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Abstract

Background

Gastric carcinoma (GC) is one of the most common cancer globally. Despite its worldwide

decline in incidence and mortality over the past decades, gastric cancer still has a poor prog-

nosis. However, the key regulators driving this process and their exact mechanisms have

not been thoroughly studied. This study aimed to identify hub genes to improve the prognos-

tic prediction of GC and construct a messenger RNA-microRNA-long non-coding RNA

(mRNA-miRNA-lncRNA) regulatory network.

Methods

The GSE66229 dataset, from the Gene Expression Omnibus (GEO) database, and The

Cancer Genome Atlas (TCGA) database were used for the bioinformatic analysis. Differen-

tial gene expression analysis methods and Weighted Gene Co-expression Network Analy-

sis (WGCNA) were used to identify a common set of differentially co-expressed genes in

GC. The genes were validated using samples from TCGA database and further validation

using the online tools GEPIA database and Kaplan-Meier(KM) plotter database. Gene set

enrichment analysis(GSEA) was used to identify hub genes related to signaling pathways in

GC. The RNAInter database and Cytoscape software were used to construct an mRNA-

miRNA-lncRNA network.

Results

A total of 12 genes were identified as the common set of differentially co-expressed genes in

GC. After verification of these genes, 3 hub genes, namely CTHRC1, FNDC1, and INHBA,

were found to be upregulated in tumor and associated with poor GC patient survival. In addi-

tion, an mRNA-miRNA-lncRNA regulatory network was established, which included 12

lncRNAs, 5 miRNAs, and the 3 hub genes.
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Conclusions

In summary, the identification of these hub genes and the establishment of the mRNA-

miRNA-lncRNA regulatory network provide new insights into the underlying mechanisms of

gastric carcinogenesis. In addition, the identified hub genes, CTHRC1, FNDC1, and INHBA,

may serve as novel prognostic biomarkers and therapeutic targets.

Introduction

Gastric carcinoma (GC) is a common malignant tumor originating from the gastric mucosal

epithelium. Despite its worldwide decline in incidence and mortality rates over the past

decades, GC has a poor prognosis [1]. In 2020, there were about 1,089,103 new gastric cancer

cases, which resulted in 768,793 deaths, making it the fifth-most commonly diagnosed cancer

type and the fourth leading cause of cancer-related deaths after lung, colorectal, and liver can-

cers [2]. Although the pathogenesis of gastric cancer remains unclear to date, gastric cancer is

widely considered to be a highly heterogeneous disease caused by multiple factors, including

chronic infection with Helicobacter pylori [3, 4], Epstein–Barr virus [5], unhealthy diet [6],

smoking [7], etc., which interact with genes and ultimately lead to tumor development [8, 9].

A gene mutation can be an early indicator of the risk of cancer development and even its future

aggressiveness, and genes whose expression is correlated with the progression and prognosis

of GC need to be identified. In recent years, biomarkers and therapeutic targets for GC have

greatly contributed to improving the diagnosis and treatment of GC. For example, IDO1 and

COL12A1, which were found to synergistically promote gastric cancer metastasis, appear to be

promising targets for the treatment of gastric cancer [10]. Sha et al. [11] found that ORAI2

promotes gastric cancer cell migration and tumor metastasis through MAPK-dependent focal

adhesion disassembly and PI3K/Akt signaling, which suggests the possibility of developing

potential therapies for GC by targeting the ORAI2 signaling pathway. However, identifying

novel diagnostic and prognostic biomarkers remains urgently necessary in view of the biologi-

cal complexity, poor prognosis, and high reoccurrence of GC.

In the past few decades, microarray technology and bioinformatics analysis have been

widely used in cancer functional genomics research to identify genes closely related to tumor

development, progression and prognosis through genomics and clinical data analysis [12, 13].

Accordingly, an approach integrating technologies is helpful to identify key genes associated

with gastric cancer development and progression. In this study, two major transcriptome

analysis methods were used to identify GC-associated genes. One method is the analysis of dif-

ferentially expressed genes (DEGs), which is used to determine quantitative changes in expres-

sion levels between different groups [14]. Studies to identify DEGs between groups under

specific conditions, which are widely conducted using RNA-seq data analysis, are critical to

understanding phenotypic variation. Differential gene expression analysis can provide in-

depth insights into the genetic mechanisms of different phenotypes. For example, through the

differential gene expression analysis of multiple data sets, a total of 31 hub genes were identi-

fied in colorectal cancer, and these hub genes were found to be significantly enriched in multi-

ple pathways, mainly those related to the cell cycle process, and chemokines and G-protein

coupled receptors [15]. The other method is Weighted Gene Co-expression Network Analysis

(WGCNA) [16], a data mining-based method used to analyze biological networks, which is

used to identify highly coordinated gene sets. Then, based on the interconnectivity of the
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identified gene sets, candidate biomarker genes or therapeutic targets as well as the association

between gene sets and phenotypes can be identified. Compared with focusing only on DEGs,

WGCNA can be used to analyze thousands, or nearly thousands, of the genes with the most

altered expression, as well as the information about all genes, to identify the gene sets of inter-

est and perform significant association analysis between the genes sets and the phenotype. For

instance, Yin et al. [17] used WGCNA to identify 5 hub genes that may play a key role in the

progression of hepatocellular carcinoma. Additional studies using WGCNA have shown that

four genes (RACGAP1, ZWINT, TKI, and LMNB1) may serve as potential diagnostic and prog-

nostic markers [18]. In this study, WGCNA was based on the correlation of variables to estab-

lish a gene interaction network within the biological system, using the transcriptome and

clinical data to identify the modules of genes with characteristic co-expression pattern, and

further examine the relationship between the gene modules and the clinical traits [19]. There-

fore, we used two approaches, combining the results of the WGCNA and differential gene

expression analysis, to enhance the identification of highly correlated genes, which could thus

serve as candidate biomarkers for GC prognosis.

Materials and methods

Data sources and pre-processing

The gene expression profiles in dataset GSE66229, which consists of the GSE62254 and

GSE66222 datasets, obtained on the GPL570 platform using the Affymetrix Human Genome

U133 Plus 2.0 array, (Affymetrix Inc., Santa Clara, CA, USA), were downloaded from the

Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds). The

GSE66222 dataset contains data from 100 samples of normal gastric tissue, and the

GSE62254 dataset contains data from 300 gastric cancer samples. The probes were converted

into gene symbols according to the annotation file provided by the manufacturer, and probes

corresponding to multiple genes were removed. If multiple probes corresponded to one

gene, the median value was used. Ultimately, a total of 20,549 genes were subjected to further

analysis.

The RNA-seq expression profiles (count format) and clinical data of GC patients were

obtained from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/).

Genes with an average expression level value below 1 in all samples were removed. The mRNA

expression matrix consists of 22,634 genes and 407 samples, of which 375 are tumor samples

and 32 are normal tissue adjacent to the tumor. A total of 371 tumor samples were available

for survival analysis.

Weighted gene co-expression network analysis

All data analysis was performed using the R software (Version 3.63, https://www.r-project.org/).

The R package WGCNA was used to analyze the gene co-expression network of the two data-

sets. First, the genes with the absolute median difference in the top 5,000 were retained. Sec-

ond, the samples were clustered and the outliers were removed. To construct a scale-free

network, soft strengths of β = 3 and 4 were chosen for these two datasets with the function

pickSoftThreshold, separately. In the co-expression network, genes with high absolute correla-

tion were aggregated into modules with different colors by using the function blockwiseMo-

dules. Then, the correlations between modules and clinical feature information were

calculated using the WGCNA package, and modules with high correlation with tumor traits

were further analyzed.
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Analysis of differentially expressed genes

The R package edgeR was used to identify DEGs in TCGA datasets. For the GEO data, the

limma package was used to identify DEGs between the tumor samples and normal samples.

False discovery rate (FDR) was used to adjust the P-value. Genes with |FC| (fold change)> = 2

and adjusted P< 0.05 were considered to be DEGs. The DEGs of TCGA datasets and the

GSE66229 datasets were visualized as volcano plots using the R package ggplot2.

Validation of hub genes

In the two datasets, the overlapping genes were selected from upregulated genes in DEGs and

the module genes in the co-expression network, which were visualized using the VennDia-

gram package [20]. To identify the true hub genes, Kaplan-Meier survival analysis was per-

formed to evaluate the association of hub genes with overall survival (OS) in TCGA datasets

using the survival package. Tumor samples with follow-up time were divided into two groups

according to the median value of gene expression. Genes with p-values < = 0.05 are verified

again in two online databases the GEPIA database (http://gepia.cancer-pku.cn/) and Kaplan-

Meier (KM) plotter database (https://kmplot.com/analysis/). Then, the Human Protein Atlas

(HPA) database (http://www.proteinatlas.org/) was used to validate the hub genes by immuno-

histochemistry (IHC).

Gene set enrichment analysis of real hub genes

In TCGA datasets, samples of GC were divided into two groups according to the expression

level of the hub genes (high expression vs. low expression based on the median expression

value of each hub gene). The gene set enrichment analysis (GSEA) software downloaded from

http://www.gsea-msigdb.org/gsea/index.jsp was used to identify the potential function of the

hub genes. FDR P<0.05 was used as the criterion for significant enrichment.

Construction of lncRNA-miRNA-hub gene network

RNAInter database (https://www.rna-society.org/rnainter/), a complete resource of RNA

interactome data from the literature and other databases containing over 41 million RNA-

related interactions of RDI, RCI, RPI, RHI, and RRI [21], was used to investigate the relation-

ship between mRNAs, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). We

used the lncRNA–miRNA and mRNA–miRNA relationships with strong experimental evi-

dence for further analysis. Then, the lncRNA-miRNA-mRNA regulatory network was visual-

ized with the Cytoscape software.

Results

Identification of modules associated with tumor and normal tissues

The data were processed and analyzed as shown in the flowchart in Fig 1. By filtering the two

gene expression matrices, genes in the top 5,000 with absolute median differences in TCGA

dataset and GEO dataset were further screened for co-expression network analysis. Soft

strengths of β = 3 in TCGA datasets and β = 4 in the GSE66229 datasets were chosen using the

function pickSoftThreshold. Then, the co-expression networks were established, and gene

modules were identified using the function blockwiseModules. A total of 9 and 14 modules

were identified in TCGA datasets and the GSE datasets (Fig 2A), respectively. Each color rep-

resents an independent module that contains a set of highly-related genes. Eventually, the rela-

tionship between different co-expression modules and clinical features was visualized by heat
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map (Fig 2B). The top number in each cell is the correlation coefficient, and the bottom one is

the p-value. Modules with high correlation with tumor traits and p-value< 0.05were further

analyzed, and the results were consistent with one module (pink, with 113 genes) in TCGA

datasets, and with two modules (blue, purple, with 1,581 genes in all) in the GEO datasets.

Analysis of differential gene expression

Using |FC|(fold change)> = 2 and FDR-adjusted P < 0.05 as the cut-off criterion, we obtained

6,065 and 1,205 DEGs from TCGA datasets and the GSE66229 datasets, respectively, and visu-

alized them with volcano plots (Fig 3A and 3B). A total of 857 DEGs (321 upregulated and 536

downregulated) were identified by gene integration analysis (Fig 3C). According to the calcu-

lations, there were 12 overlapping genes (EVA1A, RARRES1, ADAM12, COL10A1, COL11A1,

COL1A1, COL1A2, COL10A1, CTHRC1, FAP, FNDC1, and INHBA) between the upregulated

genes and co-expression Modules (Fig 3D).

Validation of the actual hub genes

We identified the prognostic value of the 12 genes in TCGA datasets using the survival package

in R. Patients were divided into a high group and a low group based on the median expression

Fig 1. Study design and workflow of this study.

https://doi.org/10.1371/journal.pone.0261728.g001
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of the genes. The results of the Kaplan–Meier curve analysis indicated that the higher the

expression of COL10A1, CTHRC1, FAP, FNDC1, and INHBA, the worse the prognosis of the

GC patients (P< 0.05) (Fig 4). These five genes were further validated by survival analysis

using the Kaplan-Meier plotter database (Fig 5A–5E) and GEPIA database (Fig 5F–5J). After

the above validation, three candidate genes (CTHRC1, FNDC1, and INHBA) were ultimately

determined to be the hub genes. Then, the expression level of these three genes was evaluated

using the GEPIA database (Fig 6), which revealed that compared with normal gastric tissue

samples, the expression of CTHRC1, FNDC1 and INHBA was elevated in GC samples. These

findings are consistent with the results of our analysis. The IHC staining data obtained from

the HPA database were used to determine the protein levels of these three candidate hub genes

(Fig 7). The results also showed that the protein levels of CTHRC1, FNDC1 were dysregulated

in GC tissues (INHBA was not found in the HPA database).

Fig 2. Identification of co-expression modules associated with clinical features in gastric cancer. The results on the left are from TCGA, and those

on the right are from GSE66229 (A) Gene cluster dendrograms and module colors. The gene dendrogram is obtained by overlaying the topology with

the corresponding module colors. Each color represents an independent module that contains a set of highly-related genes. (B) Heat map of the

correlation between co-expression module genes and clinical features (tumor and normal), the top number in each cell is the correlation coefficient,

and the bottom one is the p-value.

https://doi.org/10.1371/journal.pone.0261728.g002
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Gene set enrichment analysis revealed a close relationship between hub

genes and tumor development

To further investigate the potential biological functions of CTHRC1, FNDC1, and INHBA, we

performed Kyoto Encyclopedia of Genes and Genomes (KEGG)-GSEA analysis of the RNA-

seq data of GC samples from TCGA. As shown in Fig 8, genes in higher-expression groups of

CTHRC1, FNDC1, and INHBA were all involved in “BASAL CELL CARCINOMA”, “FOCAL

ADHESION”, “HEDGEHOG SIGNALING PATHWAY”, “MELANOMA”, and “TGF BETA

SIGNALING PATHWAY”. In addition, the “PATHWAY IN CANCER” was enriched in the

FNDC1 and INHBA high-expression groups. The sets of genes with the highest enrichment

scores are closely related to the occurrence and development of tumor.

Fig 3. Analysis of differential gene expression with TCGA-GC datasets and the GSE66229 datasets. (A) Volcano plot of TCGA dataset. (B) Volcano

plot of the GSE66229 dataset. (C) Venn diagram of genes between DEGs. (D) Venn diagram comparison of genes from the upregulated genes and co-

expression modules. A total of 12 overlapping genes were identified.

https://doi.org/10.1371/journal.pone.0261728.g003
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Construction of lncRNA-miRNA–hub gene network

We also undertook to establish the transcriptional regulatory network of lncRNAs, miRNAs,

and hub genes by selecting strong experimental evidence in the RNAInter database. As

depicted in Fig 9, the network includes 12 lncRNAs, 5 miRNAs, and 3 hub genes. The scores

of the correlations between lncRNA and miRNA and between miRNA and mRNA are shown

in Table 1. MiRNAs regulate gene expression by interacting with their target genes [22].

LncRNAs function as competing endogenous RNAs (ceRNAs), competing for shared

miRNAs and sequestering miRNAs from mRNAs [23]. This network reflects the regulatory

relationships in the process of hub genes expression as well as the complex mechanisms of

tumorigenesis.

Discussion

In this study, we first identified tumor-associated co-expression modules in two datasets using

WGCNA, and then the DEGs between tumor and normal tissues, ultimately identifying a total

of 12 overlapping genes between the upregulated genes and co-expression modules. These

genes were not only upregulated in GC but also highly associated with GC. We additionally

performed a prognostic analysis of these genes using TCGA database and further validated

them using the Kaplan-Meier plotter database and GEPIA database. The GEPIA and Kaplan-

Meier plotter databases are two web-based tools that deliver fast and customizable functionali-

ties. The GEPIA database provides key interactive and customizable functions including pro-

filing plotting, differential expression analysis, patient survival analysis base on TCGA and

GTEx data [24]. The Kaplan-Meier Plotter database includes gene expression data and clinical

data, which is a powerful tool that can be used to evaluate the effect of genes on the survival of

patients with gastric cancer [25]. The use of these two databases can make our results more

Fig 4. The Kaplan–Meier survival curves of the five genes in TCGA dataset. (A) COL10A1 (B) CTHRC1 (C) FAP (D) FNDC1 (E) INHBA.

https://doi.org/10.1371/journal.pone.0261728.g004
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reliable and compelling. After the validation process, revealed that higher expression of

CTHRC1, FNDC1, and INHBA indicated poorer survival in patients with GC, these 3 genes

were considered to be the hub genes. The KEGG-GSEA analysis indicated that these mRNAs

were significantly enriched in cancer-related pathways, including basal cell carcinoma, focal

adhesion [26], hedgehog signaling pathway [27], melanoma, pathway in cancer, and TGF beta

signaling pathway [28].

CTHRC1 (Collagen Triple Helix Repeat Containing 1) is a protein-encoding gene that

appears to play a role in the cellular response to arterial injury through its involvement in

vascular remodeling. It has been reported that, following injury, CTHRC1 is transiently

Fig 5. The Kaplan–Meier survival curves of the 5 genes.

https://doi.org/10.1371/journal.pone.0261728.g005
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overexpressed in the adventitial and intimal smooth muscle of rat arteries [29]. Although

physiologically CTHRC1 plays an important role in wound healing, abnormal expression of

CTHRC1 also promotes the development of various human tumors. For instance, CTHRC1
promotes cervical cancer metastasis and activates the Wnt/PCP pathway [30]. In addition,

Fig 6. Verification of the expression levels of these 3 hub genes using GEPIA. (A) CTHRC1 (B) FNDC1 (C) INHBA.

https://doi.org/10.1371/journal.pone.0261728.g006

Fig 7. Immunohistochemistry (IHC) analysis of 3 hub genes on the HPA database. (A) CTHRC1, (B) FNDC1. (INHBA was not found in the HPA

database).

https://doi.org/10.1371/journal.pone.0261728.g007

Fig 8. KEGG-GSEA analyses of the 3 identified hub genes. (A) CTHRC1 (B) FNDC1 (C) INHBA.

https://doi.org/10.1371/journal.pone.0261728.g008
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Fig 9. The lncRNA-miRNA-mRNA network was established using the cytoscape software.

https://doi.org/10.1371/journal.pone.0261728.g009

Table 1. The correlation between lncRNA, miRNA, and mRNA according to the RNAInter database.

RNAInter_ID Interactor1 Category1 Interactor2 Category2 Score

RR00377685 hsa-let-7b-5p miRNA CTHRC1 mRNA 0.9943

RR00377701 hsa-miR-30b-5p miRNA CTHRC1 mRNA 0.9928

RR00377703 hsa-miR-520d-5p miRNA CTHRC1 mRNA 0.9609

RR00377694 hcmv-miR-US25-1-5p miRNA CTHRC1 mRNA 0.7311

RR00572052 hsa-miR-1207-3p miRNA FNDC1 mRNA 0.9526

RR00572047 hcmv-miR-US25-1-5p miRNA FNDC1 mRNA 0.7311

RR00751831 hcmv-miR-US25-1-5p miRNA INHBA mRNA 0.7311

RR00694900 H19 lncRNA hsa-let-7b-5p miRNA 1

RR01338124 SNHG16 lncRNA hsa-let-7b-5p miRNA 0.9856

RR00287286 CCAT1 lncRNA hsa-let-7b-5p miRNA 0.982

RR01472766 TP53COR1 lncRNA hsa-let-7b-5p miRNA 0.9526

RR00845074 LINC-ROR lncRNA hsa-let-7b-5p miRNA 0.9526

RR00320272 CERNA2 lncRNA hsa-let-7b-5p miRNA 0.9526

RR05191717 WT1-AS lncRNA hsa-let-7b-5p miRNA 0.7704

RR00719481 HOTTIP lncRNA hsa-miR-30b-5p miRNA 0.9975

RR00032111 AC254633.1 lncRNA hsa-miR-30b-5p miRNA 0.9912

RR00715424 HNF1A-AS1 lncRNA hsa-miR-30b-5p miRNA 0.982

RR00889541 MALAT1 lncRNA hsa-miR-30b-5p miRNA 0.7311

RR01338152 SNHG16 lncRNA hsa-miR-1207-3p miRNA 0.9818

RR01159638 PVT1 lncRNA hsa-miR-1207-3p miRNA 0.8808

https://doi.org/10.1371/journal.pone.0261728.t001
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CTHRC1 induces non-small cell lung cancer invasion by upregulating MMP-7/MMP-9 [31].

Moreover, in gastric cancer, CTHRC1 was reported to promote tumor metastasis through the

HIF-1α/CXCR4 signaling pathway [32]. FNDC1 encodes a protein containing a fibronectin

type III structural domain. Fibronectin interaction with integrins is involved in cell prolifera-

tion, migration, and differentiation [33]. Recent studies have found that FNDC1 also has a role

in different diseases including cancer. FNDC1 was shown to be involved in the pathological

changes in inflammatory bowel disease [34]. The silencing of FNDC1 inhibited the prolifera-

tion and migration of prostate cancer cells [35]. FNDC1 was also shown to promote apoptosis

through hypermethylation in human salivary-like cystic carcinoma cells [36]. Additionally,

high FNDC1 expression was also reported to be associated with poor prognosis in gastric can-

cer [37], which is consistent with our findings. INHBA encodes a member of the TGF-beta

superfamily of proteins, which has been found to be associated with various types of human

cancers. Previous studies have shown that besides being associated with cell proliferation and

migration, the INHBA gene is overexpressed in various tumors, such as colorectal cancer [38],

esophageal cancer [39], and nasopharyngeal cancer [40]. All the above studies similarly indi-

cate that these three genes may serve as potential diagnostic and prognostic biomarkers for

gastric cancer. However, few studies have investigated the important upstream mediators of

these hub genes. In this study, we made predictions about the upstream regulatory mecha-

nisms of these genes using the RNAinter database in combination with the strong experimen-

tal evidence and established a regulatory network of lncRNAs-miRNAs-hub genes of GC,

involving 12 lncRNAs, 5 miRNAs, and 3 hub genes, such as models HOTTIP-miR30b-

CTHRC1, H19-let7b-CTHRC1, and PVT1-miR1207-FNDC1.

Non-coding RNAs, such as lncRNAs, circRNAs, and miRNAs, which were considered as

transcriptional noise in the past and are now known to account for over 90% of the human

genome [41], have been shown to have regulatory roles in various biological processes and

play a crucial role in the development of diseases [42]. In recent years, considerable attention

has been devoted to some calculation methods for predicting the potential associations of miR-

NAs, lncRNAs, circRNAs, and diseases as they can provide the most promising reference for

the experiment, greatly reducing the time and cost of the experiment [43–45]. For instance,

Chen et al. proposed Matrix Decomposition and Heterogeneous Graph Inference for miRNA-

disease association prediction (MDHGI) by combining the sparse learning method with the

heterogeneous graph inference method to calculate and predict the association of potential

miRNA and disease [46]. Additionally, Chen et al. also developed a model of Inductive Matrix

Completion for MiRNA-Disease Association prediction (IMCMDA), which was successfully

validated in five human tumors [47]. Advances in interaction prediction research in various

fields of computational biology have also provided valuable insights for the development of

mRNA-miRNA-lncRNA networks, such as miRNA-lncRNA interaction prediction. Zhang

et al. constructed the LMI-INGI and NDALMA models to predict the interactions between

lncRNAs and miRNAs, and obtained satisfactory results in five-fold cross-validation, showing

good prediction performance [48, 49]. LMFNRLMI is another algorithm which can achieve a

good prediction of the relationship between lncRNA and miRNA [50]. Liu et al. proposed the

"IMBDANET" algorithm that can predict genes directly or indirectly related to the target gene

[51]. In the future, we can try to use these computational models to identify non-coding RNA

biomarkers for gastric cancer and explore potential regulatory networks.

However, this study has several limitations, including the following. First, some key genes

may have been removed during the gene filtering performed before performing WGCNA

analysis. Second, when analyzing DEGs, some factors were not considered, such as age, sex,

tumor staging, and patient classification. Finally, although the upstream regulatory network of

the three hub genes has been predicted, experiments are still needed for further verification.
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Conclusions

In conclusion, through comprehensive bioinformatics analysis, we successfully identified three

hub genes (CTHRC1, FNDC1, and INHBA) that are differentially expressed between tumor

and normal tissues in both TCGA-STAD and GSE66229 datasets and highly correlated with

GC. These genes may play key roles in the development of gastric cancer. Their upstream

lncRNA and miRNA regulators may reveal the potential mechanism by which these hub genes

modulate the progression of GC. Overall, this study provides a new perspective on the diagno-

sis, prognosis, and treatment strategies for this malignant disease.
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