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Abstract: A method was developed for solving the relaxation modulus of high viscosity asphalt
sand (HVAS) based on the three-point bending creep test, and was verified by comparison with
experimental results. In this method, firstly, a transcendental equation was obtained by the convolution,
and then equations were obtained by Taylor’s formula, which were solved by Mathmatica to obtain
the relaxation modulus by Newton’s method. Subsequently, the laboratory investigations of the
viscoelastic parameters of the Burgers model for the HVAS by three-point bending creep tests were
carried out. In addition, the method was verified by comparing the relaxation moduli with the indoor
relaxation experiments. Results showed that the numerical calculation and the test data were in good
agreement, and the relaxation characteristics of the HVAS were reflected more accurately. The method
can be used to study the relaxation characteristics of the asphalt mixtures effectively. In addition, this
study provides a research basis for road crack prevention.

Keywords: HVAS; transcendental equation; relaxation modulus; creep compliance; convolution;
Newton’s method; Boltzmann superposition principle

1. Introduction

The pavement performance and durability of the asphalt mixture road will be seriously affected
after pavement cracking [1–3]. The reason is that the road spans a vast area, where the range of
temperature could be very large due to environmental changes, so the inconsistency of deformation
between the surface and the base causes thermal stress [4–6]. If the relaxation ability is strong,
the thermal stress is released so that it does not exceed the allowable value. Relaxation modulus is an
important parameter for analyzing and evaluating relaxation ability [7]. Therefore, simple and accurate
calculation of relaxation modulus is an important basis for the study of viscoelastic parameters of the
asphalt mixtures, which provides the research basis for road crack prevention.

The relaxation modulus could be directly obtained from relaxation test [8–10]. However, constant
strain should be applied to the specimen instantaneously and remains unchanged during the
relaxation test, which poses a great challenge to instrument selection, test design and operation [11].
Higher hardness of asphalt mixture at low temperature leads to longer relaxation time, which also
increases the difficulty of the relaxation test [12]. Therefore, direct measurement of the relaxation
modulus by the relaxation test often results in large errors, and it is difficult to operate. By contrast,
a creep test is easier to be carried out, so solving E(t) by J(t) was one of the focuses of the researches [13–15].
In such case, apart from the relaxation tests, the interconversion of the creep compliance was
recommended [16].
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It is to be noted that in a rheological application, the convolution of J(t) and E(t) for the LVEs is
expressed according to the Boltzmann superposition integral [17] as∫ t

0
J(t− τ)E(τ)dτ = t (1)

where J(t) is the creep compliance function, E(t) is the relaxation modulus function and t is the time.
In the early application of the integral, the relation of the approximate J(t) and E(t) were usually

taken as reciprocal, being only applicable to weakly viscous materials instead of viscoelastic materials.
Lately, with the introducing of several variables [18], it is possible to derive an inverse reciprocal
relation, and only when t = 0 or t =∞, the reciprocal relation applies [19], i.e.,{

t = 0 E(0) = 1/J(0)
t = ∞ E(∞) = 1/J(∞)

(2)

With the increasing need of interconversion between the LVE functions of the HVAS, approaches
were proposed to solve the interconversion equation between J(t) and E(t). For example, a numerical
integration method for determining of E(t) was proposed according to the measured J(t) based on the
accurate approximate transformation between the volume J(t) and the bulk relaxation modulus [20];
a numerical interconversion based on the convolution integral, which relates E(t) to J(t), was made
to discrete the time domain into a finite number of sub domains, and an iterative expression was
obtained [21]. However, in the abovementioned methods, E(t) depended on the accuracy of the
numerical calculation; this led to large differences in the calculations with the test data when the
computational accuracy was poor. As noted by some authors [13,22,23], J(t) and E(t) were substituted
into integral relationship simplified as a matrix form, and the Dirac Delta function was introduced
to solve the creep compliance. With respect to the integrals expressed in the Prony series, a poorly
conditioned matrix equation increases the complexity of the calculation.

Many scholars have studied and some achievements have been made in determining the
relaxation modulus of the asphalt mixture by using the complex modulus. Zhao determined the
main curve of the storage moduli by using the test results of complex moduli of the asphalt mixture,
and converted the storage moduli into the relaxation moduli of asphalt mixture by using the collocation
method and related viscoelastic theoretical formula [24]. On the basis of the analysis of previous
findings, Liu gave the relationship between the complex moduli and the relaxation moduli [14].
However, in determining the complex moduli of asphalt mixtures, tests need to be carried out at
several temperatures. Moreover, at each temperature, the complex moduli of the asphalt mixtures
with different angular frequencies need to be measured to obtain the dynamic moduli and phase angle
of asphalt mixtures.

In this paper, a new scheme is adopted to solve the convolution formula. Previous studies have
used the same model to characterize the relaxation and creep of asphalt at the same time [19,25,26].
Common models, such as the Burgers model, Maxwell model and Kelvin model, are good at creep and
relaxation alone, but it is very difficult to take both into account [27,28]. Therefore, the advantages of
the Burgers model and Generalized Maxwell model (GMM) are integrated in their respective fields to
better characterize the properties of the HVAS. A more general formula not confined to the form of the
Prony series is introduced and the solution process is also simplified. First, J(t) was obtained based on
the three-point bending creep tests. Then, by substituting the parameters for the Burgers model into
the convolution integral expanded by the Taylor series, E(t) was derived from Wolfram Mathematica
8 using Newton’s method. For verifying, the relaxation tests were carried out and the E(t) obtained
was compared with that determined by the suggested approach. Moreover, with the application of
the time-temperature equivalence principle, the master curve of E(t) was obtained within a larger
temperature range.

This method is not only straightforward and accurate in the interconversion (without the
application of Laplace transform) between the compliance and the modulus functions, but can also
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avoid the high requirements for experiment equipment. Therefore, the method is recommended to
study the relaxation characteristics of the HVAS.

2. Interconversion of Creep Compliance and Relaxation Modulus

2.1. Interconversion Equation

When a constant stress is applied to the asphalt mixture, the development of the corresponding
strain can be divided into three stages, i.e., the instantaneous elastic stage, the viscous flow stage and
the delayed elastic deformation stage. The creep behaviour of the HVAS can be characterized with the
four-parameters (E′1, E′2, η′1, η′2) of the Burgers model, as shown in Figure 1.

The creep compliance J(t) for the Burgers model of the HVAS is written as:

J(t) =
1

E′1
+

t
η′1

+
1

E′2
(1− e

−
E′2
η′2

t
) (3)

where η′1 and η′2 are the viscosity coefficients in the Burgers model, E′1 and E′2 are the elastic moduli in
the Burgers model.

1 
 

 
Figure 1. Burgers model.

A reliable performance prediction model is conducive to the development of the relaxation
behaviour [29]. To this end, the Generalized Maxwell model (GMM) assembled by parallel Maxwell
elements representing the relaxation module is employed, as shown in Figure 2. The overall relaxation
modulus is

E(t) =
n∑

i=1

Eie
−

t
τi (4)

where i is the i-th spring-dashpot element, i is the relaxation time (the higher its value, the longer it
takes for the strain/stress to relax) related to the dashpot viscosity, Ei is the modulus of the i-th Maxwell
element associated to the spring stiffness, n is the number of spring-dashpot elements accounted for
and t is the time.
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Substituting Equation (3) and (4) into the convolution integral of Equation (1), we obtain

∫ t

0
[

n∑
i=1

Eie
−
τ
τi ]

 1
E′1

+
t− τ
η′1

+
1

E′2
(1− e

−
E′2
η′2

(t−τ)
)

dτ = t (5)

2.2. Derivation of Relaxation Modulus

The target number of spring-dashpot elements n is predefined before solving. After the expansion
of the integral, Equation (5) can be re-rewritten in terms of Ei, τi, etc., as:(

1
E′1

+ 1
E′2

) n∑
i=1

Eiτi −

(
1

E′1
+ 1

E′2

) n∑
i=1

Eiτie
−

t
τi +

n∑
i=1

Ei
η′1
τit−

n∑
i=1

Ei
η′1
τi+

n∑
i=1

Ei
η′1

e−
t
τi τ2

i −
1

E′2

n∑
i=1

Ei
τiη
′

2
η′2−τiE′2

e
−

E′2
η′2

t
+ 1

E′2

n∑
i=1

Eie
−

t
τi ·

τi·η
′

2
η′2−τ2E′2

= t
(6)

where Ei (i = 1 to 6) is the elastic modulus in GMM, τi (i = 1 to 6) is the relaxation time in GMM,
η′1 and η′2 are the viscosity coefficients in the Burgers model, E′1 and E′2 are the elastic moduli in the
Burgers model. Actually, this is a transcendental equation. Although the commands Solve and NSolve
in Mathematica can be applied to solve exponential and trigonometric equations in a limited way,
they are not designed to solve complicated transcendental equations. Fortunately, Equation (6) can be
solved by Mathematica using Taylor’s formula.

2.2.1. Taylor’s Formula

To simplify the calculations, multinomials obtained by Taylor’s formula were used in the alternative
method. The application of the multinomials in the study of the HVAS is a progress, especially in the
computer program field, which can be done with high precision and is an applicable approximate
method for the calculations of the complex functions. Taylor’s formula with a surplus item Peano
meets n-order differentiable at the point x0 [30]. In other words, this type of function, with a simple
form and widely applicable conditions, is very convenient to deal with some qualitative problems.
Due to Equation (6), n-order derivative exists at 0, Taylor’s formula with a surplus item Peano is used
to expand at 0, namely, the Maclaurin formula. In our study, there are 12 unknown parameters of
the generalized Maxwell model, so the equation is expanded to 12 polynomials about t and a Peano
remainder, and the required accuracy of the calculations can be acquired. We have:

(E1τ1 + E2τ2 + E3τ3 + E4τ4 + E5τ5 + E6τ6)
(

1
E′1

+ 1
E′2
−

1
η′1

+ 1
)

−
η′2
E′2

(
E1τ1

η′2−E′2τ1
+ E2τ2

η′2−E′2τ2
+ E3τ3

η′2−E′2τ3
+ E4τ4

η′2−E′2τ4
+ E5τ5

η′2−E′2τ5
+ E6τ6

η′2−E′2τ6

)
+(−E1τ1+E2τ2+E3τ3+E4τ4+E5τ5+E6τ6

η′1
+ E1τ1

η′2−E′2τ1
+ E2τ2

η′2−E′2τ2
+ E3τ3

η′2−E′2τ3
+ E4τ4

η′2−E′2τ4

+ E5τ5
η′2−E′2τ5

+ E6τ6
η′2−E′2τ6

+ E1 + E2 + E3 + E4 + E5 + E6 + 1)t + ···+ O[t]12 = 0

(7)

where Ei (i = 1 to 6) is the elastic modulus in GMM, τi (i = 1 to 6) is the relaxation time in GMM, η′1 and
η′2 are the viscosity coefficients in the Burgers model, E′1 and E′2 are the elastic moduli in the Burgers
model and the ellipsis “···” represents a total of 11 items.

2.2.2. Solutions of Transcendental Equation

For this kind of problem, the command FindRoot in Mathematica can be used. The kernel
algorithm of FindRoot is the iterative Newton’s method [31]. In the calculation, the first or the first two
points (the initial guess) should be specified, for the best results, the initial guess should be as close to
the expected root as possible.
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By default, 15 iterations are performed before FindRoot is aborted. The number of iterations is
controlled by the Max Iterations, which can be used to increase the number of iterations to obtain more
accurate values and to prevent early termination of operations before the desired results are obtained.

For example, to improve the accuracy, the FindRoot command in Mathematica can be written
as [lhs = = rhs, {x, x0, xmin, xmax}, Max Iterations → 200]. Here, the equation solved is lhs = = rhs,
200 iterations will be carried out in the interval [xmin, xmax], and the roots will be found near x0. In order
to solve the unknowns of Ei and τi in Equation (7), the bending creep tests were carried out.

3. Creep Tests and Calculations of Relaxation Moduli

3.1. Three-Point Bending Creep Tests

3.1.1. Material Properties

The bitumen with 70 penetrations is used as the asphalt binder for the samples. Limestones are
used as the aggregates. The optimum ratio of oil to aggregate is 8.1%. The continuous aggregate
gradation has a nominal maximum size of 10 mm. An additional 0.7% TCA (temperature controlling
viscosity acid) additive of the asphalt mixture mass and 1% activated rubber crumb and 0.7% TCA
additive of the mass of the asphalt mixture were added during the blending process.

3.1.2. Sample Preparations

The track plate samples made by wheel rolling which agree with the standard test method [32],
were cut into beams with dimensions of 250 × 30 × 35 mm3 (Figure 3), the effective span of the beam is
200 mm, as shown in Figures 3 and 4.
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3.1.3. Bending Creep Tests Procedure

The creep test is a test method for determining the viscoelastic parameters of materials, which
is commonly used to evaluate the creep properties of materials. The effects of temperatures on the
creep compliance were investigated. The bending creep tests were carried out at three temperatures of
0 ◦C, −5 ◦C and −15 ◦C, respectively. After the specimens were put into the environmental chamber,
the temperature was increased to the expected value. In order to reach thermal equilibrium in the
specimens, it was conditioned for over 4 h, after that, a stress of 10% of the failure load was applied
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according to the standards. The creep time was designed as 4 h. The lever-loading device applied
the load and the displacement meter was used to measure the center displacement of the beam,
as shown in Figure 5. The experiment was repeated three times, and the averages were determined by
Equations (8)–(10) given below.
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The bending tension stress σ0 is calculated as:

σ0 =
3LP0

2bh2 (8)

where P0 is the concentrated force applied at the middle of the specimen (in N), b is the width of the
specimen section (in m), h is the height of the cross section of the specimen (in m) and L is the span of
the specimen (in m).

The bending tension strain is calculated as:

ε(t) =
6hd(t)

L2 (9)

where d(t) is the midspan deflection which varies with the time t during the loading (in m).
The bending creep compliance is calculated as:

J(t) =
ε(t)
σ0

(10)

3.1.4. Test Results and Calculation of Creep Compliance

The bending strains of the specimens changing with the time at different temperatures under the
same stress level are shown in Figure 6.
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As shown in Figures 6 and 7, the creep process of the HVAS can be divided into three stages, i.e.,
the initial creep stage, the stable creep stage and the accelerating creep stage. The creep rates increase
with the temperature.
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According to Equation (10), the stress and strain can be used to determine the creep compliance.
The creep compliances at different temperatures are shown in Figure 7.

3.2. Determination of Model Parameters

Mechanical models may be considered as different combinations of linear spring(s) and linear
dashpot(s) in various series and/or parallel arrangements depending upon the complexity of viscoelastic
material behaviour. These basic elements and their combinations allow the better modelling of the
viscoelastic behaviour of the asphalt mixtures and the binders than the empirical mathematical models.
The linear spring response is the same as a linear elastic material, while the basic response of a
linear dashpot is the same as that of a Newtonian fluid. Combining these two basics in various
series and/or parallel arrangements produces the viscoelastic mechanical models, some of which, e.g.,
Maxwell model, Kelvin model, etc., are too simple to adequately model the actual behaviour of asphalt
mixtures, while some other ones, e.g., the Burgers model may properly capture the actual behaviour of
the mixture.

The creep compliances were obtained by fitting the test data at different temperatures; the
parameters of the four-component Burgers model are listed in Table 1.
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Table 1. Burgers model parameters at different temperatures.

Model Parameters 0 ◦C 10 ◦C 15 ◦C

E′1 3771.931 1893.139 1105.924
E′2 5996.615 1272.372 705.477
η′1 2.4 × 107 4.2 × 106 2.0 × 106

η′2 5 × 106 1.2 × 106 4.6 × 105

R2 0.998 0.999 0.999

3.3. Calculation of Relaxation Moduli

Substituting the parameters of the Burgers model into Equation (7), the recovery of the relaxation
moduli from the creep compliance at different temperatures is realized. The results are listed in Table 2.

Table 2. GMM parameters from calculations at 15 ◦C and 0 ◦C.

Model Parameters 15 ◦C 0 ◦C

E1/MPa 2032 431
E2/MPa 2415.65 675.65
E3/MPa 3742.5 1452.5
E4/MPa 7464 431
E5/MPa 5645 3713
E6/MPa 2032 431
τ1/s 0.01 0.0015
τ2/s 1.54 0.00019
τ3/s 0.011 0.00012
τ4/s 0.00018 0.00089
τ5/s 0.0000007 0.0000003
τ6/s 0.0000005 0.0000006

Substituting the data in Table 3 into Equation (4), the relaxation moduli at temperatures 15 ◦C and
0 ◦C are obtained:

E(t) = 2 032e−0.01t + 2 415.65e−1.54t + 3 742.5e−0.011t + 7 464e−0.000 18t + 5 645e−0.000 007t + 2 032e−0.000 000 5 t (11)

E(t) = 431e−0.001 5t + 675.65e−0.000 19t + 1 452.5e−0.000 12t + 431e−0.000 89t + 3 713e−0.000 000 3t + 431e−0.000 000 6 t (12)

Table 3. GMM parameters at 15 ◦C.

Model Parameters 0.3 mm 0.9 mm 1.5 mm 3.0 mm 6.0 mm

E1/MPa 1 1.3 1200 12.21 65.442
E2/MPa 1.6 1.33 25.56 1 114.98
E3/MPa 159 106.4 182.06 95.30 54.45
E4/MPa 341 181.3 94.33 567.09 31.396
E5/MPa 341.6 181.3 89.3 567309 31.396
E6/MPa 1 1.3 145.1 1 114.93
τ1/s 1 1 1 1 1
τ2/s 1 1 1 18.84 3.16
τ3/s 12.248 7.63 11.43 18.84 19.5
τ4/s 1 1 1 1 286.09
τ5/s 1 1 1 1 296.14
τ6/s 1 1 1 18.84 3.16
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4. Verification of Calculated Results and Uniaxial Compression Tests

4.1. Uniaxial Compression Relaxation Tests

4.1.1. Determination of Constant Levels of Input Strains for Relaxation Tests

The input constant strain is an important parameter for the relaxation test. The input constant
strain was obtained for the characterization of the viscoplasticity of the HVAS below the undamaged
limit. It has been widely accepted that a sample was not damaged as long as the stress did not reach
the vertex of the stress-strain diagram. The property of the mixture changed from linear viscoelasticity
to viscoplasticity as the input strain increases during the experiment [33]. Under the condition of small
strain, the test specimen was considered not damaged (the strain was in the linear viscoelastic scope),
and the constant input strain was assigned conservatively 10% of the strain corresponding to the
maximum normal stress. Due to the relaxation nature of the HVAS, the magnitude of the deformation
is constant according to the preset program.

4.1.2. Uniaxial Compression Relaxation Tests Procedure

The stress relaxation test is an experiment method to determine the viscoelastic parameters of
materials, and it is commonly used to obtain the stress relaxation properties. Since the viscoelastic
materials have the memory effect, the stress responses of the materials depend on their loading histories.
To this end, the effects of loading histories on the relaxation moduli were investigated. The maximum
strain of breaking 20% [34] is recommended to reduce the coefficient of variation in compressive
strength tests. Therefore, the designation of the initial strain (0.3 mm) is conservative, that is, 10% of
the strain at strength (3 mm).

The direct compression relaxation modulus experiments, at constant input strains of 0.004285,
0.012857, 0.021428, 0.042857, 0.085714, respectively (at input displacements of 0.3 mm, 0.9 mm, 1.5 mm,
3 mm and 6 mm, respectively), and at temperatures of 15 ◦C, −5 ◦C and −15 ◦C, respectively, were
carried out on the specimens. The temperature was increased to the predetermined value when the
specimens were put inside the environmental chamber. To reach thermal equilibrium in the specimens,
it was conditioned for over 4 h. Vaseline was applied on the surfaces of the specimens to reduce the
boundary effect and the friction. After the sample was placed between the base and the pressure
head of the WDW testing machine (Shanghai Xunrong Testing Equipment Co., Ltd., Shanghai, China),
the constant input strain was imposed.

4.1.3. Determination Parameters of GMM Model

The GMM seems to be the best phenomenologic model to represent the HVAS relaxation
behaviour [35]. Since the GMM with six arms has the best phenomenologic representation of the
viscoelastic behavior of the HVAS, the model was chosen to study the stress relaxation behavior of the
HVAS, and the model parameters are listed in Table 3.

4.1.4. Construction of Master Curves for Relaxation Modulus of Asphalt Mixture

The tests were conducted at several temperatures, so a master curve of the relaxation modulus
was constructed using the time-temperature superposition principle [36]. The relaxation modulus test
protocol is theoretically sound, but practically, the test machine may not be able to control the specimen
deformation at a desired constant level. Therefore, the relaxation modulus cannot be simply calculated
by dividing the relaxing stress by the strain. Based on the time-temperature equivalence principle,
the relaxation modulus curves (RMC) was constructed from short-time relaxation measurements with
relevant temperature-shift-factor rates. Williams, Landel and Ferry’s model [37] is used in the analysis:

lgαT = −
C1(T − T0)

C2 + (T − T0)
= −

C1∆T
C2 + ∆T

(13)
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where C1 and C2 are material parameters and T0 is the reference temperature, in this study, T0 = 0 ◦C.
Shift factors were calculated by the WLF (a formula about time-temperature equivalence principle)

to control the relative horizontal displacement at different temperatures as listed in Table 4 [38].

Table 4. Temperature shift factors.

Temperature/◦C Temperature Fluctuation ∆T/◦C Shift Factors lgαT

15 15 1.6636
−5 5 −0.5959
−15 15 −1.8569

According to the shift factors given in Table 4, the master curve of stress relaxation moduli was
obtained by superposition at 0 ◦C, as shown in Figure 8.
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Figure 8. Relaxation master curve at 0 ◦C.

Figure 8 shows that the stress relaxation rate decreases significantly with the decrease of
temperature. In addition, the stress relaxation can be roughly divided into an attenuation stress
relaxation stage and a steady stress relaxation stage.

4.2. Verification of Calculated Results

For comparisons, the relaxation moduli by the direct measurements and the calculations from the
tests at 15 ◦C, are shown in Figure 9.
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(c) 1.5 mm; (d) 3.0 mm; (e) 6.0 mm.

The results show that the relaxation moduli based on the creep tests and the relaxation tests accord
with the relaxation properties of the HVAS and have many similar aspects, which indicates that E(t)
can be determined from J(t) (obtainable from three-point bending creep tests), based on the expansion
of the convolution.

The curves of relaxation moduli obtained by the two methods are almost overlapping, but there
still exists a narrow margin at the inflection point. This is due to the error between the Prony series
and Burgers model in the process of characterizing the viscoelastic properties.

Similarly, for comparisons, the relaxation moduli by the direct measurements and the calculations
from the creep tests at 0 ◦C are shown in Figure 10.
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Compared with the results at 15 ◦C, the relaxation modulus curves calculated from the two
methods display similar trends at 0 ◦C. Moreover, with the decrease of temperature, the relaxation
modulus increases sharply, this proves the validity of the method again. However, there are still some
deviations in the relaxation modulus at the inflection point, especially at 0 ◦C. This is due to the fact
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that the experimental data of the relaxation modulus were calculated by the WLF formula, and the
characteristics of the rheological properties of materials were characterized by the Burgers model.

5. Conclusions

The three-point bending creep tests were carried out and the experimental data were fitted by the
four-element Burgers model to determine the creep compliance. The R-squared values of Burgers are
greater than 0.995, which indicates that the model accurately characterizes the viscoelasticity used for
the subsequent analysis.

A New Method for the Solving Convolution formula was proposed. To be more specific,
the advantages of the Burgers model and GMM are integrated in their respective fields to better
characterize the properties of the HVAS.

The creep test is easy to be carried out, which provides creep compliance as the basis for solution.
Additionally, the relaxation modulus can be obtained by the transformation relationship between the
creep compliance and relaxation modulus. This method avoids the error of the direct relaxation test
and reduces the requirement for equipment and operation level.

The method for the recovery of the relaxation modulus from the creep compliance is proposed for
solving the relaxation moduli of the HVAS based on the convolution between the creep compliance and
the relaxation modulus. In this method, a transcendental equation was obtained by the convolution of
the creep compliance and the relaxation modulus, and the polynomial functions were obtained by the
expanding of Taylor’s formula, which was solved to obtain the relaxation modulus by Mathmatica
using Newton’s method. The method was verified by the relaxation tests.

The results show that the method provides a good agreement between the experiment data and
the experimental curves. Therefore, the method can better reflect the relaxation characteristics of the
HVAS, and can be used for further study on the relaxation characteristics of the material.
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