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Abstract

Breast cancer is the most common malignancy in women worldwide. With the increasing awareness of heterogeneity in
breast cancers, better prediction of breast cancer prognosis is much needed for more personalized treatment and disease
management. Towards this goal, we have developed a novel computational model for breast cancer prognosis by
combining the Pathway Deregulation Score (PDS) based pathifier algorithm, Cox regression and L1-LASSO penalization
method. We trained the model on a set of 236 patients with gene expression data and clinical information, and validated
the performance on three diversified testing data sets of 606 patients. To evaluate the performance of the model, we
conducted survival analysis of the dichotomized groups, and compared the areas under the curve based on the binary
classification. The resulting prognosis genomic model is composed of fifteen pathways (e.g. P53 pathway) that had
previously reported cancer relevance, and it successfully differentiated relapse in the training set (log rank p-value = 6.25e-
12) and three testing data sets (log rank p-value,0.0005). Moreover, the pathway-based genomic models consistently
performed better than gene-based models on all four data sets. We also find strong evidence that combining genomic
information with clinical information improved the p-values of prognosis prediction by at least three orders of magnitude in
comparison to using either genomic or clinical information alone. In summary, we propose a novel prognosis model that
harnesses the pathway-based dysregulation as well as valuable clinical information. The selected pathways in our prognosis
model are promising targets for therapeutic intervention.
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Introduction

Breast cancer is the second (after skin cancer) most frequently

diagnosed cancer in women, and ranks second (after lung cancer)

in the deaths of women in year 2013 [1]. Most clinical studies

categorize breast cancer into four molecular subtypes: Luminal A,

Luminal B, Triple Negative/Basal like and Her2 [2,3]. The

survival outcomes differ significantly among the clinical subtypes.

Luminal A and B subtypes have a relatively good prognosis,

whereas triple negative or basal like tumors, and Her2 tumors

have very poor prognosis with much higher recurrence and

metastasis rates [2–4]. Furthermore, it is increasingly being

realized that breast cancers are much more heterogeneous diseases

than what is determined by the clinical subtypes, and that better

prediction of prognosis is needed early on for more personalized

treatment and management. Towards this goal, prognosis

biomarkers of breast cancers have been investigated in many

studies [5–7], based on signatures from high-throughput platforms

such as gene expression profiles. Some signature panels such as the

NKI 70 test are currently in commercial use with decent

prediction of metastasis [8].

However, transcriptomic data are usually poorly dimensioned

with many more genes than the number of samples, thus methods

that reduce the dimension by incorporating higher-order infor-

mation of functional units, such as gene sets, pathways and

network modules, have been recently explored [9–16]. This

methodology is based on the observation that multiple genes

involved in the same biological processes are often dysfunctional

all together in cancers [17], therefore features selected from

representative functional units are presumably more robust with

better biological annotations [10,17]. Currently, two main

approaches to define functional units have been proposed. One

approach is to identify de novo functional units from the data. For

example, van Vliet used an unsupervised module discovery

method to identify gene modules, scored them and use them as

features in a Bayes classifier [18]. Teschendorff et al. reported

improved prognostic classification of breast cancers via a novel

strategy to discover the activated pathways from the modules of

‘‘expression relevance network’’ [12]. Similarly, network analysis

with combination of all the useful gene information has been

developed and utilized to measure the coordination among the

genes [13]. The other main approach uses the existing pathway
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information to build functional units. For example, Lee et al used

the MsigDB C2 gene sets to select feature sets using the t-test, and

represented the pathway activity level by a subset of genes whose

combined expression delivered optimal discriminative power for

the disease phenotype [14]. Abraham et. al used a set statistic that

aggregated the expression levels of all genes in a set, and

constructed prognostic gene sets that were as predictive as

individual genes, yet more stable and interpretable within the

biological context [9].

However, most of these methods model the prognosis as binary

outcomes, and post hoc analyze the performance of the methods

using survival information; or individualized information of

pathway deregulation is lost during information extraction before

deriving statistical metrics. More importantly, the merits of

combining clinical features and genomic features together have

not been adequately addressed in most studies, where the models

were only built upon the genomic information. In this study, we

use a novel pathway-based deregulation scoring matrix to

transform the gene-based genomic features in combination with

the Cox regression and L1-LASSO regularization to model

survivals. With this pathway deregulation score matrix as inputs,

we constructed a pathway-based genomic model consisting of

fifteen cancer relevant pathways that successfully predicted relapse

difference (log rank p-value = 6.25e-12, and AUC = 0.80) and

validated them on three breast cancer data sets with diversified

clinical profiles (log rank p-value,0.0005, and average

AUC = 0.68). The pathway-based genomic models consistently

performed better than gene-based models on all four data sets.

Moreover, combining genomic level information with clinical

information improved prognosis prediction and classification by at

least three orders of magnitudes of p-values, in comparison to

either genomic or clinical information alone.

Results

Data Summary
We used four individual gene expression microarray data sets

for the testing and validation of the pathway-based prognosis

model (Table 1), all of which were measured by Affymetrix HG-

U133A array and had relapse and survival information. We used

the data set of 236 patients in Miller et. al. [19] as the training data

mainly because this data set contains the most abundant clinical

information, including ER status, PG status, tumor size, grade,

lymph node status and P53 mutation.

PAM50 is a list of 50 genes initially proposed to successfully

differentiate the breast cancer subtypes and it was later found that

PAM50 also harbors good prognosis information on breast cancer

[20]. Therefore, we first present the testing data summary results

and correlate relapse with PAM50 and other clinical factors

(Figure 1). Although tumor molecular subtypes are unknown due

to the missing Her2 marker information, we nevertheless observed

a good correlation between PAM50 matrix and relapse. Based on

the hierarchical clustering results of PAM50 heatmap, we dichot-

omized the samples into high and low risk groups, This grouping

approach, without any supervised learning, results in a fairly good

association to relapse status (Chi-square test p = 7.46e-5). Addition-

ally, grade and lymph node have significant associations to relapse,

with Chi-square test p-values of 0.018 and 9.146e-6 respectively.

Single clinical factor based survival analysis also confirms such

significant relevance to relapse: p-values of Wilcoxon log rank tests

for the p53, grade, tumor size and lymph node status based survival

differences are 0.0152, 0.00181, 1.92e-7 and 4.93e-8, respectively.

Similar to previous observations [21], ER and PG status are not

good prognosis indicators, with the log rank test p-values of 0.819

and 0.227, respectively.

There are a total of around 600 samples in the three testing data

sets, 2.5 times the size of samples in the training set. Testing set 1

(Ivshina data) [22] and testing set 2 (Pawitan data) [23] have very

similar distribution pattern to the training data (Miller data) [19].

However testing set 3 (Desmedt data) [24] has very different

distribution compared to other three data sets, as the samples were

all lymph node negative tumors. We include set 3 as an extension

to the other two testing data sets to exam the performance of the

pathway-based genomic model for prognosis.

Building the Pathway-Based Genomic Model
We have developed a novel pathway-based prognosis prediction

model, unlike most other models that are gene-based (Figure 2).

We transformed a conventional gene-based matrix into a new

pathway-based matrix of reduced numbers of rows, where each

row represents a KEGG or BIOCARTA pathway-based scores

over all samples (columns). Instead of using log2 transformed

intensities as elements of the matrix, we used Pathway Dysregu-

lation Scores (PDS) [25] that measure the distance of a particular

pathway to the ‘‘normal condition’’ curve in a hyperspace. PDS

ranges from 0 to 1, and the higher PDS score signifies more

‘‘abnormity’’. This pathway-based PDS matrix was used as the

initial input to select featuring pathways that are predictive of

survival, based on the multi-variate Cox-PH model [26]. We used

L1-LASSO penalization method [27–29] to constrain the

featuring pathways to be selected. To be consistent, we conducted

250 simulations to select the best set of pathways.

We first evaluated the featuring pathways selected by the model,

in relation to other clinical factors and relapse status in the training

data set (Figure 3). Comparing the heatmap of selected featuring

pathways to that of the PAM 50 genes (Figure 3A), the selected

pathways are more prognostic for relapse. This is supported by

two observations: (1) Dichotomized samples of high risk and low

risk groups through hierarchical clustering of PDS scores have a

higher correlation to relapse status (Chi-square test p = 1.99e-6),

compared to those of PAM50 gene matrix (Chi-square test

p = 7.46e-5) and (2) The median PDS scores over fifteen selected

Author Summary

With the increasing awareness of heterogeneity in breast
cancers, better prediction of breast cancer prognosis is
much needed early on for more personalized treatment
and management. Towards this goal we propose in this
study a novel pathway-based prognosis prediction model,
which emphasizes on individualized pathway-based risk
measurement using the pathway dysregulation score
(PDS). In combination with the L1-LASSO penalized feature
selection and the COX-Proportional Hazards regression
model, we have identified fifteen cancer relevant pathways
using the pathway-based genomic model that successfully
differentiated the relapse in the training set as well as
three diversified test sets. Moreover, given the debate
whether higher-order representative features, such as GO
sets, pathways and network modules are superior to the
gene-level features in the genomic models, we demon-
strate that pathway-based genomic models consistently
performed better than gene-based models in all four data
sets. Last but not least, we show strong evidence that
models that combine genomic information with clinical
information improves the prognosis prediction significant-
ly, in comparison to models that use either genomic or
clinical information alone.
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pathways have a correlation coefficient of 0.17 to relapse, in

comparison to 0.08 for the median expression intensities over

PAM50 genes. Thus the selected pathways by our model are better

prognostic features than PAM50 genes, in terms of the correlation

to disease relapse.

To investigate the performance of the model, we used the PI

value which is the logarithm of hazard ratio from the fitted Cox-

PH model to dichotomize the samples, similar to others [21] [30].

We divided the samples into higher and lower risk groups with a 3

to 1 ratio (3rd quartile in PI), in order to match the relapse versus

non-relapse sample ratio in the training data. Samples with larger

PDS scores are expected to have higher PI scores, and are more

likely to have relapsed diseases. The same PI threshold was applied

to dichotomize the training data set as well as multiple

independent testing data sets. The performance of the genomic

model was then evaluated by two approaches: (1) the Wilcoxon log

rank test p-values of the Kaplan-Meier survival curves from the

two risk groups in each data set, and (2) the AUCs of ROC curve

based on binary classification.

The Pathway-Based Genomic Model Is Predictive on
Multiple Testing Data Sets

Instead of combining all four data sets for meta-analysis, we

kept them as individual data sets to validate the robustness of our

model. As expected, the pathway-based genomic model is highly

accurate at differentiating the risks of breast cancer relapse within

the training data, with a Wilcoxon log rank p-value of 6.25e-12

(Figure 4A). The model yields very decent predictive results with

the p-value of 1.52e-4 in testing set 1 and 3.91e-5 in testing set 2

(Figure 4B and 4C). The predictive performances are expected to

Table 1. Summary of patient and tumor characteristics.

Characteristics Training Miller LD Testing Set1 Pawitan Y Testing Set2 Ivshina AV Testing Set3 Desmedt D

No. of patients

236 159 249 198

Relapse, No. (%)

Relapse 55 (23%) 40 (25%) 89 (35%) 91 (46%)

Non-relapse 181 (77%) 119 (75%) 160 (64%) 107 (54%)

Mean Relapse Free Survival (y)

8.167 5.959 7.142 9.312

Mean Age (year)

62.51 62.12 46.39

ER status, No. (%)

Positive 201 (85%) 211 (85%) 134 (67%)

Negative 31 (13%) 34 (13%) 64 (33%)

NA 4 (2%) 4 (2%) 0

PG status, No. (%)

Positive 57 (24%)

Negative 179 (76%)

NA 0

Tumor Size(mm)

,10 (T1a, T1b) 13 (6%) 14 (6%) 9 (4%)

10–20 (T1c) 92 (40%) 95 (38%) 59 (30%)

20–50 (T2) 123 (52%) 129 (52%) 129 (65%)

.50 (T3) 5 (2%) 10 (4%) 1 (1%)

Grade, No. (%)

1 62 (26%) 28 (18%) 68 (27%) 30 (15%)

2 121 (51%) 58 (36%) 126 (51%) 83 (42%)

3 51 (22%) 61 (38%) 55 (22%) 83 (42%)

NA 2 (1%) 12 (8%) 0 2 (1%)

Lymph Node Status, No. (%)

Positive 78 (33%) 81 (32%)

Negative 149 (63%) 159 (64%) 198 (100%)

NA 9 (4%) 9 (4%)

P53 Mutation Status, No. (%)

Mutated 55 (23%) 58 (23%)

Wild Type 181 (77%) 189 (76%)

NA 0 2 (1%)

doi:10.1371/journal.pcbi.1003851.t001
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drop in the testing data sets, since they have different patient

populations and clinical characteristics from the training set

(Table 1). Impressively, the model gives a very significant p-value

of 3.73e-4 for testing data set 3 (Figure 4D), which are all early

stage lymph node negative tumors whose prognosis is very difficult

to predict. Additionally, we evaluated the performance of models

using binary classification. We used the relapse/non-relapse

information in the data sets as truth measures, and the model’s

high vs. low risk classification as predictions. As shown in

Figure 4E, the ROC curve in the training set gives an AUC

value of 0.80, and AUCs of 0.73 (testing set 1, Pawitan data), 0.67

(testing set 2, Ivshina data), 0.65 (testing set 3, Desmedt data),

consistent with the results in Kaplan-Meier curves (Figure 4A–D).

To examine the effect of total number of input pathways on

model performance, we randomly kept 1/2, 1/4, 1/8 and 1/16 of

all input KEGG and BioCarta pathways in the training dataset,

and then generated the PDS Matrices for 18 simulations under

each scenario. For each simulation, we built the model with the

same workflow as in Figure 2 and computed the Wilcoxon log-

rank test p-value between the survival curves of the two risk

groups, as well as the AUCs of the classification results. The

boxplot in Figure S1 shows a gradual decrease of AUCs due to the

input pathways, in the order of 1/2.1/4.1/8.1/16 pathway-

based models. The difference between 1/2 and 1/4 pathways is

significant (p-value,0.05). All AUCs, however, are in the range

between 0.69 and 0.81.

The Pathway-Based Genomic Model Is Superior to the
Gene-Based Genomic Model

Our earlier results of selected pathway features vs. PAM 50

genes suggested that pathway-based features may be better than

gene-based features. To validate this, we trained the four data sets

individually and compared within the same data set the

performance of pathway-based models and gene-based genomic

models which do not have the PDS matrix generation step

(Figure 2). In order to test the risk differentiation power of the

model, the cutoff PI value in each data set was set to match the

ratio of relapse vs. non-relapse patients in that particular set. The

results of Kaplan-Meier survival curves and ROC plots based on

classification all consistently show that pathway-based genomic

models are superior to the gene-based models (Figure 5A–H). For

example, in Miller data set the log-rank p-value is 6.25e-12 for the

pathway-based model (Figure 5B), compared to that of 1.75e-9 for

the gene-based model (Figure 5A). In the Desmedt data set, the p-

value of the pathway-based model is even more significant than

that of gene-based model (5.12e-36 vs. 8.84e-12, Figure 5H and

5G). Similarly, pathway-based genomic models have better ROC

curves than gene-based genomic models (Figure 5I), with AUCs of

0.80 vs. 0.78 in Miller data, 0.85 vs. 0.77 in Pawitan data, 0.74 vs.

0.70 in Ivshina data, and 0.92 vs. 0.76 in Desmedt data. To

estimate the statistical significance of comparisons among the

pathway-based and gene-based models, we performed leave-one-

out cross validation (LOOCV) simulations to compute the

Wilcoxon log-rank test p-values and AUCs of ROC classification

curves. The cross validation results show that statistically the

pathway-based models perform better than the gene-based models

(Figure S2, all t-test p-values,0.001). These results are consistent

with the observations from previous studies [12,14], and support

the hypothesis that including higher-order secondary information

yields better prognostic values.

NKI70 (Mammaprint) is one of the most commonly used model

for breast cancer prognosis prediction, and it has been approved

by FDA for commercially use in clinics. To demonstrate the

potential clinical utilities of our model, we compared the NKI70

method with ours, and applied the NKI70 method to our training

data set (Miller data). We first mapped the NKI70 gene signatures

[8] to the genes in the U133A array, then correlated the gene-

expression profile with the good-prognosis/poor prognosis data

from the NKI study and classified the samples into good and poor

clusters as done previously [7]. The NKI70 test gives a Wilcoxon

log-rank test p-value of 2.58e-3 for the survival analysis, in contrast

to the p-value of 6.25e-12 obtained by our pathway-based model;

it only yields an AUC of 0.62 for classification, in contrast to 0.80

from our model (Figure S3).

The Combined Model with Pathway-Based Genomic and
Clinical Features Is Superior to the Genomic or Clinical
Model Alone

Previous studies suggested that clinical information of breast

cancers provides additional values to a genomic model that was

built on lists of genes [21]. To test if such merit of clinical

information also applies to our genomic model of fifteen pathway

features, we investigated the performances of the genomic, clinical

and genomic-clinical combined models.

Since the scales of PDS and clinical features vary significantly,

we re- normalized PDS and clinical features independently to have

the standard normal distribution, so that they are subject to the

same selection criteria. The resulting clinical model is composed of

four selected features: grade, tumor size, p53 and lymph node.

This is not surprising, as they are also significant factors in the

univariate Cox-PH models (Table 2 and Figure 1B–E). The

combined model keeps ten of the fifteen pathways (Table 2) and

about 60% of genes that were selected by the genomic model. It

also selects tumor size and lymph node status as additional features

(Table 2). This is expected given their highly significant p-values

(1.92e-7 and 4.93e-8, respectively) in the univariate Cox-PH

models (Figure 1B and 1E), as well as relatively large coefficients in

the clinical model (0.27 and 0.36, respectively). Since only testing

data set 2 has both tumor size and lymph node information, we

used this data set and the testing data set to demonstrate the

performances of genomic, clinical, and combined models.

The comparisons present the compelling advantage of combin-

ing clinical and genomic information in a model (Figure 6). As

shown in the training data, selected clinical features are

undoubtedly important: the Wilcoxon log rank test p-value of

the clinical model is 2.21e-10 (Figure 6E), slightly less significant

than the pathway-based genomic features by two orders of

magnitude. Most importantly, the combined model is much better

than either genomic model (p-value = 6.25e-12) or clinical model

alone, with a p-value of 1.88e-24 (Figure 6C). This trend of

significances is consistent in the testing set 2, with the p-values of

Figure 1. The PAM50 gene signatures and their association with clinical information in the training data set. A, The heatmap of the
log2 transformed gene expression for PAM50 signatures. Green and red colors represent higher and lower expression levels, respectively. The
samples are further categorized into two major groups based on the hierarchical clustering. The p-values of the clinical features such as ER, PG, P53,
Grade, lymph node (LN) and dichotomized groups with relation to relapse status are calculated using Chi-square tests. B–E, Kaplan Meier survival
estimates of relapse free survivals according to major clinical features: (B) Lymph node status, (C) Grade, (D) P53 mutation status and (E) Tumor size. P-
values are calculated using Wilcoxon log-rank tests and (+) denotes the censored observations in the study.
doi:10.1371/journal.pcbi.1003851.g001
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Figure 2. The workflow of the pathway-based genomic model. Step 1. Transform the input data in the training set: the gene-based
expression data are transformed into the pathway-based data input through the pathifier algorithm, using the pathway information from KEGG and
BIOCARTA. The new input matrix is represented by Pathway Deregulation Scores (PDS). Step 2. Build the prognosis prediction model. The PDS matrix
is integrated with the survival information via a Cox-PH model under penalized feature selection using the L1- LASSO method. Featuring pathways
are selected and the coefficients (or weights) of these pathways are estimated using log likelihood cross validation. Step 3. Set the relapse risk
threshold from the model. The prognostic index (PI) cutoff value is determined from the model to match the ratio of relapse/non-relapse in the
training set. This PI is used as the relapse risk threshold on all the testing sets where the sum of weighted PDS is calculated on the pathways selected
in Step 2. The input PDS matrices of testing data sets are computed the same as in Step 1. Step 4. Evaluate the performance of the prognostic model.
The performance is evaluated through Kaplan-Meier curves of the dichotomized risk groups by PI scores, as well as the ROC curves and AUC values.
doi:10.1371/journal.pcbi.1003851.g002
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1.12e-7 in the combined model (Figure 6D), 1.52e-4 in the

genomic model (Figure 6B), and 2.7e-3 in the clinical model

(Figure 6F). Moreover, the ROC curve comparisons of these three

models also show the same order of performances: combined

model.genomic model.clinical model, with AUCs of 0.83, 0.80,

and 0.74 in the training set, and 0.71, 0.68 and 0.65 in the testing

set 2 (Figure 6G).

To demonstrate the statistical significance of comparisons

among the pathway-based, clinical and combined model in the

training set and the testing set 2, we performed leave-one-out cross

validation (LOOCV) simulations to compute the Wilcoxon log-

rank test p-values and AUCs of ROC classification curves. The

cross validation results show that statistically the combined model

performs better than the pathway-based model, and the pathway-

based model performs better than the clinic model (Figure S4, all

p-values,0.001 between pathway-base/clinical models and com-

bined models).

Biological Relevance of Featured Pathways and Genes
We expect that the consensus pathways selected both in our

genomic model and combined model convey important cancer-

related functions. To test this we examed the annotations of this

subset of ten pathways (Table 2). Interestingly, KEGG_MELA-

NOGENESIS is selected as a feature, probably due to inclusion of

many cancer relevant genes in this pathway: such as protein kinase

genes PRKACB, PRKACG, PRKCB, PRKCA; phosphorylase

kinase genes CALM1, CALM2, CALM3; G-protein related gene

GNAQ, HRAS; mitogen-activated protein kinases MAPK1,

MAPK3, MAP2K1; and other oncogenes like RAS [31,32].

Many of these genes have been shown to function in breast cancer

progression [31]. Impressively, multiple signaling pathways are

selected, including BIOCARTA_P53_PATHWAY, BIOCAR-

TA_SRCRPTP_PATHWAY, BIOCARTA_PYK2_PATHWAY,

BIOCARTA_VIP_PATHWAY, BIOCARTA_RARRXR_PATH-

WAY, and BIOCARTA_AKAP13_PATHWAY. They are

Figure 3. The selected pathway signatures and their association with clinical information in the training data set. The heatmap shows
the patterns of Pathway Deregulation Score (PDS) of selected pathways in the genomic model. Green and red colors represent higher and lower PDS
scores, respectively. The samples are further categorized into two major groups from hierarchical clustering, as in Figure 1. The p-values of the clinical
features such as ER, PG, P53, Grade, lymph node (LN) and dichotomized groups with relation to relapse status are calculated using Chi-square tests.
doi:10.1371/journal.pcbi.1003851.g003
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well-known to be associated with breast cancers prognosis [33–39].

The best example is BIOCARTA_P53_PATHWAY, the dysregu-

lation of p53 Signaling Pathway is well-documented, and the tumor-

suppressor gene p53 has one of the highest mutation rates in breast

cancer [5,19].

In addition, some pathways related to basic cell functions are

selected as prognostic features. For example, G1_PATHWAY is

selected, and the G1/S cell cycle checkpoint controls are well

known to be dysfunctional in many cancers including breast

cancer [40]. FATTY_ACID_METABOLISM is also selected by

the model, and many studies have showed that fatty acid

metabolism is involved in breast cancer [41]. In particular, Fatty

acid synthase (FASN) is highly expressed in breast cancer with a

poor prognosis compared to others [41]. Interestingly, BIOCAR-

TA_RNA_PATHWAY is also selected, largely due to its members

TP53 and MAP3K14 that are closely related to breast cancer.

Figure 4. Prognosis performance of the pathway-based genomic model. A–D. A prognosis index (PI) is calculated from the training data set
and applied to dichotomize samples in training (A) and testing data sets (B–D). Higher risk and lower risk groups determined by the PI cutoff are
compared by Kaplan-Meier curves. P-values of the survival difference between the two groups are calculated using Wilcoxon log-rank tests and (+)
denotes the censored observations in the study. E. ROC curves are generated using PI values as predictions in comparison to the relapse/non-relapse
information. AUCs are listed as the insert.
doi:10.1371/journal.pcbi.1003851.g004

A Novel Combined Model for the Prognosis Prediction of Breast Cancer
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Figure 5. Comparing the prognosis performance between the gene-based and the pathway-based genomic models. A–H. Gene-based
and pathway-based genomic models are trained individually on the data sets. The PI is calculated to match the ratio of relapse to non-relapse on
each data set and used to dichotomize the samples into higher risk and lower risk groups, similar to Figure 4. The associated p-values in Kaplan Meier
curves are calculated using the Wilcoxon log-rank tests, as in Figure 4. Pathway-based genomic models consistently outperform alternative gene-
based genomic models in all data sets. I. ROC curves are generated from PI based classification predictions in comparison to reported relapse
information, similar to Figure 4. AUCs are listed as the insert. The ROC curves and AUC results also show that pathway-based models are better than
gene-based models.
doi:10.1371/journal.pcbi.1003851.g005

A Novel Combined Model for the Prognosis Prediction of Breast Cancer

PLOS Computational Biology | www.ploscompbiol.org 9 September 2014 | Volume 10 | Issue 9 | e1003851



A total of 265 genes are overlapped between the selected

pathways of the genomic model and the combined model. Table 3

summarizes the top 30 genes that are involved in the selected

pathways. They are ranked by weighted sum of both occurrences

in selected pathways (counts) and weights measured by the hazard

ratio of each pathway. Among them, many genes encode protein

kinases that are well-known to be involved in breast cancers, such

as PRKACB, PRKACG, MAPK1 and CALM1. Some other

genes encode transcription factors that are well-known for their

close relationship to cancer, such TP53, RB1, HRAS, RAF1,

GRB2, E2F1, and SRC [32,42–44]. We therefore conclude that

the selected pathways are prognostic features of significant cancer

relevance.

Discussion

The heterogeneity of cancers is being increasingly recognized,

suggesting more personalized care decisions with treatment for

individual patients are needed. As a result, prognosis prediction of

breast cancers with high-throughput data has been a growing topic

in recent years. Many statistical and machine learning methods

have been developed to analyze various types of high-throughput

cancer genomics data, by taking advantage of higher-order

relationships among genes. The hypothesis is that the highly

correlated gene-based markers often represent identical biological

processes; therefore by including higher-order representative

features, such as Gene Ontology sets, pathways and network

modules, the prediction will be more stable [9–14,45]. Our novel

method of prognosis prediction presented in this study belongs to

this class of methods. However, unlike some other methods where

individual pathway information is lost due to summarization or

transformation, the pathway features proposed in this study

explicitly measure the degrees of pathway dysregulation for cancer

recurrence. Comparing selected pathways and the PAM50 genes

which were demonstrated to be prognostic [20], the PDS-based

pathway approach has better correlation to breast cancer relapses.

Moreover, when comparing gene-based with the pathway-based

genomic models, where the only difference between them was the

input matrix, pathway-based models uniformly performed better

than gene-based models in all the data sets we tested. Our results

are consistent with several other gene-set/pathway-based models

[9,14], where different summarization metrics were used. It will be

very interesting to compare the prediction results based on these

different metrics in a follow-up study.

To demonstrate the robustness in predicting differential risks of

relapse from the pathway-based genomic model, we chose to train

and test on independent study samples, rather than combining

them together as a large data set [21,46], which would diminish

the effect of population heterogeneity. Despite population

difference and much bigger testing data size relative to the

training data size, the method still achieved good performance on

all three testing data sets, including a data set of all early stage

lymph node negative tumors where prognosis is particularly

difficult to predict. Another merit of our method is that it enables

combining the important clinical information with the pathway-

based genomic information. Even though the clinical model by

itself is the least predictive, compared to the genomic model and

the combined model, it is nevertheless significant and informative,

as shown by tumor size and lymph node status. The genomic

model is better than clinical model alone. However, the combined

Table 2. Selected features in the models.

Features Coefficients Hazard Ratio
p-values in univariate
COX-PH model

Pathway-based genomic model

KEGG_MELANOGENESIS* 1.075908 2.93266 0.00188

BIOCARTA_SRCRPTP_PATHWAY* 0.914698 2.49602 1.01e-7

BIOCARTA_AKAP13_PATHWAY* 0.828364 2.28957 0.00351

BIOCARTA_RARRXR_PATHWAY* 0.670795 1.95579 9.58e-6

BIOCARTA_VIP_PATHWAY* 0.635108 1.88723 2.15e-5

KEGG_FATTY_ACID_METABOLISM * 0.520653 1.68313 2.53e-6

BIOCARTA_G1_PATHWAY* 0.520446 1.68278 2.66e-6

KEGG_LINOLEIC_ACID_METABOLISM 0.368615 1.44573 3.55e-4

KEGG_LYSOSOME 0.300587 1.35065 2.2e-6

BIOCARTA_P53_PATHWAY* 0.239062 1.27006 8.74e-4

BIOCARTA_PYK2_PATHWAY* 0.158405 1.17164 1.29e-4

BIOCARTA_GABA_PATHWAY 0.139229 1.14939 0.0162

BIOCARTA_FEEDER_PATHWAY 0.110334 1.11665 0.0218

BIOCARTA_RNA_PATHWAY* 0.037978 1.03871 7.67e-5

BIOCARTA_IL5_PATHWAY 0.012039 1.01211 0.00895

Clinical model

Lymph Node Status* 0.375874 1.456264 4.46e-7

Tumor Size* 0.270893 1.311135 6.03e-7

Grade 0.126814 1.135206 4.92e-4

P53 0.043517 1.044478 0.0171

*: these pathways and clinical parameters are also selected by the combined model.
doi:10.1371/journal.pcbi.1003851.t002
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model of clinical and genomic features performs the best. Our

conclusions agree and extend the earlier work from Fan et al. [21]

who focused on prognosis prediction of all node-negative and

systemically untreated breast cancer patients, since we include

both node-negative and node-positive samples. The results of the

genomic model (AUC = 0.80 and p-value = 6.25e-12 in training

Figure 6. Comparing the prognosis performance from the pathway-based genomic model, the clinical model, and the combined
model. Higher risk and lower risk group are determined by the same PI cutoff as in Figure 4. The p-values in Kaplan-Meier curves are calculated using
the Wilcoxon log-rank tests. In both the training data set and testing data set 2 (Ivshina data) that have full clinical information, the combined models
outperform the pathway-based genomic model, and the pathway-based genomic model outperform the clinical model.
doi:10.1371/journal.pcbi.1003851.g006
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data, and AUC = 0.68 and p-value = 1.52e-4 in test data 2) and the

combined model (AUC = 0.83 and p-value = 1.88e-24 in the

training set, and AUC = 0.79 and p-value = 1.12e-7 in test data

set 2) are better than what was recently reported by Vilinia S et al

[47]. They obtained an AUC = 0.74 for the training set and 0.65

for the testing set, in a model that combined signatures of mRNA

and microRNAs deriving from the TCGA IDC cohort sequencing

data. This suggests the advantages of combining PDS based

pathway score inputs with a Cox-PH model and LASSO

penalization approach: even though the genomic data in our

study are based on microarrays that have more noise and smaller

sample sizes, they still yield better predictive results in comparison

to the combined mRNA and microRNA sequencing signatures

obtained from a larger sample size. It will be of great interest to

apply our models to the TCGA breast cancer mRNA and

microRNA sequencing data in the future.

The pathways selected by the model show biological relevance

to breast cancer prognosis. The fatty acid metabolism pathway is

found to be crucial to maintain the cancer cell malignant

phenotype, and higher expression of fatty acid synthase has been

discovered as a common phenotype in breast cancer with a

poorer prognosis [41]; As another example, Src kinase activation

by protein tyrosine phosphatase alpha (SRCRPTP_PATHWAY),

has been discovered in invasive breast cancer with compelling

evidences. Src inhibitors are being considered as potential

therapy to treat invasive breast cancers, as inhibition of c-src

was recently found to be involved in E2-induced stress which

would finally result in apoptosis in breast cancer cells [33].

Increasing evidence shows that vasoactive intestinal peptide (VIP)

in BIOCARTA_VIP_PATHWAY is highly expressed in breast

cancer cells along with its receptor [33], and VIP-targeted

nanomedicine is under study as therapy for breast cancer [34].

Pyk2 in BIOCARTA_PYK2_PATHWAY is linked to map

kinases MAPK, which has wealthy records in breast cancer

studies [35]. RARRXR_PATHWAY is the RAR/RAR nuclear

receptor complex that is co-activators to facilitate initiation of

transcription in carcinoma cells [37]. And BRX, the truncated

form of Rho-Selective Guanine Exchange Factor AKAP13 in the

BIOCARTA_AKAP13_PATHWAY, has been identified to

function as an ER cofactor [39].

Table 3. Top 30 most frequent genes in the pathways of the genomic model and the combined model.

Gene ID Genomic Model Counts Combined Model Counts
Weighted Genomic Model
Counts*

Weighted Combined Model
Counts*

PRKACB 3 4 7.109452 4.46549683

PRKACG 3 4 7.109452 4.46549683

PRKCB 3 6 6.600318 6.54794229

PRKCA 3 6 6.600318 6.54794229

CALM1 3 6 5.991523 6.32738762

CALM2 3 6 5.991523 6.32738762

CALM3 3 6 5.991523 6.32738762

GNAQ 3 4 5.991523 4.26250968

SRC 3 5 4.817049 5.3291015

GSK3B 2 3 4.615435 3.23989145

CDC25A 2 2 4.178799 2.25477095

CDK1 2 2 4.178799 2.25477095

PRKAR2A 2 3 4.176796 3.26764027

PRKAR2B 2 3 4.176796 3.26764027

HRAS 2 4 4.104297 4.27393317

MAP2K1 2 4 4.104297 4.27393317

MAPK1 2 4 4.104297 4.27393317

MAPK3 2 4 4.104297 4.27393317

RAF1 2 4 4.104297 4.27393317

MAP2K2 2 4 4.104297 4.27393317

TP53 3 3 3.991545 3.03875447

GRB2 2 4 3.667662 4.32604023

CYCSP35 2 5 3.058867 5.12953106

PLCG1 2 4 3.058867 4.13411496

MAP3K1 2 3 3.058867 3.06465312

E2F1 2 2 2.952836 2.0232666

RB1 2 2 2.952836 2.0232666

CCND1 2 2 2.952836 2.0232666

CDK4 2 2 2.952836 2.0232666

CCNE1 2 2 2.952836 2.0232666

doi:10.1371/journal.pcbi.1003851.t003
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Although the workflow proposed in this study is generic and the

pathway features are clearly significant, we should point out a few

potential limitations of the model. First of all, the pathway-based

model is trained and tested on gene expression data from the U133A

platform. We suspect that direct application of the model to other

platforms, such as RNA-Seq, is not desirable, and some additional re-

processing work has to be done additionally. The reason is that data

distributions maybe very different between various platforms. One

notorious example is that biomarkers identified by high-throughput

microarray platform often had poor correlations in qPCR platform.

Thus we recommend that when researchers use the workflow in

Figure 2 on different data types, they may increase the predictive

power by retraining the model with their own data. Another limit of

our approach is that we only used the information from genes that

compose the 403 pathways that we considered, thus some gene-level

information is unavoidably lost. In our case, over 4500 genes were

enlisted in the pathways, and among them over 3200 genes are

probably expressed (averaged log 2 expression intensities .7). On the

other hand, the raw U133A array has results of over 14,000 genes

within which over 10,000 genes are probably expressed. Therefore

our model captures about 1/3 of the gene-level information overall.

One can certainly use other curated gene sets, such as the MsigDB

C2 gene sets, to increase the coverage of the genes by the pathways.

However, from the sensitivity analysis that we have performed

(Figure S1), we only observed a slight decrease of model performance

based on AUCs, which are in the range of 0.69 and 0.81.

In conclusion, we propose a novel pathway-based genomic

model that measures the pathway-based deregulation score and

shows significant prognosis values. This pathway-based genomic

model performs better than the gene-based genomic model.

Additionally, we found that combining the clinical information of

lymph node status and tumor size improves the performance of the

prognosis model. Many selected pathways in our study present

values for breast cancer prognosis prediction, and they are also

promising therapeutic targets for future investigations.

Materials and Methods

Study Population
We used four publicly available data sets of breast cancer

samples from National Center for Biotechnology Information

(NCBI) Gene Expression Omnibus (GEO) GSE4922 [22],

GSE1456 [23], GSE3494 [19] and GSE7390 [24]. All four data

sets are based on Affymetrix HG-U133A microarray platform,

and have relapse-free survival information as well as some other

clinical information, as shown in Table 1. For data set GSE7390

[24], all patients are lymph node negative. The GSE3494 data set

was used as the training set as it has more clinical information, and

all others were used as testing data sets.

Microarray Gene Expression Data Processing and Analysis
We mapped original probe IDs to Gene IDs using R package

biomaRt [48]. In order to relate the probe ID to the Gene ID, we

downloaded the array annotation file and used the RefSeq IDs as

the intermediates to map to the Gene ID. When a gene has

multiple probes, we computed the geometric mean of log2

transformed probe intensities as the gene expression. All the data

sets were normalized independently between array using limma
package [49]. To minimize batch effects across different data sets,

we used the CONOR package with the Bayesian method [50].

We generated the PAM50 heatmap of the gene expression data

and the correlation heatmap with hierarchical clustering, where

Euclidean distance measure was employed. For the clinical factors,

we correlated their associations with the relapse in the training

data set with both Chi-square test and Wilcoxon log-rank test for

survival curves.

Prognostic Pathway-Based Classifier Selection
The pathway information was obtained from the GSEA

(http://www.broadinstitute.org/gsea/) curated gene sets that

include a total of 403 pathways from Biocarta (http://www.

biocarta.com) [51]and KEGG [52]. To perform gene sets analysis,

we used R package Pathifier [25], an algorithm that transforms

the information from the gene level to pathway level and infers

pathway deregulation scores for each pathway within each sample.

The pathway deregulation score (PDS) in each sample is a

measure of degrees of the deviation of a specific pathway from the

‘‘normal status’’ located on the principle curve. The concept of

principle curve was proposed by Hastie and Stuetzle [53] as a

nonparametric nonlinear extension of the PCA (Principle Com-

ponent Analysis) in which the assumptions of dependence in the

data are avoided. A principle curve is a one-dimensional curve

that is derived from the local average of p-dimensional points and

goes through the cluster of p-dimensional principle components. It

sensibly captures the information of variation in all the samples.

Specifically, the single parameter l varies tracing the whole data

along the curve [53]. The curve f(l) is defined to be a principal

curve if E X lf Xð Þ
�� ~l

� �
~f lð Þ for arbitrary l. The principle

curve is built through iterations of smoothed procedure in the local

average of data points. If one sample differs from others in one

specific pathway, the distance to the curve is further and it leads to

a higher PDS score and vice versa.

In the model selection stage, we used Cox-Proportional Hazards

(Cox-PH) model based on L1 – penalized (LASSO) estimation

[27–29], with the R package penalized [29]. With the input of both

PDS score containing the gene sets information and survival

information of time and relapse, a tuning parameter lambda was

used to restrict the number of parameters in the model. The

optimal lambda was selected after running 250 simulations

through likelihood cross-validation. A prognostic genomic model

was thus generated with specific pathways and coefficients. We

then computed a Prognosis Index (PI) score which is the logarithm

of hazard ratio. We divided the samples into two groups of higher

risk and lower risk with a 3 to 1 ratio, based on the 3rd quartile of

PI. We used this cutoff to reflect the relapse/non-relapse ratio in

the training data set.

We tested the above model in three other data sets. To do so we

used the same PI cutoff above and separated samples into

predicted high risk and low risk groups. We then used Kaplan-

Meier curve together with Wilcoxon log rank test to evaluate the

performance of our model. To generate the receiver operating

characteristic (ROC) curves, PIs are used as predicted values in

comparison to the ‘‘truth’’ values of relapse/non-relapse informa-

tion. The confusion matrix with sensitivity and 1- specificity is

calculated for each division in ROC curves and the areas under

the curve (AUC) is shown along with the ROC plot.

Combined Molecular and Clinical Model
To determine whether the clinical factors improve the prognosis

of genomic pathway-based model, we re-normalize the clinical

factors and molecular PDS independently to ensure that each

factor has the standard normal distribution. We then combined

the normalized clinical and molecular factors into the LASSO

penalized step and built the combined model using the optimized

lambda through 250 simulations, similar to the construction of the

genomic model as described earlier. The model performance

comparisons were also done similarly to those of the genomic

model.

A Novel Combined Model for the Prognosis Prediction of Breast Cancer

PLOS Computational Biology | www.ploscompbiol.org 13 September 2014 | Volume 10 | Issue 9 | e1003851

http://www.broadinstitute.org/gsea/
http://www.biocarta.com
http://www.biocarta.com


Survival Analysis
We used survival analysis to compare the relapse-free-survival

results in the training and testing data sets. Patients without these

events during the study were considered censored. We used the

Cox-PH model to associate the risk of relapse to selected pathway

features and clinical features by L1- LASSO. The Cox model is a

semi-parametric model that is widely used to analyze the survival

data. The non-parametric portion comes from the fact that no

assumptions are made about the form of the baseline hazard.

However, it has the assumption that the log hazard ratios are

constant over the time for each feature. Assume that we obtained p
features to be related with breast cancer relapse for each patient

X J~ X J
1 , X J

2 , X J
3 , . . . , X J

p

� �
’, Cox-PH model represents the

relationship between the risk of relapse and X features as:

h t Xjð Þ~h0 tð Þexp b’Xð Þ

Here h0 tð Þ is the baseline hazard (instantaneous risk) which only

depends on time. The ratio of hazard (HR) between two pathway

or clinical features Xm and Xn is:

h t Xmjð Þ
h t Xnjð Þ~exp b’ Xm{Xnð Þð Þ

The relative hazard between any two features is constant over time

and only depends on the differences of the values in features. The

PI for each patient J’s features is calculated as

PIJ~b̂b’XJ

This risk factor can be easily transformed to hazard ratio for

different features, assuming that we have a baseline feature. The

weights b̂b’ for different features were calculated from the training

data set using the Cox-LASSO model.

For the genomic, clinical and combined models, we used

Kaplan Meier curves to present the prognosis performance in

classified high risk and low risk groups. The data set was

dichotomized into two groups, and the higher risk group is

assumed to have higher hazard of relapse compared to the lower

risk group. We used the Wilcoxon log-rank test to check the

survival difference between these two groups. To find the

significance of an individual factor’s impact on relapse, we fit

individual predictor with a univariate Cox-PH model. We then

calculated the hazard ratio by computing the exponential of the

coefficients in the Cox-PH model. All survival analysis was

conducted using the R package Survival [54].

Sensitivity Analysis of Pathway-Based Models
To examine the effect of input pathways on model performance,

We randomly select 1/2, 1/4, 1/8 and 1/16 of all input KEGG

and BioCarta pathways, then generated the PDS Matrices for 18

times under each case. For each simulation, we built the model

with the workflow in Figure 2 and computed the Wilcoxon log-

rank test p-value between the survival curves of two risk groups, as

well as the AUC of the classification results. We then used boxplots

to demonstrate the differences of –log10 (p-values) and AUCs due

to different total pathway counts.

To estimate the statistical confidence of comparisons of each

model, we used leave one out cross validation (LOOCV) to compute

p-values and AUCs across all simulations. In the ith simulation

(i = 1,…,total sample size of the data set), we deleted the ith patient

sample, modified the PI threshold by the remaining sample ratio of

recurrence to non-recurrence and finally calculated the Wilcoxon

log-rank test p-value as well as the AUC of the classification results.

We then used boxplots to demonstrate the comparisons between the

pathway-based and the gene-based models, and among the

genomic, clinical, and the combined models.

Comparison to the NKI70 Model
We tested the NKI70 method to our training data set (Miller

data). We mapped the NKI70 gene signatures from to the genes in

the U133A array. We correlated the gene-expression profile with

the good-prognosis/poor prognosis data from the NKI study [8],

and then classified the samples into good and poor clusters as done

by others [7]. For consistency, we used the Wilcoxon log-rank test

p-value from survival analysis and the AUC of the ROC

classification to assess the results.

Supporting Information

Figure S1 The effect of removing pathways on model
performance (both P-values and AUCs). A fraction (1/2,

1/4, 1/8 and 1/16) of the initial 403 pathways are randomly selected

to generate PDS matrices over 18 simulations, followed by the

flowchart in Figure 2. Boxplots of AUCs from ROC curves are shown.

(TIF)

Figure S2 Cross validation results to compare the
pathway-based and gene-based models on the 4 data sets
in Figure 5. Leave-one-out cross validation (LOOCV) was

performed to compute the Wilcoxon log-rank test p-values (A) and

AUCs (B) across all simulations. All pairs have t-test p-values,0.001.

(TIF)

Figure S3 Comparison of ROC performance between
the NKI70 method and our method on Miller dataset.

(TIF)

Figure S4 Cross validation results to compare the
genomic, clinical, and combined models on the 2 data
sets in Figure 6. Leave-one-out cross validation (LOOCV) was

performed to compute the Wilcoxon log-rank test p-values (A) and

AUCs (B) across all simulations. All pairs have t-test p-values,0.001.

(TIF)
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