
shown in Tables 4, 5, respectively.

DISCUSSION

In this study, we proposed a novel end-to-end fusion model
to simultaneously facilitate DME classification and HE lesion
detection. The performance of the fusion model for DME
classification was similar to that of the dual model. The sensitivity
of the fusion model for the detection of HE lesions was
higher than that of the dual model. We further integrated the
detection outputs from the fusion model and the anatomical
landmark detector to improve lesion visualization. In addition,
we implemented these two models on an edge device to facilitate
portability and affordability in remote or resource-limited areas.
As shown in Figure 9, we report for the first time the integration
of the fusion model and a second object detector on an edge
device for DME classification, HE detection, and optic disc
and macula detection, for lesion visualization and improved
interpretability of the AI model. This system allowed physicians
not only to obtain the results of DME classification but also to
observe the location of HE lesions related to the macula. This
might assist physicians in assessing the necessity of referring
diabetic patients to ophthalmologists for further examination
and treatment.

Recently, several studies have used AI to classify DR with
DME or DME only in the Messidor-1 and Messidor-2 datasets
(16–19, 34–37). In Messidor-1, Sahlsten et al. (18) proposed an
approach based on the ensemble of CNNs with AUC of 95.3%,
Sensitivity of 57.5%, Specificity of 99.5%, and Accuracy of 91.6%
to detect referable DME. Singh et al. (19) used a hierarchical
two-stage ensemble CNN with Sensitivity of 94.7%, Specificity
of 97.2%, and Accuracy of 95.5% to grade severity of DME.
Ramachandran et al. (34) used a deep neural network software
to detect referable DR (moderate DR or DME) achieving AUC
of 98.0%, Sensitivity of 96.0%, and Specificity of 90.0%. Li et al.
(35) used a cross-disease attention network with AUC of 92.4%,
Sensitivity of 70.8%, and Accuracy of 91.2% to jointly grade DR

and DME. In Messidor-2, Gulshan et al. (17) used inception-
v3 architecture with AUC of 99.0%, Sensitivity of 87.0%, and
Specificity of 98.5%. to detect referable DR. Abramoff et al. (16)
used the IDx-DR 2.1 device to screen referable DR achieving
AUC of 98.0%, Sensitivity of 96.8%, and Specificity of 87.0%.
Yaqoob et al. (36) modified ResNet-50 architecture to screen
referable DME achieving Accuracy of 96.0%. In 2021, Li et al.
(37) used an improved inception-v4 with AUC of 91.7% to detect
referable DME. Compared to the performances of above studies
in the Messidor-1 and Messidor-2 datasets, the performance of
fusion model was AUC of 95.2 and 95.8%, Sensitivity of 88.7 and
87.4%, Specificity of 90.2 and 90.2%, and Accuracy of 90.0% and
89.9% in the Messidor-1 and Messidor-2 datasets. In this study,
the classifier of the fusion model was constructed by integrating
the EfficientDet-d1 backbone and a classification module. This
classifier had the same architecture as EfficientNet-b1. It was
determined that the performance of DME classification was
similar to that of the original EfficientNet-b1 in the dual model.

In fundus imaging, the determination of the presence and
location of HE is useful for physicians in the diagnosis of DME.
Several studies have used deep learning to detect HE lesions.
Son et al. (38) used a class activation map (CAM) to generate a
heatmap to identify the areas that contributedmost to themodel’s
decision in classifying DR and other ocular abnormalities.
Lam et al. (39) used a sliding window to scan images and a
CNN to detect whether HE lesions were present. In addition,
Kurilová et al. (40) used the object detector of Faster-RCNN to
detect HE lesions in fundus images. In this study, the object
detector of our fusion model was modified from EfficientDet-
d1, in which the backbone was co-used with the classification
module during both the training and inference phases. We
found that the performance of EfficientDet-d1 had significantly
higher sensitivity for the detection of HEs compared to the
original EfficientDet-d1 in the dual model. The higher sensitivity
might be because the classification and object detection tasks are
complementary in our system.

Typical deep learning models usually lack interpretability,
whereas visualization is useful for physicians to assess the
result of DME classification by AI. To resolve this problem, we
trained another object detector, YOLOv3, to detect anatomical

Frontiers in Medicine | www.frontiersin.org 9 April 2022 | Volume 9 | Article 851644

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Wang et al. DME Detection by Fusion Model

FIGURE 10 | Three fundus images from the open dataset were classified as DME in our system. (A) Fundus image from Messidor-1 dataset. (B,C) Two fundus

images from the Messidor-2 dataset. Our system labeled HE lesions, optic disc, and 1DD from the macula center. The blue bounding box represents the HE. The

white circle represents 1DD from the macula center. The white bounding box represents the optic disc.

landmarks (optic disc and macula). Our system integrated the
fusion model and another object detector to achieve visualization
and increase the interpretability of the AI. We also applied
this system to fundus images obtained from open datasets to
examine its effect. As shown in Figure 10, three fundus images
were classified as DME by our system, and it was possible to
detect and annotate HE lesions, the optic disc, and 1DD from
the macula center. These output fundus images can increase the
interpretability of AI results for physicians.

Deep learning models often require large memory usage and
computing power. It is difficult to deploy deep learning models
on high-end computers in remote areas where resources are
limited. Typically, edge devices or cloud computing is utilized to
address this issue. However, cloud computing requires network
resources. In some remote areas, there was no well-internet
service to support cloud computing. Beede et al. (41) discovered
that 2 h were required to screen ten diabetic patients using
their cloud eye-screening system deployed in Thailand due to
sluggish Internet service. Although the edge device is portable
and does not require network connections, its small memory
size and limited computing power are the primary hindrances.
Singh and Kolekar (42) reduced the model size to resolve the
storage issue associated with edge devices to classify COVID-19
using computed tomography scans of the chest. In our fusion
model, the classifier and object detector co-used the backbone
of the object detector. This design reduced the demand for
memory usage and the execution time, as shown in Table 3. This
fusion model is computationally efficient and can be deployed
on an edge device with an anatomical landmark detector. In
addition, due to traditional fundus camera without appropriate
hardware (at least equipped with NVIDIA GeForce GTX 1070
8GB memory), one model to process the data on an edge device
could resolve this issue. Therefore, this is the reason why we
need to design a deep learning model to process the data in an
edge device. Nonetheless, if the computer associated with the
fundus camera has appropriate hardware, our model also could
integrate into the computer system of camera without needing
on an independent edge device.

Our study has several strengths. First, we used a large
number of fundus images to train the model. Second, our model
yielded satisfactory results for private and open datasets. The

model could be implemented on fundus images for different
ethnicities. Third, this system facilitates DME classification and
the visualization of HE lesions, optic disc, and the macula.
Therefore, it is expected that non-ophthalmologist physicians
would havemore confidence in DME diagnosis determined using
AI. Fourth, this system can be deployed on an edge device. This
device is portable and affordable. Thus, the proposed system
could be applied to diabetic patients in remote or resource-
limited areas.

This study has several limitations. First, drusen and the
partial features of silicone oil retention are similar to those
of HEs. These types of features were not well-trained in our
system owing to limited data. This could lead to a false-
positive result for DME. Second, we did not integrate the
fusion model and anatomical landmark detector into one fusion
model. Third, some diseases, such as myelinated fiber layer
and optic disc edema, presented blurred boundaries of the
optic disc. These diseases could influence the detection of the
optic disc and cause inaccurate visualization of 1DD from the
macula center.

Based on the obtained results, our future work will involve the
application of the proposed system to other object detectors with
a backbone that was originally a CNN image classifier, followed
by the integration of the fusion model and the anatomical
landmark detector into one fusion model on an edge device.
Furthermore, we will also train this system to classify the grade
of DR and annotate the locations of hard exudates, hemorrhages,
soft exudates, microaneurysms, the optic disc, and the macula.
This system will grade DR and DME, as well as provide lesion
visualization to increase the interpretability of the AI results
for physicians.

In conclusion, our system combines a novel end-to-end
fusion model with a second object detector to perform DME
classification, HE detection, and anatomical localization. It can
identify DME and elucidate the relationship between HE and the
macula. The entire system can facilitate higher interpretability
and serve as a clinical reference for physicians. In addition, it
can be implemented on a portable edge device. Clinically, this
AI system can be used during the regular examination of DR
to improve the interpretation of fundus imaging in patients
with DME.
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