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The structures of the seven transmembrane helices of G-protein-coupled receptors are critically involved in many aspects of these
receptors, such as receptor stability, ligand docking, and molecular function. Most of the previous multitemplate approaches have
built a “super” template with very little merging of aligned fragments from different templates. Here, we present a parallelized
multitemplate approach, patGPCR, to predict the 3D structures of transmembrane helices of G-protein-coupled receptors.
patGPCR, which employs a bundle-packing related energy function that extends on the RosettaMem energy, parallelizes eight
pipelines for transmembrane helix refinement and exchanges the optimized helix structures from multiple templates. We have
investigated the performance of patGPCR on a test set containing eight determined G-protein-coupled receptors. The results
indicate that patGPCR improves the TM RMSD of the predicted models by 33.64% on average against a single-template method.
Compared with other homology approaches, the best models for five of the eight targets built by patGPCR had a lower TM RMSD
than that obtained from SWISS-MODEL; patGPCR also showed lower average TM RMSD than single-template and multiple-
template MODELLER.

1. Introduction

G-protein-coupled receptors (GPCRs) are among the most
heavily investigated drug targets in the pharmaceutical indus-
try [1] because activatedGPCRs trigger a cascade of responses
inside the cell. Although about 800 GPCRs in the human
genome still await determining, the annual revenue in the
market for human therapeutics based on the currently avail-
able receptors is in excess of $40 billion, andmore than 50%of
modern drugs are related to GPCRs [2]. On the other hand, it
is still a very difficult problem to determine the conformation
of GPCRs in vivo. The lipid environment in which the
receptors are embedded blocks the two major techniques,
nuclear magnetic resonance (NMR) spectroscopy and X-ray
crystallography, that are used to determine protein structures.

It is really exciting that the Nobel Prize in Chemistry was
awarded in 2012 to two researchers studying the structure of
GPCRs.
Fortunately, as demonstrated by recent publications [3, 4],

in silico methods for deducing the three-dimensional struc-
ture of GPCRs have been increasingly successful. However,
the development of computational approaches to predicting
the structure of GPCRs remains a challenging task [5].
A lot of effort has been put into modeling the structures
of the full-chain and the loop sections of GPCRs [6–8]
and of membrane proteins [9, 10], whereas comparatively
little research has been done on building more accurate
models of the transmembrane helix sections of GPCRs,
because the transmembrane helical bundles are commonly
regarded as a conserved domain that can be easily duplicated
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from templates. In fact, the accuracy of the models of the
transmembrane helix sections is still far away from the
native structures, and it cannot meet the requirements for
subsequent full-chain prediction and the modeling of ligand
docking. For the GPCR Dock 2010 assessment [3] targets
CXCR4/CVX15, CXCR4/IT1t, andD3, the averages of the TM
RMSD values (the root mean square deviation of the back-
bone of the transmembrane helices) of all models submitted
by the participants were 3.56 Å, 9.75 Å, and 2.55 Å, respec-
tively, which are not high-resolution values (<2.0 Å). How
can one build high-resolution models of the conformations
of full-length GPCRs without an accurate transmembrane
helical bundle? This paper addresses this problem using a
parallelized multitemplate homology approach.
The classification of methods for the prediction of the

three-dimensional structure of GPCRs in silico into homol-
ogy modeling, threading, and ab initio folding follows the
classification ofmethods for protein structure prediction.The
homology method builds models starting from one or more
template structures with a high sequence similarity. When
the sequence identity between target and template is more
than 50%, near-native models tend to be generated. When it
is less than 30%, the accuracy of themodels decreases sharply.
SWISS-MODEL [11], Sybyl [12], Prime [13], MODELLER
[14], NEST [15], SEGMOD/ENCAD [16], 3D-JIGSAW [17],
and Builder [18] are widely used, stable, reliable, and accurate
systems for homologymodeling.The threadingmethod oper-
ates by “threading” (i.e., placing and aligning) each amino
acid (or amino acid segment) in the target sequence into a
position in the three-dimensional structure and evaluating
how well the target fits the template. Zhang et al. [6] used
TASSER to generate structure predictions for all 907 putative
GPCRs in the human genome. Based on a benchmarked
confidence score, approximately 820 of the predicted models
should have the correct folds. Ab initio prediction of protein
structure involves modeling the dihedral angles for each
residue based on the minimum-free-energy principle, with-
out the use of any experimentally solved structures. Baker’s
group [19, 20] was successful in the recent CASP (the Critical
Assessment of protein Structure Prediction) challenge and
designed a membrane-environment-related energy function
to guide membrane protein folding.
Homology approaches can be divided into two categories,

namely, single-template and multiple-template, depending
on the number of templates employed in modeling. Single-
template homology approaches cannot always achieve the
best results, owing to difficulties in detecting the best
template, particularly when remote homology is detected
[21]. Multitemplate approaches can effectively combine more
reasonably aligned regions than the single-template approach
Cheng [22] reported that a multitemplate combination algo-
rithm improved the GDT-TS scores of the predicted models
by 6.8% on average for 45 CASP7 comparative-modeling
targets. Liu et al. [23] took into account the information rep-
resented by multiple templates and alignments at the three-
dimensional level by mixing and matching regions between
different initial comparative models, and the multitemplate
approach produced conformational models of higher quality
than the individual starting predictions. MODELLER [14]

modeled 3D conformations by optimally satisfying spatial
restraints derived from the alignment and expressed as prob-
ability density functions for the features restrained.NEST [15]
produced a model by taking a sequence alignment of a target
to one or multiple template PDB files as input. 3D-JIGSAW
[17] used a convergence of algorithms for comparative mod-
eling which led to more reliable structures by superimposing
multiple known structures from a protein family. In our
opinion, previous multitemplate approaches have generally
built a “super” template, which might ignore the flexibility
of aligned structures from different templates. The long-
distance homology information from different templates
should be exchanged in each iteration rather than directive
merging structures.
This paper proposes a parallelized multitemplate ap-

proach, inspired by our previous method pacBackbone [24,
25], for the prediction of the three-dimensional structure
of the transmembrane helices of GPCRs. The system pro-
posed here is referred to as “patGPCR” (parallelized multi-
template approach to GPCR transmembrane helix structure
prediction). Parallelization not only accelerates the running
speed but also provides a novel and effective mechanism
to exchange homology regions between templates softly. We
have exploited our method to predict tertiary structures
for all eight determined GPCRs published on the GPCR
Network website (http://gpcr.scripps.edu/index.html). Com-
pared with other homology approaches, the best models
for five of the eight targets built by patGPCR had a lower
TM RMSD than was obtained from SWISS-MODEL, patG-
PCR showed lower average TM RMSD than single-template
MODELLER, and patGPCR showed only one higher average
TM RMSD target compared with multiple-template MOD-
ELLER.

2. Materials and Methods

2.1. Parallelized Framework of patGPCR. GPCRs share a sim-
ilar structural topology, composed of seven transmembrane
(TM) helices packed into a 7-TM helical bundle, with three
intracellular (icls) and three extracellular loops (ecls) [26].
Thus, single helical refinement should be paralleled in inde-
pendent threads. The parallelized framework for patGPCR is
depicted in Figure 1. At the beginning of patGPCR, top 2–
4 templates were examined for sequence identities using the
Protein Data Bank (http://www.rcsb.org/pdb), which were
used as starting template conformations. Eight parallelized
pipelines which involve independent subprocedures (or
threads) were used to randomly select starting conformations
of the templates. Each pipeline containing TM refinement
and loop refinement optimized an adjacent helix pair region.
The first and the last pipelines optimized only one helix and
one terminus. To use reasonable structural regions within
different templates, TM helix crossing step and elite pool
were introduced into the parallelized framework at the end
of the pipelines. In the crossing step, each pipeline shared
the best-so-far helix with other pipelines. If lower energy
was obtained by helix crossing, the helix substitution was
accepted; otherwise, it was rejected. Optimized conforma-
tions are conserved in the elite pool prepared for the next
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(1) Input: 𝑃 is starting conformation, TM[] is the set of residue numbers for TM
regions, Loop[] is the set of residue numbers for loop regions.
Output: conformation after TM refined
𝐸
𝑚
is the Rosetta membrane energy function with S.

𝐸
𝑠𝑐𝑜𝑟𝑒3

is the Rosetta score3 energy function.
(2)

⃗
𝑑
𝑇𝑀
[] = getHelixAxis();

(3)
⃗

𝑑
𝑀
= getMembrane();

(4) for 𝑖 = 1 to STAGE2 CYCLES do
(5) 𝑃

 = transferHelix(P, TM[], RND(−5, 5), RND(−5, 5), RND(−5, 5));
(6) if (𝐸

𝑚
(𝑃


) < 𝐸
𝑚
(𝑃)) 𝑃 ← 𝑃

;
(7) end for
(8) for 𝑖 = −180 to 180 do
(9) 𝑃

 = spinHelix(P, TM[], ⃗
𝑑
𝑇𝑀
[], 𝑖);

(10) if (𝐸
𝑚
(𝑃


) < 𝐸
𝑚
(𝑃)) 𝑃 ← 𝑃

;
(11) end for
(12) for 𝑖 = 1 to STAGE4 CYCLES do
(13) 𝑃

 = tiltGaussianHelix(P, TM[], ⃗
𝑑
𝑀
, 30, 6);

(14) if (𝐸
𝑚
(𝑃


) < 𝐸
𝑚
(𝑃)) 𝑃 ← 𝑃

;
(15) end for
(16) LoopModelRandomly(Loop[], 𝐸

𝑠𝑐𝑜𝑟𝑒3
)

(17) P = crossHelices(P, TM[]);
(18) Output: 𝑃;

Algorithm 1: Refinement by single pipeline (P, 𝑇𝑀[], 𝐿𝑜𝑜𝑝[]).

iteration.Thus, the crossing step and elite pool are two critical
mechanisms of patGPCR to identify reasonable structures
from multiple templates to pipelines and iterations.

2.2.Multiple Templates for EightGPCRTargets. patGPCRwas
evaluated by using blind prediction testing the set of the eight
determined GPCRs published on the GPCR network. Amino
acid sequence was the only input used for blind prediction,
which is commonly employed in GPCRDock2008/2010 and
CASP exercises. This is the largest set used for directly
evaluating prediction results. patGPCR employed 2–4 tem-
plates (column 4 in Table 1) for each target in the test set.
The top three or four templates were selected by standard
protein BLAST based on default parameters. Most sequence
similarities between the templates and targets were lower
than 50% and average sequence similarity for the templates
was 36% (column 6 in Table 1). In some cases, the templates
have high-sequence identity. There are two reasons why we
did not remove these cases from benchmark. First, we are
interested in validating the modeling ability of patGPCR
based on various templates with different sequence identities.
Second, patGPCR, SWISS-MODEL, and MODELLER used
the same templates in the comparing experiments, so the
results we presented are fair for these methods, no matter
high- or low-sequence identity the templates is.

2.3. TM Refinement Protocol. The 7-TM helical bundle is the
primary topology of GPCRs, which comprises approximately
75% of amino acids in the entire protein chain. The TM
helix has been conserved throughout evolution [5]. However,
in a recent GPCRDock2008/GPCRDock2010 study, average
TM RMSDs of CXCR4/CVX15, CXCR4/IT1t, and D3 were

3.56 Å, 9.75 Å, and 2.55 Å. The accuracy of predicting TM
regions can be improved, and the correct TM position and
orientation ensure that loop regions are properly oriented.
TM refinement protocols employed using patGPCR are based
on 7-TMgeometrical topology reflecting the bundle structure
using a set of geometrical parameters. Topologically, each
TM helix is regarded as a rigid body, and relative positions
of internal atoms remain fixed when moving or rotating the
rigid body.
TM refinement is divided into four stages. In the first

stage, patGPCR was used to identify TM boundaries by
averaging the results of six existing methods: TopPred [27],
UniProt [28], TMpred [29], HMMTOP [30], TMHMM [31],
and OCTOPUS [32]. In the second stage, translation of each
rigid body along, or perpendicular to, the axis of the helix
was used to optimize the relative positions of seven helices.
In the third and fourth stages, spin angels and tilt angles were
refined, respectively.

2.4. Loop Refinement Protocol. patGPCR, which involves
an entirely predictive approach for GPCRs, combines two
Rosetta loop modeling protocols. Due to high flexibility in
loop regions, ab initio methods typically involve calculation
of possible loop conformations with the help of various
energy functions and minimizations [33–35]. patGPCR par-
alleled two Rosetta loop modeling protocols, including CCD
[36] and KIC [37] modeling with Rosetta energy function
score3. Each pipeline was used to randomly choose a loop
movement to refine the loop section.

2.5. The Algorithm Executed by Single Pipeline. Algorithm 1
executed by single pipeline contains TM and loop refinement



4 Computational and Mathematical Methods in Medicine

Iteration

Score 3

TM Ref

TM Ref

TM Ref

Loop Ref

Loop Ref

Loop Ref

Filter
Random
selecting

Helix crossing

Elite pdbs

...

...

Multiple
templates

Membrane
score + E

8 parallelized
pipelines

Figure 1: Parallelized framework of patGPCR.

at lines 2–15 and line 17, respectively. In the 2nd line, function
𝑔𝑒𝑡𝐻𝑒𝑙𝑖𝑥𝐴𝑥𝑖𝑠() gets the direction vector of the axis of

the helix
→

𝑑
𝑇𝑀
[]. In the 3rd line, function 𝑔𝑒𝑡𝑀𝑒𝑚𝑏𝑟𝑎𝑛𝑒()

gets the normal vector of the membrane plane
→

𝑑
𝑀
. The

4th–7th lines execute second TM refinement stage and
function 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐻𝑒𝑙𝑖𝑥(𝑃, 𝑇𝑀[], 𝑅𝑁𝐷(−5, 5), 𝑅𝑁𝐷(−5, 5),
𝑅𝑁𝐷(−5, 5)) randomly translates the helix from current
position along x-, y-, or z-axis ranging from −5 Å to 5 Å.
The new helix position would be accepted if the new energy
𝐸
𝑚
is lower than the energy before translating. The 8th–11th

lines execute the third TM refinement stage and function

𝑠𝑝𝑖𝑛𝐻𝑒𝑙𝑖𝑥(𝑃, 𝑇𝑀[],

→

𝑑
𝑇𝑀
[], 𝑖) spins the helix from −180 to 180

degrees and validates the new position using energy function
𝐸
𝑚
. The 12th–15th lines execute the fourth TM refinement

stage and function 𝑡𝑖𝑙𝑡𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐻𝑒𝑙𝑖𝑥(𝑃, 𝑇𝑀[],

→

𝑑
𝑀
, 30, 5)

samples the tilt angles between the helix and the normal
plane of transmembrane according to gaussian distribution
(expected value is 30 and the variance is 6). In the 16th line,
function 𝐿𝑜𝑜𝑝𝑀𝑜𝑑𝑒𝑙𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦() refines the loop regions
using Rosetta KIC or CCD remodel protocol randomly. In
the 17th line, function 𝑐𝑟𝑜𝑠𝑠𝐻𝑒𝑙𝑖𝑐𝑒𝑠() exchanges the helixes
among pipelines.

2.6. Energy Item for Evaluating the Helical Bundles. Devel-
oping an appropriate energy function remains a challenge
in predicting GPCR 3D structures. An accurate energy
function can be used to distinguish near-native models from
candidates, while an imprecise energy function may not
recognize near-native models even if they have been sampled
by using an accurate search algorithm. patGPCR improves
the Rosetta membrane energy function [19] by including a
novel energy item 𝐸

 for evaluating rigid helix packing. After

S1

S2 S3

S4
S5

S6S7

Figure 2: Parallelized framework of patGPCR.

projecting helices onto the membrane plane, Figure 2 was
constructed to show 𝑆1–𝑆7, which is the area of triangles
constituted by the center point𝑂 and two intersection points
of adjacent helix axes with the membrane plane. In (1), 𝑆
is the sum of 𝑆1–𝑆7 and 𝑆min and 𝑆max are the maximum
and minimum values of 𝑆 in known structures of GPCRs.
A smaller 𝐸 indicates a tighter 7-TM helical bundle, while
a greater 𝐸 indicates a looser bundle. Detection of collisions
between residues is included in the Rosettamembrane energy
function.Thus, the Rosettamembrane energy functionwhich
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Table 2: Comparison with GPCRDocking2010 participants.

Number Group name CXCR4 TM RMSD Group name D3 TM RMSD
1 UMich-Pogozheva 2.05 UMich-Zhang 1.26
2 UMich-Zhang 2.08 Monash-Hall 1.35
3 VU-MedChem 2.14 WUStL 1.35
4 Monash-Sexton-1 2.18 Monash-Sexton-2 1.37
5 UMich-Zhang 2.18 WUStL 1.37
6 patGPCR 2.165 patGPCR 0.930

includes an additional item 𝐸
 is employed by the patGPCR

TM refinement algorithm:

𝐸


=

{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{

{

(𝑆 − 𝑆min)
2

𝑆
2

min
, 𝑆 < 𝑆min,

0, 𝑆min < 𝑆 < 𝑆max,

(𝑆 − 𝑆max)
2

𝑆
2

max
, 𝑆 < 𝑆max,

(1)

3. Results

3.1. The Contribution of TM Refinement Protocol Employed
by Single Pipeline. The contributions of TM refinement
protocols were investigated on the comparison with mod-
els submitted by GPCRDOCK2010 participants. GPCR-
DOCK2010 exercise is a community-wide assessment for
GPCR homology-modeling and docking. The participants
submitted the best five candidates of targets CXCR4 and
D3. We executed patGPCR to optimize the helical bundles
starting from the submitted conformations downloaded from
GPCRDOCK2010 official website. The TM RMSD of the
best model after refining and top 5 models published on
GPCRDOCK2010 are listed in Table 2. For CXCR4 (D3)
target, the TM RMSD of the best model after refining is
2.165 Å (0.93 Å), which ranks 4th (1st) among 161 (168)
submitted models.

3.2. The Contribution of Parallelized Multitemplate. We
examined the contributions of multiple-templates versus a
single-template of patGPCR with the same settings. The
number of templates used by the patGPCR ranged from two
to four. Average of sequence identities between the templates
and targets was 36%. Compared to multitemplate patGPCR,
single-template patGPCR employed only one template and
did not utilize the helix crossing step.
Full-length RMSD (FL RMSD) of GPCR and TM RMSD

comparisons are plotted in Figure 3; dots with higher RMSD
values (>15 Å) are not included. The average improvement in
TMRMSDusing themultiple-template patGPCRwas 33.64%
(raw TM RMSD increase 1.57 Å, columns 4 and 8 in Table 1).
Multiple-template patGPCR yielded a higher number

of low TM RMSD conformations than the single-template
patGPCR in most cases (five out of eight targets), including
CXCR4 (Figure 3(a)), D3 (Figure 3(d)), A2A (Figure 3(e)),
KOR3 (Figure 3(g)), and Beta2 (Figure 3(h)). In other cases,

the multitemplate approach showed similar performance
with single-template patGPCR, including KOR1, HH1R, and
S1P1 in Figures 3(b), 3(c), and 3(f). For KOR1, the narrow
sampling space in the single template may have resulted from
similar performance between multiple-template and single-
template patGPCR. For HH1R and S1P1, both multiple-
template and single-template patGPCR appeared to show
bottlenecks. One reason for this may be that the trans-
membrane refining protocol employed by multiple-template
and single-template approaches failed in some cases. Further
analysis is described in Section 4.3.

3.3. Comparison of patGPCR to Homology Approach SWISS-
MODEL. The SWISS-MODEL [16] is a widely used homol-
ogy modeling approach which provides online prediction
and manual template specification. We executed the SWISS-
MODEL to predict eight targets using the same templates
as used in patGPCR (Table 1). Three predictions that failed
using the SWISS-MODEL are indicated as “×” in column 9
in Table 1.
For each decoy (set of conformations of the predicted

result) predicted by patGPCR, the top 400 conformations in
terms of TM RMSD were reserved, while the others were
eliminated from the decoy. Thus, we simplified selection of
the nearest native prediction from the decoys. We depicted
the comparison of decoys from the SWISS-MODEL results
using a box-and-whisker plot (Figure 4). Prediction accuracy
was expressed as the RMSD in angstroms, which was cal-
culated after superimposing the corresponding coordinates
of alpha-carbons determined by prediction and those of the
native structure. To accurately determine transmembrane
helices, the best model of five targets (CXCR4, KOR1, D3,
A2A, and Beta2) yielded by patGPCR showed lower TM
RMSD values than those determined using the SWISS-
MODEL. patGPCR showed similar transmembrane accuracy
on two targets (HH1R and S1P1); another target (KOR3),
patGPCR, was inferior to the target identified using the
SWISS-MODEL. In Figure 4, the accuracy of full-length
chain and loop regions is shown. For four of the eight targets
(KOR1, HH1R, KOR3, and Beta2), the best models predicted
by patGPCR showed lower full-length RMSD values than
those generated using the SWISS-MODEL. It is not surpris-
ing that only three targets (KOR1, KOR3, and Beta2) for
patGPCR were more accurately predicted compared to the
SWISS-MODEL regarding the accuracy of loop regions since
patGPCR places emphasis on helix optimization, whereas
relatively little emphasis is placed on loop optimization and
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Figure 3: Comparison of multiple-template and single-template patGPCR for eight GPCR targets.The x- and y-axes indicate TMRMSD and
FL RMSD, respectively. Results generated using the multitemplate approach are shown in red and those generated using the single-template
version of patGPCR are shown in green, blue, and purple. For five out of eight targets, CXCR4 (a), D3 (d), A2A (e), KOR3 (g), and Beta2
(h), the multitemplate approach yielded a higher number of conformations with lower TM RMSD values than the single-template approach.
For KOR1 (b), the narrow sampling space in any single template may have resulted in similar performances for the multiple-template and
single-template approaches.

the loop regions were excluded in the crossing step. Next,
statistical properties of the representative solutions, the top
400 conformations regarding TM RMSD, for each decoy set
were investigated. For each result decoy, Figure 5 shows the
1-percentile average (x-axis) and standard deviation (error
bars of symbols) for every test instance, calculated from 50-
fold bootstrap estimation using the BioShell package [38].We
choose the 1 percentile compared with the SWISS-MODEL
results (y-axis) since only some of the decoys will be retained
for further analysis, such as side chain refinement, ligand
docking, and virtual screen. In Figure 5, patGPCR showed
14, 16, and 11 better results (below the line) for a total of 20
symbols on TM, FL, and loop RMSD values, respectively. In
Figure 5, the lower deviations of the error bars indicate that
patGPCR exhibits robust performance in most cases.

3.4. Comparison of patGPCR to Homology Approach MOD-
ELLER. MODELLER [14] is a well-known tool used for
single-template and multiple-template homologies or com-
parative modeling of protein three-dimensional structures.
We conducted single-template and multiple-template exper-
iments using MODELLER on the same Linux system and
hardware as was used for patGPCR. For a reasonable compar-
ison, single-template MODELLER generated 1300 predicted
conformations, which was similar to the average predicted
number of 1358.75 conformations generated by patGPCR,
for each target and each template. Multiple-template MOD-
ELLER was also used to generate 1300 prediction confor-
mations for each target. MODELLER also employed the
same templates as patGPCR listed in Table 1. MODELLER
aligning commands, including align2d() and salign(), which
reportedly take into account structural information from the

template when constructing an alignment, were used to align
templates to the targets.
MODELLER experimental results are tabulated in col-

umns 10 and 11 in Table 1.The 10th column shows the average
and standard deviation of TM RMSD of conformations
generated using the single-template MODELLER, and the
11th column shows the average and standard deviation of
TM RMSD of conformations generated by the multiple-
template MODELLER. For six out of eight targets, patG-
PCR showed lower average TM RMSD than single-template
MODELLER, and patGPCR showed only one higher average
TM RMSD target compared with multiple-template MOD-
ELLER. Multiple-template patGPCR yielded a larger number
of lower TM RMSD conformations than the single-template
patGPCR for most cases (five out of eight targets), including
CXCR4, D3, A2A, KOR3, and Beta2. However, no target was
improved by usingmultiple-templateMODELLER.The aver-
age TM RMSD values for conformations generated by using
multiple-templateMODELLERwere nearly two times higher
than those generated using single-template MODELLER.
The lower standard deviation in column 11 indicates that a
narrow structural sampling strategywas adopted bymultiple-
template MODELLER, which may have led to the multiple-
template MODELLER being trapped by an unaligned region.
Finally, a direct visual comparison of conformations

yielded by native, patGPCR, SWISS-MODEL, and MOD-
ELLER are depicted in Figure 6.

4. Discussions

4.1. Complexity Analysis of patGPCR. Since patGPCR does
not synchronize the exchange of helices between pipelines,
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the complexity of patGPCR depends on that of a single
pipeline repeating Algorithm 1 𝑇 times. For a GPCR target
with 𝑛 amino acid residues, the functions 𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝐻𝑒𝑙𝑖𝑥(),
𝑠𝑝𝑖𝑛𝐻𝑒𝑙𝑖𝑥(), and 𝑡𝑖𝑙𝑡𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛𝐻𝑒𝑙𝑖𝑥() execute a movement
of each residue in the helices, so these three functions have
the same time complexity, 𝑂(𝑛). Therefore, the complexity
of the TM refinement contained in the three stages from
the fourth to the 15th line of Algorithm 1 is 3 × 𝑂(𝑛

2

).
The function 𝑐𝑟𝑜𝑠𝑠𝐻𝑒𝑙𝑖𝑐𝑒𝑠() exchanges the residues in each
pair of helices and has complexity 𝑂(𝑛2). The complexity
of 𝐿𝑜𝑜𝑝𝑀𝑜𝑑𝑒𝑙𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦() is determined by that of the
Rosetta CCD and KIC refinement protocols, which are both
composed of two-layer iterations repeating 𝑜𝑢𝑡𝑒𝑟 𝑐𝑦𝑐𝑙𝑒𝑠 and
𝑖𝑛𝑛𝑒𝑟 𝑐𝑦𝑐𝑙𝑒𝑠 (Rosetta parameters). Moreover, we generally
set the parameters 𝑇, 𝑆𝑇𝐴𝐺𝐸2 𝐶𝑌𝐶𝐿𝐸𝑆 (in the fourth
line of Algorithm 1), 𝑆𝑇𝐴𝐺𝐸4 𝐶𝑌𝐶𝐿𝐸𝑆 (in the 12th line of
Algorithm 1), 𝑜𝑢𝑡𝑒𝑟 𝑐𝑦𝑐𝑙𝑒𝑠, and 𝑖𝑛𝑛𝑒𝑟 𝑐𝑦𝑐𝑙𝑒𝑠 in a way that is
linearly dependent on 𝑛. In summary, the time complexity
of the parallelized patGPCR is eight times of that of a single
pipeline, which is 𝑛 × (3 × 𝑂(𝑛2) + 𝑂(𝑛2) + 𝑂(𝑛2)) = 𝑂(𝑛3).
The space complexity of patGPCR is mainly determined

by the elite conformation pool shown in Figure 1, the set of

residue numbers for the transmembrane regions 𝑇𝑀[], and
the set of residue numbers for the loop regions 𝐿𝑜𝑜𝑝[]. The
pool is designed to store the coordinates of four backbone
atoms of the elite conformations with the same size of
template, so it requires 4 × 3 × 𝑛 × 𝐹 space, where 𝐹 is the
number of available templates for the corresponding GPCR
targets. 𝑇𝑀[] and 𝐿𝑜𝑜𝑝[] obviously require 𝑂(𝑛) space. The
space complexity of patGPCR is then𝑂(4 × 3 × 𝑛 × 𝐹) + 2 ×

𝑂(𝑛) = 𝑂(𝑛).

4.2. Why Does the patGPCR Approach Work in General?
The following factors may contribute to the improvement
in transmembrane helix structural prediction. First, a multi-
template approach can effectively combine more reasonably
aligned regions than a single-template approach. Single-
template approaches use the top-ranked template and its
alignment with the target protein to model the structure.
These approaches cannot always achieve the best results,
owing to difficulties in detecting the best template, partic-
ularly when remote homology is detected between targets
and templates [39]. Because most of the sequence similarities
among GPCRs are less than 50%, it is unreliable to attempt to
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obtain high-resolution models using only a single template.
We believe that each template, even if it has lower sequence
similarity (<30%), contains a reasonable structure for the
targets overall. Multiple-template approaches can not only
increase the alignment coverage but also broaden the con-
formation search space by extracting aligned fragments from
different templates.
Second, the parallelized approach enables an effective

schema for exchanging reasonable regions among multiple
templates. Previous multitemplate approaches [22, 40] have
generally built a “super” template by methods that involve
very little merging of aligned fragments from different
templates, whereas the parallelized schema of patGPCR
includes a soft resolution for introducing aligned regions and
exchanges the reasonable helices between different pipelines
at the end of an iteration. Therefore, the contribution of
aligned regions from different templates will not only influ-
ence the beginning of the algorithm but also be preserved
in subsequent iterations. Fortunately, because the helices that
the GPCRs have in common are conserved, the transmem-
brane refinement protocol (see Section 2.3) will improve the
accuracy of the aligned regions by moving the coordinates
of the atoms toward lower free energy. This also helps the

parallelized schema to broadcast the reasonable regions to the
elite conformation pool.
Third, the additional energy item 𝐸 related to the helical

bundles (see Section 2.6) can reasonably guide the helices
toward assembling into a tighter bundle, although not per-
fectly.The combination of theRosettamembrane scorewith𝐸
based on the GPCR targets is effective in patGPCR, as shown
in our experiments.

4.3. Limitations of patGPCR. On the other hand, patGPCR
can also be improved in some respects. First, owing to the
inadequately known structures of GPCRs, we could only
validate the strengths and weaknesses of patGPCR on eight
determined cases published on the GPCR Network website.
These eight targets are the largest test data set for GPCRs
at present. Therefore, the question of whether the current
results of our experiments are occasional instances or have
some universality cannot be answered immediately. Second,
patGPCR seemingly encountered a bottleneck in some cases
(in Figures 3(c) and 3(f)); it was difficult for patGPCR to
obtain an accuracy results than single-template approach.
The bottleneck may have two reasons: (a) the energy term
in (1) improves the Rosetta energy function, but it is still
not good enough to distinguish between the near-native
conformations and (b) in patGPCR, the helix is treated as a
rigid body, unlike real helices, which have disorder, irregular
regions, and flexibility. The coordinates of the atoms in the
interior of the helix are likely to cause a loss of precision.
Third, although patGPCRgenerates a higher quality of decoys
in the transmembrane regions, the difficulty of building
accurate models of loop regions with high flexibility is a
consequence of the difficult issues of the GPCR structure
prediction problem.

4.4. Ability of New Energy Item. The ability of the new energy
item 𝐸

 was investigated for six GPCR targets, including
CXCR4, KOR1, D3, A2A, KOR3, and Beta2, whose aver-
age TM RMSDs were lower than 5 Å. The relatively lower
average TM RMSD values gained by using both patGPCR
and MODELLER indicate that the accuracy of these targets
depend on the energy functions. In Table 3, the top quarter of
conformations in terms of TM RMSD values from the decoy
of multiple-template patGPCR were chosen to compare how
many conformations could be predicted usingMEM (Rosetta
membrane score) and 𝐸 (new energy item). For four targets
(KOR1,D3, A2A, andKOR3),𝐸 identifiedmore nearly native
conformations than MEM. Only one target (CXCR4) was
identified to have fewer conformations than MEM.

5. Conclusion

In this paper, we have presented a parallelized multitem-
plate approach, patGPCR, to predicting the 3D structure of
the transmembrane helices of G-protein-coupled receptors.
patGPCR, which employs a bundle-packing-related energy
function that improves on the RosettaMem energy, paral-
lelizes eight pipelines for the refinement of transmembrane
helix structures and exchanges the optimized helix structures
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Figure 6: Superimposition of conformations yielded by native (red), patGPCR (green), SWISS-MODEL (blue), and MODELLER (cyan).
The four red cycles indicate that patGPCR (green) backbones in the TM region are closer to native (red) than those predicted using the
SWISS-MODEL (blue) and MODELLER (cyan) in targets A2A (a) and CXCR4 (b).

Table 3: Comparison of MEM and 𝐸.

Target
names Numbera Neitherb Only 𝐸c Only MEMd Bothe

CXCR4 232 137 8 87 0
KOR1 304 107 86 52 59
D3 444 249 82 75 38
A2A 520 72 192 133 123
KOR3 352 172 84 74 22
Beta2 224 77 42 42 63
aThe number of top quarter conformations in terms of TM RMSD from the
decoy.
bThe number of conformations that was neither in top quarter conforma-
tions in terms of MEM nor in top quarter conformations in terms of 𝐸.
cThe number of conformations that was only in top quarter conformations
in terms of 𝐸.
dThe number of conformations that was only in top quarter conformations
in terms of MEM.
eThe number of conformations that was both in top quarter conformations
in terms of MEM and in top quarter conformations in terms of 𝐸.

among multiple templates. We have investigated the perfor-
mance of patGPCR on a test set containing eight determined
GPCRs published on the GPCR Network website.The results
indicate that our multitemplate algorithm improves the TM
RMSD values of the predicted models by 33.64% on average
against a single-template method. Compared with other ab
initio and homology approaches, patGPCR yielded more
predicted conformations with high-resolution structures of
the transmembrane helices. The best models for five of the
eight targets built by patGPCR had a lower TM RMSD than
had the models obtained from SWISS-MODEL, and half of
them had a lower full-length RMSD. For six out of eight

targets, patGPCR showed lower average TM RMSD than
single-templateMODELLER, and patGPCR showed only one
higher average TM RMSD target compared with multiple-
template MODELLER.
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