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Abstract
This field experiment examined whether the well-documented benefit of spaced over massed training for humans and other 
animals generalizes to horses. Twenty-nine randomly selected horses (Equus ferus caballus) repeatedly encountered a novel 
obstacle-crossing task while under saddle. Horses were randomly assigned to the spaced-training condition (2 min work, 
2 min rest, 2 min work, 2 min rest) or the massed-training condition (4 min work, 4 min rest). Total training time per ses-
sion and total rest per session were held constant. Days between sessions (M = 3) were held as consistent as possible given 
the constraints of conducting research on a working ranch and safety–threatening weather conditions. During each training 
session, the same hypothesis-naïve rider shaped horses to cross a novel obstacle. Fifteen of 16 horses in the spaced-training 
condition reached performance criterion (94% success) while only 5 of 13 horses in the massed-training condition reached 
performance criterion (39% success). Horses in the spaced-training condition also initiated their first obstacle-crossing faster 
than horses in the massed-training condition and were faster at completing eight crossings than horses in the massed-training 
condition. Overall, task acquisition was higher for horses undergoing spaced training despite both groups experiencing the 
same total work and rest time per session. These findings generalize the learning-performance benefit observed in human 
spaced practice to horses and offer applied benefit to equine training.
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Introduction

Equine training regimens aim to effectively convey a job 
to an animal whose evolutionary priority is to avoid situ-
ations that increase its likelihood of being preyed upon 
(Brubaker and Udell 2016; Christensen et al. 2011). While 

equine training can take many forms with divergent goals, 
the common thread is shaping a desired behavior in place 
of a more natural fight-or-flight response (Christensen et al. 
2010). Much of the behavioral research that has been done 
with equids has focused on social learning (Krueger et al. 
2014; Rørvang et al. 2015), cognition and perception (Gabor 
and Gerken 2010; Hanggi 2005; Matsuzawa 2017; Osthaus 
et al. 2013; for a review see Brubaker and Udell 2016), and 
reinforcement (Leblanc and Duncan 2007). Equine cogni-
tion studies, however, rarely have been conducted in typical, 
dynamic training environments (Cooper 2007; McGreevy 
and McLean 2010). This is a known issue with academic 
research, and, on the flip side, scholars have lamented the 
dearth of learning theory knowledge among most equine 
practitioners (Creighton 2007; Ladewig 2007; McCall 
2007). The present research was conducted on a working 
ranch and used sound experimental design (e.g., random 
selection, random assignment to condition), demonstrat-
ing that studies can contribute to a theoretical perspective 
while simultaneously providing data to facilitate applied 
horse–human interactions (Goodwin 2007; Randle 2016).
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The present field study aims to inform equine training 
practices. It utilized the combination of a ridden horse 
(Equus ferus caballus) and a novel obstacle-crossing 
task to evaluate whether best practices in human learn-
ing are replicated in and extended to horses. Specifically, 
a robust strategy for improving human learning is the 
spacing effect: recall of material is better after studying 
is interspersed with breaks than when the same amount of 
studying happens over an uninterrupted period (Cepeda 
et al. 2006; Dunlosky et al. 2013; Kornell et al. 2010). The 
benefit of spaced practice for human learning performance 
has been observed both at the level of a single training ses-
sion (intra-session spacing) and between sessions (inter-
session spacing) (Crowder 1976; Kornell et al. 2010).

The sparse literature on the spacing effect in nonhu-
man animal species suggests the effect generalizes to rats 
(Bello-Medina et al. 2013), mice (Aziz et al. 2014), dogs 
(Demant et al. 2011), and pigs (Karas et al. 1962). Indeed, 
this pattern has also been shown by honeybees (Menzel 
et al. 2001) and drosophila (San Martin et al. 2017). Given 
this training phenomenon generalizes across species, we 
hypothesize that horses will show a benefit of spaced train-
ing compared with massed training. Importantly, exploring 
the spacing effect in horses offers the possibility of applied 
as well as theoretical benefits. Any training schedule that 
increases efficiency of training can reduce stress and 
potential injury for both the equine subject and the human 
trainer (Murphy and Arkins 2007). Unfortunately, the cur-
rent evidence regarding the spacing effect in Equus ferus 
caballus is inconclusive. An early study that cued ponies 
to clear a hurdle or back up to avoid a shock found that 
increasing spacing between training sessions (inter-session 
spacing) by decreasing the number of sessions per week 
improved the acquisition efficiency of learned avoidance 
(Rubin et al. 1980). In other words, the ponies showed the 
spacing effect seen in other animals. By contrast, teaching 
yearling horses to be driven and ridden using a training 
schedule that included days off (increasing inter-session 
spacing) was less effective than daily training (Kusunose 
and Yamanobe 2002). Surprisingly, this is the opposite of 
a spacing effect and might have been a product of subject 
age (immature vs mature horses), task complexity (applied 
training task vs simplified conditioning task), or trainer 
variability (multiple trainers utilized). These discrepant 
findings point to the need for additional research about the 
spacing effect in horses. The present research uses the high 
internal control of Rubin et al. (1980) and the high exter-
nal generalizability of Kusunose and Yamanobe (2002). 
Given that equine training schedules are often affected by 
circumstances beyond the trainer’s control, the present 
field experiment moved away from inter-session spacing 
and examined whether intra-session spacing can improve 
equine learning performance.

This field experiment’s examination of intra-session spac-
ing on equine learning performance (a) extends the spacing 
effect literature into an understudied species, (b) provides 
data on a component of the spacing effect that has not yet 
been studied in horses, namely the effects of intra-session 
spacing, (c) employs an experimental manipulation that gen-
eralizes to multiple facets of applied equine training and rid-
ing, and (d) extends the study of the spacing effect into con-
texts that use negative reinforcement (cf. Rubin et al. 1980). 
The primary hypothesis was that compared with massed 
training, spaced training will yield a higher percentage of 
horses meeting the performance criterion.

Materials and methods

Sample

A mixed herd (quarter, paint, and crosses) of 46 horses from 
the HF Bar Ranch in Saddlestring, Wyoming, USA, was 
used in pilot testing and formal data collection. All subjects 
were used as guest horses for ranch trail riding (maximum 
of two trail rides per day at a leisurely pace) and they expe-
rienced the same nightly turnout schedule with ad libitum 
access to grass and water. Subjects were randomly selected 
from HF Bar’s approximately 200-horse herd, which is 
housed in rotating pastures on the 9000-acre ranch. Detailed 
information on individual age and breeding was unavail-
able for each horse but all subjects were typical adult ranch 
horses ranging roughly from 8 to 16 years old. Forty-five 
were geldings and one was a mare. Nine horses were used in 
pilot testing to establish task difficulty. In the main experi-
ment, eight horses (five in the spaced-training condition and 
three in the massed-training condition) reached performance 
criterion in the first session and were excluded from further 
data collection because the task was deemed to be too easy 
for those individuals (ceiling performance). Prior to data 
collection, this study was approved by the Davidson College 
Institutional Animal Care and Use Committee (Protocol # 
6-14-01) as well as the owners of the HF Bar Ranch.

Novel task

As prey animals, horses are often frightened by novel stim-
uli making habituation an important part of equine training 
(Christensen et al. 2010, 2011). We conducted pilot work to 
develop an obstacle and training session time periods that 
minimized floor and ceiling effects. Pilot horses were not 
included in the study sample, but they were from the same 
population. The training task involved carrying a rider fully 
(all four of the horse’s feet) across a novel obstacle (Fig. 1). 
A horse reached performance criterion once it crossed the 
obstacle eight times within a single training session. This 
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task has elements in common with typical tasks that domes-
tic horses face (e.g., trailer loading, entering a gate), but is 
unlikely to have been encountered by the horses prior to the 
field experiment.

The obstacle was set up and taken down daily so that 
horses were exposed to it only during experimental trials. 
The training location was out of sight and sound of both 
the corral, where the ranch horses were housed during the 
day, and turnout pastures, where the horses were housed at 
night. The dimensions and presentation of the obstacle, and, 
in turn, the difficulty of the task, were established through 
initial pilot testing.

Experimental groups

Horses were randomly assigned to one of two experimen-
tal groups: spaced-training or massed-training. Horses in 
the spaced-training condition (n = 16) experienced 2 min of 
work, 2 min of rest, 2 min of work, and 2 min of rest while 
horses in the massed-training condition (n = 13) experienced 
4 min of work, followed by 4 min of rest. The timing allowed 

us to collect data from a reasonable number of horses in the 
time that we had available for testing at the working ranch. 
Importantly, whether in the spaced or massed condition, 
each horse received the same amount of work (4 min) and 
rest (4 min) per session. The sample size of 29 horses aligns 
with comparable studies of equine learning and cognition. 
Random selection from a large population as well as ran-
dom assignment and medium-to-large effect sizes support 
our data interpretation.

Training

We used as much experimental control as possible in this 
naturalistic setting to gain the best of both approaches to 
research (Banaji and Crowder 1989). All training trials were 
conducted between 1:00 p.m. and 4:00 p.m. while the rest 
of the herd was held in a separate pasture out of sight and 
hearing distance from each day’s group of training horses. 
Horses in both conditions experienced repeated training with 
the inter-session spacing held as constant as possible on a 
working ranch (on average, 3 days between sessions). The 
number of horses run on a given training day varied from 1 
to 5; factors such as weather influenced how many horses 
could be run safely in the training time available. Of the 32 
training days, 88% had either equal numbers of horses run 
in massed and spaced conditions, or the number differed by 
one across conditions. Toward the end of the training period 
when no new horses could start the procedure because they 
would not have the option to train for 5 days, more horses 
were run in the massed condition than in the spaced condi-
tion because they were completing their training. This proce-
dure of training similar numbers of horses in each condition 
on as many training days as possible, with weather and the 
like cooperating, reduces possible concerns about the rider 
reinforcing horses differently early in the study compared to 
late in the study given the rider’s work contributed to each 
condition similarly for the vast majority of training sessions.

During training, all subjects were ridden by the same 
hypothesis-naïve rider (an experienced wrangler at the guest 
ranch) using a standard O-ring snaffle bit, small-roweled 
spurs, and a western saddle. Thus, any idiosyncratic rider 
behaviors contributed to both the spaced and massed training 
conditions. The rider did not ride the horses during normal 
work activities on the ranch and had no riding experience 
with the subjects before the study period. During the work 
period of each training session, the rider shaped horses to 
cross the obstacle while the ground researcher recorded 
training time from a safe distance. The rider used leg (pres-
sure applied to the horse’s side) and rein (pressure applied to 
the bit) cues to direct the horse’s forward motion toward the 
obstacle. As is standard in negative reinforcement training, 
the rider continuously cued the horse while it was hesitating 
or avoiding the obstacle and ceased cueing while the horse 

Fig. 1   The novel obstacle-crossing task. The experimental obstacle 
including ground component that needed to be stepped over as well 
as a hanging tarp that moved freely above the horses as they crossed. 
The horse with hypothesis-naïve rider is in the process of one cross-
ing on the task where learning criterion for success was completing 
eight crossings in a single session
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was approaching the obstacle (McLean 2005; McGreevy and 
McLean 2010). The ground researcher timed the training 
sessions and directed the rider when to start and stop each 
work and rest period.

During the rest periods of both training conditions, 
the horse and rider were led away from the obstacle by a 
researcher on the ground. The horses were led approximately 
15 yards from the obstacle and held by the ground researcher 
while the rider stayed on the horse. During the rest period 
the rider ceased all cueing. All training trials were filmed 
using two GoPro cameras.

Performance criterion

Pilot testing showed that the ability to complete eight cross-
ings within a single training session indicated task profi-
ciency while minimizing both ceiling and floor effects. 
Horses that did not complete eight obstacle crossings in a 
single session after five training sessions were classified as 
failed to reach performance criterion.

Video coding

The videos recorded at time of training were tools for further 
evaluation of task performance. The principal investigator 
(PI; also the ground researcher at time of training) created 29 
separate, horse-specific videos using Adobe Premiere Pro. 
These videos were reduced to 50% real-time speed to allow 
for more accurate behavioral coding. Each work session was 
divided into two 2-min sessions such that hypothesis-naïve 
video coders could not guess the manipulation or differenti-
ate between experimental conditions. These 2-min segments 
were then numbered and randomized using an online ran-
dom number generator so that order of appearance in the 
compiled video was not consistent with real-time training 
order.

The PI scored the randomized videos. To check for 
potential bias of the PI, hypothesis-naïve researchers were 
recruited for video coding. These coders were unaware of 
the two training conditions or the hypothesis, and none were 
present during the data collection. A total of four depend-
ent measures (behaviors) were coded (approach time, speed, 
spooking, and positionality); each hypothesis-naïve coder 
scored only one of the behaviors to reduce biases in cod-
ing such as halo effects (e.g., Nisbett and Wilson 1977). 
Hypothesis-naïve coders were trained with a 2-h training 
session using video from initial pilot testing; a second ses-
sion was used if coders did not show clear understanding of 
the behavior.

The primary dependent video measure was how many 
seconds each horse spent approaching the obstacle. The 
horse was coded as approaching if it initiated any step that 
would carry it toward the obstacle. Approach time ended if 

the horse turned away, backed-up, or moved laterally in rela-
tion to the obstacle. Two hypothesis-naïve coders scored this 
measure. Given the continuous nature of this variable, inter-
rater reliability was assessed with a correlation between the 
primary coder and the hypothesis-naïve coders on approach 
time per session. Inter-rated reliability was assessed with 
Intra-class Correlation Coefficient (ICC; and accompany-
ing 95% confidence intervals) using SPSS version 26. We 
report two-way mixed effects models for absolute agree-
ment. The estimated agreement was excellent (Koo and Li 
2016) for coder II (ICC = 0.93, 95% CI [0.83, 0.97]; scored 
11% of sessions) and moderate for coder III (ICC = 0.74, 
95% CI [− 0.14, 0.91]; scored 19% of sessions). The first 
video scored by coder III shows much lower reliability than 
subsequent videos; in other words, this coder got better with 
practice. Exclusion of the first video scored results in excel-
lent inter-rater reliability (ICC = 0.91, 95% CI [0.12, 0.98]), 
suggesting high reliability for most of the coding. Changes 
in speed (time spent walking, trotting, or loping) and spook-
ing behavior (horse’s front feet simultaneously suspended 
above ground) did not yield satisfactory reliability so will 
not be discussed further. Position in arena required an addi-
tional set of videos to be created that had boundary lines 
superimposed to create four distinct sections. Two coders’ 
reliability with the primary coder’s times in each arena posi-
tion all were high (lowest ICC = 0.97, 95% CI [0.95, 0.98]) 
but the data gathered was redundant with the crossing data 
initially gathered (when a horse was about to cross it spent 
more time closer to the obstacle) and did not offer additional 
insight so will not be discussed further. Given the high inter-
rater reliability, the primary coder’s data were used for all 
approach analyses.

Results

Reaching training criterion

Fifteen out of 16 horses in the spaced-training condition 
reached performance criterion (94% success) while only 5 
of 13 horses in the massed-training condition reached perfor-
mance criterion (39% success). A chi-square test supported 
the conclusion that the spaced-training condition led to a 
higher success rate than the massed-training condition did, 
X2 (1, N = 29) = 10.24, p = 0.001, phi = 0.594, with a large 
effect size (see Fig. 2). Figure 3 shows the number of horses 
that met criterion on each training day.

As an additional post hoc exploration of the data, a 
more lenient performance criterion was also examined: 
completing at least one obstacle crossing. Again, signifi-
cantly more horses in the spaced-training condition com-
pleted at least one crossing (15 of 16) than did horses 
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in the massed-training condition (8 of 13; 62%), X2 (1, 
N = 29) = 4.54, p = 0.033, phi = 0.395, a medium-to-large 
effect size.

Video analyses

To ensure that initial sampling bias did not contribute to the 
detected differences between conditions, approach behav-
ior in the first 2 min (before the training procedures dif-
fered) was compared. Time spent approaching the obstacle 
during the first 2 min of training was virtually identical for 
horses in spaced-training (M = 1:05 min, SD = 0:26) and 

massed-training (M = 1:04 min, SD = 0:31) conditions. This 
finding reduces concerns about sampling bias and supports 
our interpretation that the distribution of work and rest peri-
ods drove the higher rates of reaching criterion performance 
in the spaced-training group compared with the massed-
training group.

Using the coded videos, we examined the time it took 
the horses who reached criterion (eight crossings in a single 
session) to start their first crossing and to complete their 
last crossing. Horses in the spaced-training condition ini-
tiated their first crossing faster (M = 2:36 min, SD = 1:17) 
than horses in the massed-training condition (M = 4:04 min, 
SD = 2:31), t(21) = 2.08, p = 0.05, Cohen’s d = 0.81 (this is 
the difference in condition means divided by the pooled vari-
ance; https://​www.​socsc​istat​istics.​com/​effec​tsize/​defau​lt3.​
aspx), a large effect size. No horses completed an obstacle 
crossing within the first 2 min of training. We also measured 
the amount of time taken to complete eight crossings (time 
at which the final foot hit the ground on the horse’s eighth 
and final crossing) for every horse that reached performance 
criterion. This analysis should be interpreted with caution 
given only five horses in the mass condition completed eight 
crossings, reducing the power of the analysis. Again, horses 
in the spaced-training condition (M = 8:02 min, SD = 2:37) 
were faster at completing eight crossings than horses in 
the massed-training condition (M = 10:15 min, SD = 4:47). 
While this difference did not reach significance, t(18) = 1.33, 
p = 0.20, the Cohen’s d = 0.57 indicates a medium effect size.

Discussion

The primary hypothesis was supported: intra-session spaced 
training led to a significantly higher proportion of horses 
achieving pre-defined task proficiency than did intra-session 
massed training. Even when using a more lenient completion 
criterion, reducing the definition of task proficiency from 
eight crossings to one crossing, there was still a significant 
difference between the two training groups that favored 
intra-trial spaced training. Additionally, of the horses that 
reached performance criterion, those in the spaced-training 
condition initiated a first crossing and completed their last 
crossing after less time in training than horses in the massed 
training condition. Overall, the data suggest that compared 
with massed training, intra-session spaced training leads to 
a greater number of animals reaching task proficiency with 
faster task acquisition. This is particularly impressive given 
the relatively short training sessions of 8-min per training 
day.

The present data add to the prior report of ponies show-
ing the spaced-training effect (Rubin et al. 1980), suggest-
ing that the spacing effect generalizes to horses as well as 
to humans (Cepeda et al. 2006; Dunlosky et al. 2013), rats 

Fig. 2   Performance success by training condition. Spaced training 
resulted in a greater number of horses reaching performance criterion 
than did massed training

Fig. 3   The number of horses that met criterion on each training day. 
Spaced training resulted in a greater number of horses reaching per-
formance criterion than did massed training

https://www.socscistatistics.com/effectsize/default3.aspx
https://www.socscistatistics.com/effectsize/default3.aspx
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(Bello-Medina et al. 2013), mice (Aziz et al. 2014), dogs 
(Demant et al. 2011), pigs (Karas et al. 1962), honeybees 
(Menzel et al. 2001), and drosophila (San Martin et al. 
2017). In addition to that theoretical point, the present data 
are important for applied settings because the task employed 
intra-session spacing. Spacing between real-world training 
sessions is often influenced by unavoidable constraints like 
equine injury, travel for performance, and the inconsistencies 
of human work and social schedules. Intra-session spacing 
accommodates this variability and can be applied anywhere 
from isolated training sessions to consistent, longitudinal 
training programs. Learning success may decrease frus-
tration and increase positive interactions between horses 
and their trainers. Adding the intra-session spaced training 
method to trainers’ toolkits sets them up for more efficient 
training. Future studies with a variety of species should 
manipulate intra-session spacing to assess its generaliza-
tion across species.

The design and method of the present study were cho-
sen to maximize applied relevance while maintaining the 
experimental control needed to infer causation. Attributes 
of the design that support the applied contribution of this 
work given their face validity include: (1) using intra-session 
spacing rather than inter-session spacing where trainers have 
more control; (2) using an obstacle-crossing task that gener-
ally mimics a number of typical training scenarios, including 
creek crossings, trailer loading, entering a gate, navigating 
a jump, or passing by any frightening novel stimuli; and (3) 
training the horses with a rider on their back using typical 
training cues (rein and leg pressure). Indeed, implementing 
a rider who utilized standard negative reinforcement-based 
cues is more aligned with standard industry practices com-
pared to other research tasks that focus on positive reinforce-
ment (Hothersall and Nicol 2007; McCall 2007; Murphy 
and Arkins 2007). Concurrently, attributes of the design that 
enhanced internal control include: (1) utilizing both random 
selection of horses from the herd and random assignment of 
horses to spaced or mass training conditions, (2) attempt-
ing to elicit a single trained response (forward motion over 
the obstacle), and (3) controlling for seven factors, namely 
(a) the total amount of training time per session, (b) the 
total amount of resting time per session, (c) the time of day 
that training was done, (d) the isolation of the testing area 
from other horses, (e) similar numbers of horses run in the 
massed and spaced training conditions in the majority of 
training sessions, (f) the same hypothesis-naive rider/saddle 
equipment for all horses including the fact the rider did not 
ride the horses during normal work activities, and (g) the 
breakdown of the obstacle daily so that horses’ only expo-
sure to it was during training. The present methodology, 
with high internal control and high external generalizability, 
holds promise for future experimental manipulation that still 
conforms to standard industry practices.

Moreover, the present study also extends what is known 
about the spacing effect to negative reinforcement. A lit-
erature search for studies that combined spaced practice 
or spaced learning or spaced retrieval with negative rein-
forcement yielded only one study (Beattie and Corr 2010). 
A second search for studies that combined spaced train-
ing with negative reinforcement yielded five more. Further 
examination of these studies revealed that two focused on 
punishment rather than negative reinforcement (Beattie and 
Corr 2010; Wimmer et al. 2018) and two examined posi-
tive rather than negative reinforcement (Amsel et al. 1971; 
Marx 1969). One study reported that spaced training was 
more effective than massed training with negative reinforce-
ment in mice (Stern et al. 2020). Finally, one study included 
horses (McCall et al. 1993) trained on an avoidance (Pavlo-
vian) conditioning task. McCall et al. (1993) concluded that 
moderate repetition of training (roughly 15 trials per session) 
maximized learning efficiency which they contrasted with 
intense activity in few sessions. In our view, the authors are 
arguing that spaced training is better than massed training, 
as are we. This brief review highlights that there is a gap in 
the literature to be filled with future work on spaced training 
and negative reinforcement. Notably Wimmer et al. (2018) 
highlight the need for more ecologically relevant research; 
the present study answers this call and inspires follow-up 
work such as the role of arousal in learning in spaced and 
massed conditions.

As with any study, there are limitations of the present 
work. Between-group designs always beg the question of 
sampling bias. Importantly, both the lack of difference in 
the training groups’ approach behavior in the first 2 min of 
training and the fact that neither group had a horse cross 
within the first 2 min reduce this concern. Naturalistic set-
tings always reduce experimental control compared with 
laboratory settings. The present study included some vari-
ation in the time between training sessions and the number 
of horses that could be run in each condition on a given day 
(e.g., weather making it unsafe to continue training). Repli-
cation of this work in laboratory settings can better control 
for precise training timing than was possible in the present 
study. The field setting precluded us obtaining detailed data 
about the horses’ ages. We hope that future work that builds 
upon the present findings can explore whether variables such 
as horse age (and prior experience) affect data patterns in 
non-human animals including horses, although we note that 
older adult humans show a similar spacing effect to younger 
adult humans (e.g., Kornell et al. 2010).

Trained equids are often asked to respond to stimuli and 
perform in environments that are at odds with their evo-
lutionary programming as prey animals (Christensen et al. 
2010). Any measures taken to increase training efficiency 
have the potential to reduce stress and injury to both horse 
and horse handler. The demonstrated benefits of intra-session 



689Animal Cognition (2022) 25:683–690	

1 3

spaced training on equine learning performance justify addi-
tional research and hold promise for increased learning effi-
ciency in all forms of equine training.
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