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Abstract

Purpose/results/discussion. Rearrangement of the EWS gene with an ETS oncogene by chromosomal translocation is a
hallmark of the Ewing family of tumors (EFT). Detectability, incidence, tumor speci® city and variability of this aberration
have been matters of intense investigation in recent years. A number of related alterations have also been found in other
malignancies. The common consequence of these gene rearrangements is the generation of an aberrant transcription
factor. In EFT, the ETS partner is responsible for target recognition. However, synergistic and possibly tissue-restricted
transcription factors interacting with either the EWS or the ETS portion may in¯ uence target selection. Minimal domains
of both fusion partners were de® ned that have proved necessary for the in vitro transformation of murine ® broblasts. These
functional studies suggest a role for aberrant transcriptional regulation of transforming target genes by the chimeric
transcription factors. Also, fusion of the two unrelated protein domains may affect overall protein conformation and
consequently DNA binding speci® city. Recent evidence suggests that EWS, when fused to a transcription factor, interacts
with different partners than germ-line EWS. Variability in EWS± ETS gene fusions has recently been demonstrated to
correlate with clinical outcome. This ® nding may re¯ ect functional differences of the individual chimeric transcription
factors. Alternatively, type and availability of speci® c recombinases at different time-points of stem cell development or in
different stem cell lineages may determine fusion type. Studies on EFT cell lines using EWS± ETS antagonists do suggest
a rate-limiting essential role for the gene rearrangement in the self-renewal capacity of EFT cells. The presence of
additional aberrations varying in number and type that may account for immortalization and full transformation is
postulated. Knowledge about such secondary alterations may provide valuable prognostic markers that could be used for
treatment strati® cation.

Key words: EWS, ETS, IGF1, tumor suppressor, prognosis.

Introduction

Ewing’ s sarcoma (ES), being a rare malignant dis-

ease affecting bone and soft tissue in children and

young adults, was hardly known to people other

than pediatric oncologists until the characterization

of a chimeric gene product presumed to be causally

involved in the generation of this neoplasm. It dra-

matically gained attention when, from investigating

other malignancies, it became apparent that the

ES-derived oncoprotein constitutes the prototype of

a whole class of aberrant proteins speci® cally associ-

ated with certain tumor types. Consequently, ES

may be considered a model system to study malig-

nant conversion on a subclinical level. The discovery

of the ES-associated gene rearrangement transiently

halted a controversy among pathologists about the

existence of distinct categories of ES (i.e. osseous

ES, extra-skeletal ES, Askin tumor, peripheral

primitive neuroectodermal tumor) because it was

found to be expressed in all of them. Clinically,

however, there is a need for diversi® cation.

Although more than half of the patients can be

cured by multimodal therapy, one third of cases

with localized disease and about 80% of patients

presenting with metastases succumb to the disease

(for a recent review, see Kovar et al.1). Current

treatment protocols have largely compensated for

classical prognostic markers such as tumor volume

and localization of the primary except for the rather

unfavorable presence of metastases at diagnosis. It is

likely, therefore, that biological differences exist

between so far incurable aggressive disease and clin-

ically manageable localized disease inexplicable by

the mere presence of the ES-associated gene

rearrangement. While Ewing’ s tumor research has

focused on the clinical exploitability and the func-

tion of the ES-speci® c gene rearrangement since its

discovery in 1992, this review will also consider

extensively the role of additional molecular aberra-

tions in the search for useful prognostic markers.

Neoplastic transformation and metastatic spread is

commonly believed to result from a multi-step pro-
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cess. In this context, the ES-speci® c gene

rearrangement obviously constitutes a rate-limiting

event. According to Knudson’ s legendary two-hit

hypothesis, at least one additional aberration

should be present in a Ewing tumor. It is possible

that this second hit is less speci® c and affects dif-

ferent genes at different times during development

of the enigmatic Ewing tumor stem cell, thus

de® ning distinct subcategories of the disease.

Consequently, Ewing tumor research is slowly

moving towards molecular subclassi® cation and

staging.

Diagnostic tools

In 1988, the cytogenetic translocation t(11;22)

(q24;q12) was described as speci® cally associated

with histopathologically diagnosed ES and periph-

eral primitive neuroectodermal tumor (pPNET).2

The presence of this aberration in a largely undif-

ferentiated small round cell tumor of childhood

turned out to be a formidable diagnostic marker.3,4

However, cytogenetic analysis was restricted to

tumor cells with at least limited in vitro prolifera-

tion potential. The generation of an antibody,

HBA71,5 speci® cally reacting with the surface

glycoprotein encoded by the MIC2 gene,6 which

was found to be abundantly present in tumor cells

carrying a chromosome 22q12 aberration,7,8

enlarged the spectrum of diagnostic tools. How-

ever, embryonal rhabdomyosarcomas, asterocy-

tomas, neuroendocrine tumors and carcinomas

occasionally stained positive with HBA719 and,

when using a more sensitive antibody (12E710),

high level expression of this antigen was also noted

in early hematopoietic precursor cells11 and several

lymphomas.12 The characterization of the ES

break-point regions on chromosomes 22 and 1113

and the subsequent cloning of a chimeric cDNA

resulting from a gene fusion between a novel gene,

designated EWS, and the ETS transcription factor

gene FLI114 allowed for sensitive detection of

tumor cells carrying a 11;22 translocation even

in small samples of fresh, frozen or paraf® n-

embedded material by means of reverse transcrip-

tase polymerase chain reaction (RT-PCR).15 ± 18

Subsequently, several alternative fusion partners for

EWS from the ETS oncogene family were

identi ® ed in ES and pPNET cases19 ± 24 Using the

RT-PCR method, combined with genomic analysis

of the EWS break-point region, on a large series cf

osseous and extra-skeletal ES (including Askin

tumors and pPNET, designated Ewing family of

tumors (EFT)) as opposed to several unrelated

small round cell tumors, the speci® city of the

EWS± ETS gene rearrangement and the correlation

with high MIC2 expression was con® rmed.16 ± 25

Recently, however, the limitation of this aberration

to typical EFT members has been questioned since

RT-PCR ampli® able EWS± FLI1 fusion transcripts

have been reported in childhood soft tissue sarco-

mas with mixed phenotype,26± 27 in some olfactory

neuroblastomas28 which have previously been

shown not to express MIC2,29 and in two cases of

classical MIC2-negative neuroblastoma.30 In the

absence of any cytogenetic evidence for a t(11;22)

in neuroblastoma the latter ® nding needs to

be independently con® rmed. On the other hand,

RT-PCR failed to demonstrate the presence of

chimeric EWS transcripts in roughly 5% of histo-

logically classi® ed EFT. Sceptics might raise their

® ngers and recall all the potential pitfalls of using

RT-PCR including the method’ s inherent suscep-

tibility to cross-contamination as a single tool in

the diagnosis of histopathologically ambiguous

cases of small round cell tumors. Intriguing ques-

tions, i.e. if EWS± ETS gene rearrangements can

occur outside the EFT and if `atypical’ ES exist,

can only be assessed by the use of complementary

techniques allowing for the visualization of the

EWS gene rearrangement on a single cell level. It

has already been demonstrated that ¯ uorescent in

situ hybridization (FISH) using cosmids ¯ anking

the EFT break-point regions is not restricted to

metaphase chromosomes, but is also feasible to

detect the gene rearrangement ef® ciently on inter-

phase nuclei 31,32 (Hattinger et al., unpublished).

Alternatively, antibodies to unique domains of the

chimeric gene product could allow the routine

pathologist to screen for the EWS rearrangement

by standard immunohistochemical methods. The

author and others125, 126 have recently obtained

preliminary indirect evidence from protein interac-

tion studies that an am ino terminal EWS domain,

which appears to be inaccessible in germ-line

EWS, might be speci® cally exposed on the surface

of the chimeric product (see below). One could

endeavor, therefore, to generate an agent that dis-

tinctly recognizes the altered conformation of the

EWS portion present in EWS fusion proteins. The

hinge region of EWS± ETS chimeric proteins dis-

plays a high degree of variability due to variable

break-point locations in the genes contributing to

the translocation. So far, ® ve alternative ETS fam-

ily members have been found in EWS gene rear-

rangements. Therefore, antibodies to the linker

domain of fused partners would be of only limited

use in routine diagnosis. For the analysis of RT-

PCR negative `atypical’ EFT and for sm all round

cell tumors with a diagnosis other than EFT but

RT-PCR positive for an EWS chimeric transcript,

it is strongly recommended to con® rm the molecu-

lar diagnosis by the demonstration of an EWS

aberration on either DNA level (FISH or Southern

blot) or on RNA level by Northern blotting.

Presently, it cannot be excluded that using these

approaches, followed by re ® ned cloning proce-

dures, further ETS family members will be

identi ® ed as alternative fusion partners for EWS in

EFT or non-EFT.
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Fig. 1. Generation of chimeric oncoproteins involving an EW S family member and a transcription factor. Protein domains presumably

involved in RNA binding (RGG boxes and RNP motif) are replaced by the DNA binding portion of the transcription factor. The minimal

domains of the fusion partners present in all chimeras are the carboxy terminal domain (CTD) of the EWS family member and the

DNA binding domain (DBD) of the transcription factor. The carboxy terminal transactivation domain (CTA) of the transcription

factor is lost in fusions of ETS family members but not of CHOP.

The EWS± ETS gene rearrangement

The EWS gene family

EWS is the prototype of a growing family of puta-

tive RNA-binding proteins including TLS (translo-

cated in liposarcoma)/FUS,33 ± 35 hTAF II68 (TATA

box binding protein associated factor),36 the sm all

nuclear ribonuclear protein(snRNP)-associated 69-

kDa protein,37 the bovine Pigpen protein38 and

Drosophila cabeza/SARFH (sarcoma associated

RNA binding ¯ y homologue),39,40 that share dis-

tinct structural characteristics such as a conserved

RNA binding motif ¯ anked by arginine ± glycine ±

glycine (RGG) boxes41 and a putative zinc-® nger

domain in the carboxy terminus. This portion is

replaced by the DNA binding domain of a tran-

scription factor in the oncogenic EWS and TLS

fusion proteins. The amino terminus is rich in

glutamine and proline residues. As such, it resem-

bles the activation domain of certain transcription

factors such as SP-1.42 In EWS, this N-term inal

domain (NTD), which is encoded by the ® rst seven

exons,43 is comprised of 30 copies of a repeated

degenerate peptide of 7± 12 residues rich in

tyrosine, serine, threonine, glycine and glutamine44

(Fig. 1). TLS was identi ® ed as a heterogenous

nuclear ribonucleoprotein (hnRNP) in non-

spliceosomal complexes on mRNA continuously

shuttling between the nucleus and the cytoplasm 45

and SARFH was found to be associated with

regions of the Drosophila chromatin transcribed by

RNA polymerase II. Consistent with a role of EWS

fam ily members in gene transcription, hTAF II68,

TLS and EWS have been identi ® ed in subpopula-

tions of the general transcription factor TF IID.126

However, recent evidence suggests that the onco-

genic derivatives of TLS and EWS are not stably

associated with the RNA polymerase II complex

and TF IID.126 Accumulation in nuclear inclusions

such as the coiled body and the nucleolus have

been reported for Pigpen,46 the 69-kD a snRNP-

associated protein,37 and, after transcriptional inhi-

bition, for TLS.47 Such nuclear subcompartments

might either constitute the site of normal function

of these EWS-related proteins or serve as their

reservoir. Interestingly, oncoproteins that contain

the amino terminal domain of EWS or TLS are also

targeted to the same structure47. So far, the func-

tional relevance of this ® nding is completely

unknown.

A role for EWS and its partner genes in determining the

EFT phenotype

Figure 2 summarizes all known gene fusions involv-

ing either EWS or TLS in human malignancies. In

an NIH3T3 transformation study, the type of tran-

scription factor contributing to the chimeric gene

product determined cell morphology.35 This obser-

vation might in part explain why only members of

the ETS transcription factor family are found in

gene fusions with EWS associated with an EFT

phenotype. However, while EWS and TLS amino

termini appear to be functionally interchangable
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when fused to the transcription factor CHOP in the

in vitro model,35 as well as in myxoid chondrosar-

coma,33,34,48 TLS has never been found to replace

EWS in EFT. In contrast, fusion of TLS to the ETS

family member ERG, which is involved in 10% of

EFT, has been reported for poor prognosis, t(l6;21)

positive, acute myeloid leukemia.49 ± 51 Rearrange-

ment of EWS with other transcription factor genes

such as ATF1, the Wilms’ tumor gene WT1 and the

nuclear receptor CHN/TEC have been shown to be

associated with malignant melanoma of soft parts,

desmoplastic small round cell tumor and myxoid

chondrosarcoma, respectively.52 ± 55 Thus, it is the

speci® c combination of EWS with a subset of ETS

transcription factor genes and/or a particular stem

cell in which these genes are sensitive to illegitimate

recombination that determine the EFT phenotype.

Accessibility to rearrangement by an as yet

unde® ned recombinase might also determine the

incidence of EFT. Zucman et al. reported recently

that sequence analysis of the entire EWS intron 6

region close to the major break-point region in EFT

from Caucasian origin revealed a very high density

of Alu elements resulting from repeated retroposi-

tion during evolution.56 The Alu family of short

interspersed repetitive DNA elements has previously

been demonstrated to be frequently involved in

human gene rearrangements.57 This region was

found to be reduced by 50% due to deletion in the

African population. This inter-ethnic polymorphism

in the EWS gene is accompanied by a striking

difference in the incidence of EFT between popula-

tions of European and African origin.58,59 It should

be noted that the majority of EWS genomic break-

points occur in intron 7 and that intron 6 is, in fact,

never directly rearranged in EFT. So far, only three

EWS genomic break-points have been sequenced,

two in EFT and one in a desmoplastic small round

cell tumor,60 ± 62, none of which contained Alu ele-

ments in the immediate vicinity of the rearrange-

ment sites. Thus, direct proof for the involvement of

Alu elements in EWS translocation is not availab le.

In the published cases, the lack of uniformity of

sequences affected by the gene rearrangement does

not allow the identi® cation of a speci® c recombinase

responsible for the translocation. Chromosome 22

alteration may occur as the only cytogenetically

visible aberration in EFT suggesting that the EWS±

ETS gene rearrangement is not the consequence of

a general genomic destabilization. However, the fre-

quent involvement of more than two chromosomes

in complex chromosome 22 aberrations and evi-

dence for deletion of considerable amounts of

sequences from the directly involved genes on the

untranscribed counterpart of the derivative chromo-

some 2260 imply a complex mechanism for gene

rearrangement in EFT. In addition, while EWS and

FLI1 are equally oriented on the long arms of chro-

mosomes 22 and 11 from the centromere to the

telomere allowing for simple reciprocal transloca-

tion, the ERG gene is oriented in the opposite

direction. Consequently, EWS± ERG gene fusions

may result from either interstitial deletion/insertion

mechanisms63 or from complex genomic rearrange-

ments involving additional chromosomes.24

Although a high variability in EWS fusion partners

and genomic break-point locations has been noted,

rearrangement of EWS intron 7 with intron 5 or 4 of

the ETS family gene FLI1 predominates (about

80% of EFT cases).16,18,24 Interestingly, the only

known three cases of fusion between EWS and the

ETS transcription factor gene FEV involve EWS

intron 10 which is otherwise affected in only 9% of

EFT. Since, as outlined later, the minimal portions

of EWS and its fusion partners contained in all

EFT-derived oncoproteins and required for full in

vitro transformation and transcription activation

function are signi® cantly smaller than the portions

present in the most frequently observed EWS

fusions, it is unlikely that in EFT rearrangement

sites are determined by functional constraints only.

Rather, genomic structure and accessibility might

direct illegitimate recombination to speci® c regions

in the involved genes. Genomic accessibility and

availability of recombinases might vary during the

development of speci® c stem cell lineages. There-

fore, it cannot be excluded that the different EWS

rearrangements de® ne different histogenetic starting

points of EFT development. This model would

provide an intriguing explanation for our recent

observation of prognostic differences in EFT corre-

lating with different EWS fusion types.18 Alterna-

tively, the various chimeric oncoproteins might

display functional differences. Since the complete

EWS and FLI1 genes have been cloned and

sequence information is readily availab le,64 ± 65 the

description of more genomic rearrangement points

in EFT will hopefully throw more light on the

mechanism of gene rearrangement in this disease.

The ETS partner in the EWS fusion gene

The ETS transcription factor family currently

counts more than 30 members. It is characterized by

the presence of a unique DNA binding domain

which is highly conserved from ¯ ies to humans and

has been ® rst described for the viral oncogene v-ets

of avian erythroblastosis virus E26 (E twentysix

speci® c). Several ETS subfamilies can be de® ned on

the basis of evolutionary sequence conservation. In

ET, 95% of cases show EWS fusion to the FLI1

(Friend leukemia virus integration site 1)/ERG

(ETS related gene) subfamily of transcriptional acti-

vators.16,18 These two gene products share, in

addition to almost identical DNA binding domains,

a 16-amino acid stretch immediately upstream of

the ETS domain which is 100% conserved between

Xenopus and humans, suggesting an important but

as yet unidenti® ed functional role.66 This portion is

retained in almost all EWS± FLI1 and EWS± ERG
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Fig. 2. Tumor-speci® c rearrangements between an EWS
family gene and a transcription factor gene.

ETS1, GABP a , and FLI1 have recently been

demonstrated to bind to the transcription factor

PAX5 in vitro.78 A ¯ anking PAX5 binding site

allowed for ETS1 binding to an imperfect ETS

recognition motif indicating that cooperativity might

change ETS binding speci® city to some extent.

Some ETS proteins, including ETS1, ETS2, FLI1,

ERG, GABP a and TEL, share a further conserved

region ¯ anking the amino terminal transactivation

domain, refered to as the `pointed or B-domain’ .

This structure has been shown to de® ne a speci® c

oligomerization interface. For TEL, it governs

homotypic aggregation.79 No interaction partner has

been de® ned for FLI1 and ERG so far. The con-

served fold of the amino terminal domain of ETS

proteins is, however, likely to underlie a conserved

function. Thus, replacement of this portion by the

EWS amino terminus may alter not only quantita-

tively but also qualitatively the transcriptional acti-

vation properties of these two ETS family members

by placing them into a different protein context. In

addition, several ETS family members have been

demonstrated to be a target for the RAS/RAF MAP

kinase signaling pathway. For ETS1, ras regulation

involves phosphorylation of residues within the

amino terminal `pointed’ domain. So far, no link

between this signalling pathway and FLI1 or ERG

has been reported. Consequently, it remains unclear

if fusion to EWS will uncouple FLI1/ERG target

gene regulation from extracellular signaling.

In about 1% of ET cases, EWS is rearranged with

FEV (® fth Ewing’ s tumor variant) on chromosome

2.21 This ETS family member displays 90% identity

to FLI1 in the DNA binding domain but the FLI1-

and ERG-speci® c ¯ anking 16 amino acid sequence

is missing in this protein. Interestingly, FEV also

lacks an amino terminal transactivation domain pre-

sent in most other ETS family members. Instead, it

carries a long C-terminus which, because of the

presence of abundant alanine residues, might serve

as a putative repressor domain. However, exper-

imental proof for such an activity is not yet avail-

able. Since this portion is retained in the EWS

fusion, it remains to be established if the gene

rearrangement would result in a functional conver-

sion to an activator. Interestingly, germ-line FEV

cDNA has been cloned from an EWS± FLI1 express-

ing Ewing tumor cell line, indicating coexpression of

the two genes within the same cell. If EWS± FLI1

and FEV target the same genes and FEV operates as

a repressor, it is possible that the EFT gene

rearrangement results in the release of these genes

from transcriptional inhibition by competitive bind-

ing.

So far, three cases of suspected EFT have been

reported in which EWS was fused to ETS family

genes of a different subclass on chromosomes 7p22

and 17q21, ETV1 (ETS translocation variant 1) and

E1AF (Adeno virus E1A enhancer binding factor),

the putative human homologues of mouse ER81 and

fusions, while the genuine FLI1 and ERG transacti-

vation domain is always replaced by the EWS amino

terminus resulting in a potentiation of transcrip-

tional activation properties.67 ± 69 The 85-amino acid

DNA binding domain folds into three helices and

a four-stranded û sheet (winged helix-turn-helix

motif),70 ± 72 most frequently refered to as `the ETS

domain’ . In some ETS family members, this

domain is ¯ anked by auto-inhibitory a helical struc-

tures that fold back and interact with the ETS

domain.73 Structural studies on murine ETS1 sug-

gest that upon speci® c binding to DNA a conforma-

tional change takes place that might expose distinct

portions of the ETS domain and its ¯ anking regions

for interactions with other proteins.74 DNA binding-

dependent complex formation with other transcrip-

tion factors mediated by the ETS domain and

additional residues has been reported for several

ETS family members including GABP ~ , ELK1,

SAP1, Pu1, ETS1 and ETS2.75 As demonstrated

for ETS1, when binding to the speci® c recognition

sequence, intercalation of a tryptophan into the

minor groove induces a sharp kink and a widening

of DNA that might facilitate synergistic binding of

other regulatory proteins.76 Since almost all ETS

proteins bind to a (G/C)(A/C)GGA(A/T)T consen-

sus motif,75,77 synergy with other transcription fac-

tors might determine target speci® city of the

individual ETS family members. Interestingly,
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PEA3, respectively.19,20,23 Most notably, the DNA

binding domains of these two transcription factors

diverge from FLI1, ERG and FEV by 38% includ-

ing the third a -helix that contacts the central core of

ETS binding sequences. Do EWS± ETV1 and

EWS± E1AF chimeric transcription factors target the

same genes as EWS± FLI1, EWS± ERG and EWS±

FEV? By a subtractive cloning strategy for genes

differentially expressed in EWS± FLI1-transformed

and FLI1-transfected untransformed murine

® broblasts (NIH3T3), several potential EWS± FLI1-

speci® c target genes were identi® ed.80 Among them

were the murine homologue of cytochrome P-450

F1, cytokeratine 15, a novel SH2 domain containing

protein, EAT2 (EWS± FLI1 activated transcript 2)81

and the stromelysin gene. Stromelysin is a matrix

metalloproteinase involved in metastatic invasion.

Previously, E1AF has been demonstrated to regu-

late the stromelysin gene. In transfection experi-

ments, E1AF was suf® cient to confer an invasive

phenotype to non-metastatic human breast cancer

cells (MCF7)82 and antisense RNA to E1AF was

able to revert it in a squamous cell carcinoma cell

line.83 Stromelysin has also been demonstrated to be

activated by ETS2, a member of another ETS sub-

family.84 However, coexpression of ERG, which also

strongly binds to the same promoter but is by itself

unable to activate it, resulted in inhibition of ETS2-

mediated stromelysin gene activation.85 Thus, dif-

ferent ETS family members, irrespective of their

subclass, appear to compete for binding to speci® c

target genes. It is likely, therefore, that target selec-

tivity and the speci® c mode of gene regulation by

the EWS chimeric ETS transcription factors

strongly depends on the cellular background. A

spectrum of ETS-related gene products coexpressed

with EWS± FLI1 in EFT cell lines by ampli® cation

of ETS DNA binding domain encoding cDNAs has

recently been de® ned using degenerate primers.86

Among them, ETS2, E4TF1-60, ELK, ELF1, the

putative human homologue of ER71, and a novel

gene product ELFR were identi® ed.127 None of the

ETS family members involved in EFT-speci® c gene

rearrangements were found to be expressed in their

germ-line con® guration. This assay, however, may

have missed low level expression of some ETS fam-

ily members (i.e. FEV). As shown in Fig. 3 compar-

ing the DNA binding domains of the ETS gene

products alternatively fused to EWS in EFT with

those found to be coexpressed with the chimeric

transcription factors, ELK is the most likely ETS-

related gene product that might interfere with the

EFT fusion proteins in target site selection because

the DNA-contacting third a -helix of the ETS

domain is identical to that of FLI1, ERG and FEV.

ELK is one of several alternative ternary complex

factors regulating a number of growth factor

inducible genes.87 In fact, EWS± FLI1 can replace

ELK within the ternary complex formed on the

serum response element of the cfos and the EGR1

promoters.88,89 In contrast to germ-line FLI1, bind-

ing of EWS± FLI1 to the serum response element

did not require interaction with the serum response

factor SRF. Ternary complex formation by FLI1

and EWS± FLI1 was mediated by a domain preced-

ing the DNA binding domain and present in the

majority of EFT-derived EWS± FLI1 fusions that

show limited similarity to the ELK1± SRF interac-

tion domain. However, no homologous structure

can be identi ® ed in ERG and evidence for EWS±

ERG involvement in ternary complex formation is

not available.

In summary, current knowledge about normal

and aberrant ETS proteins suggest a number of

interesting candidate target genes for the EFT-

speci® c chimeric transcription factors, potentially

involved in the regulation of cell growth, signaling

and metastasis, as revealed by the study of het-

erologous cellular systems such as murine

® broblasts. However, ample evidence exists that

ETS transcription factor action is largely context

speci® c. For EFT, the cell of origin remains a

matter of speculation. Because of limited neural

differentiation potential, EFT is considered as de-

rived from the neuroectoderm.90 Interestingly,

Xenopus FLI1 has been shown to be expressed in a

restrictive pattern during embryogenesis evocative of

neural crest cell invasion.66 It is therefore speculated

that FLI1 might be involved in neural differentiation

in the context of these early stem cells. If so,

unscheduled activation of FLI-responsive genes by

the EFT-speci® c EWS fusion proteins in an undif-

ferentiated cell possibly unrelated to the neural crest

might result in limited neural differentiation of the

EFT stem cell depending on the degree of determi-

nation achieved at the time of gene rearrangement.1

This model could explain the variable degree of

neuroectodermal marker expression in ES and

pPNET as well as the occurrence of biphenotypic

tumors.26

The rate-limiting (® rst) hit in EFT pathogenesis

EWS± ETS gene rearrangements are the only genetic

aberrations that have so far been identi® ed as highly

associated with histologically diagnosed EFT. This

association is the only available compelling argu-

ment that EWS± ETS gene rearrangements can be

rate-limiting for tumorigenesis. Although comple-

mentary experimental evidence supports this

assumption, the mechanism of malignant transform-

ation by these chimeric oncoproteins remains elus-

ive. The best studied biological model for the

pathogenic role of inappropriately activated FLI1 is

Friend murine leukemia virus(F-MuLV)-induced

erythroleukemia. Insertional activation of the FLI1

gene appears to be the ® rst detectable genetic

change associated with this disease. The association

between the detection of FLI1 rearrangement and

clonal outgrowth of erythroleukemia cells suggests
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that the activation of this transcription factor may be

affecting the self-renewal potential of the infected

erythroid progenitors. However, leukemogenesis

proceeds in multiple steps and additional aberra-

tions affecting viability of cells (e.g. inactivation of

the tumor suppressor gene p53) can be observed in

F-MuLV induced erythroleukemia.91,92 In contrast

to ERG,93 normal FLI1 was reported to be unable

to transform murine ® broblasts (NIH3T3) while

expression of an EWS fusion protein resulted in

pronounced anchorage-independent clonogenicity

of NIH3T3 cells.94,95 However, rat embryo

® broblasts and some murine ® broblast subclones

were resistant to EWS± FLI1-mediated transform-

ation. These ® ndings again suggest that the onco-

genic potential of normal and aberrant FLI/ERG

ETS subfamily members may depend on a cell

type-speci® c availability of relevant synergistic fac-

tors and possibly on the presence of additional

aberrations. NIH3T3 transfection studies with vari-

ous recombinant EWS± FLI1 deletion mutants

revealed a dependence of transformation on both

the EWS portion and the ETS domain.95 However,

optimal transactivation potential mediated by the 30

EWS amino terminal degenerate repeats included in

almost all EFT-derived fusion proteins was dispens-

able for maximal focus formation of transfected

NIH3T3 in soft agar. The minimal EWS domain

required to transform murine ® broblasts was delin-

eated to the ® rst 82 amino acids.94 Recently, evi-

dence obtained shows that within the EWS± FLI1

fusion protein, but not within germ-line EWS, this

peptide directly contacts a component of the RNA

polymerase II complex, RPB7, and that this interac-

tion is suf® cient to drive EWS± FLI1-mediated

reporter gene transactivation.125 Interactions of full-

length EWS with the general transcription factor

TFIID, an essential component of the transcrip-

tional preinitiation complex, were absent from EWS

fusion proteins.126 It is therefore possible that fusion

of the EWS amino terminus to the FLI1 DNA

binding domain alters the protein conformation and

directly recruits RNA polymerase II to FLI1 target

genes. Since RPB7 displays similarities to prokary-

otic sigma factors, it might be involved in EFT-

speci® c target site selection. Further protein± protein

interactions presumably occurring downstream of

the 82 amino acids might be required for ef® cient

gene regulation within the EFT context. In

addition, using the yeast two-hybrid protein interac-

tion trap, further candidate proteins not directly

related to transcription regulation were identi ® ed

that interacted with the 82 amino acids long mini-

mal transformation domain. These interactions

await detailed characterization.

Since no tissue of EFT origin has been identi ® ed

so far, transformation studies of authentic EFT stem

cells cannot be performed. Alternatively, several

investigators have used EWS± FLI1 antagonists

(antisense RNA expression vectors, antisense

oligonucleotides, dominant negative proteins) to

modulate expression of the chimeric oncoprotein in

EFT cell lines.86,96 ± 98 These studies revealed a

growth inhibitory and anti-tumorigenic effect of

these agents. Reduction in cell growth appeared to

result from cell cycle arrest and not from reduced

tumor cell viability. Recently, EWS± FLI1-mediated

transformation of murine ® broblasts was demon-

strated to require the presence of a functional

insulin-like growth factor-1 (IGF1) receptor.99

Interestingly, consistent expression of IGF1 and its

receptor was previously reported for EFT and IGF1

was demonstrated to act as a potent growth factor

for EFT cells in the absence of serum.l00 ± l03 This

cytokine appears to regulate negatively several

mechanisms of programmed cell death at a far

downstream step.104 It has been shown that inhi-

bition of the IGF1 autoregulatory circuit by anti-

IGF1 receptor antibodies resulted in increased

apoptosis and reduced tumorigenicity of EFT

cells.l03 Taken together, the EWS± ETS gene

rearrangement appears to be involved in the aber-

rant self-renewal capacity of EFT cells but might

not be suf® cient to guarantee survival of initiated

tumor cells. However, as demonstrated recently,

there might still be some role for FLI1, ERG and

their EWS fusions to play in the protection from

stress (i.e. calcium ionophore and serum depri-

vation)-induced cell death.105

The second hit

Assuming that the EWS± ETS gene rearrangement is

able to initiate EFT pathogenesis but is not

suf® cient to generate malignant transformation, the

presence of additional mutations must be postu-

lated. These aberrations might not necessarily be

tumor speci® c but may display inter-individual vari-

ation that could account for variations in EFT phe-

notype as well as in clinical behavior. Also, they may

determine differentiation capacity, invasive potential

and treatment resistance. Consequently, while from

a clinical point of view the EWS± ETS gene

rearrangement provides a valuable diagnostic tumor

marker, knowledge about the nature of additional

aberrations in EFT may assist subclassi® cation and

provide prognostic tools. Since studies on facultative

genetic anomalies in EFT have been largely

neglected since the discovery of the EWS± ETS gene

rearrangements, enhanced efforts to de® ne the mul-

titude of additional aberrations are warranted for the

bene® t of patients.

Clues from cytogenetics

In three independent reviews of cytogenetically

informative EFT cases, non-random numerical and

structural chromosomal aberrations were reported

to occur with variable frequencies in addition to the
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tumor speci® c t(11;22)(q24;q12)106 ± 107 (Hattinger et

al., unpublished). These include trisomy 8 in about

50% of cases frequently coupled with trisomy 12

occurring in roughly 20%, and a derivative chromo-

some 16 as a result of an unbalanced t(1;16) in 18%

of EFT. In rarer cases, other aneuploidies have

been identi® ed. Structural chromosome 1 aberra-

tions that either result in gains of chromosome

1q21± 22 or relative losses of the short arm of chro-

mosome 1, a frequent alteration in neuroblastoma

and other neuroectodermal tumors, have also been

observed in EFT (Hattinger et al., unpublished).

Interestingly, this chromosomal region harbours a

gene encoding a protein (p73) that is structurally

and functionally related to the tumor suppressor

p53, a transcription factor involved in the regulation

of cell growth and apoptosis, and frequently inacti-

vated during the progression of many tumors.108,109

While research currently focuses on the role of

p73 for neuroblastoma pathogenesis, its relevance

for a subset of EFT is something that has to be

explored.

In general, excluding chromosome 22q12 translo-

cations, numerical chromosome changes are the

most frequent cytogenetic ® ndings in EFT. These

are likely to affect gene dosage. However, no candi-

date genes that could promote EWS± ETS-initiated

EFT pathogenesis when expressed at aberrant levels

have been identi® ed so far. Also, information on

genes affected by the recurrent chromosome 16 and

1 structural alterations is not available yet. Fre-

quently, these cytogenetic alterations occur in only a

subpopulation of neoplastic cells within the tumor

suggesting that they may be associated with late

stages of tumor progression.

The role of non-speci ® c cancer genes

In the absence of recurrent candidate progression-

associated genetic alterations identi® able in EFT by

the means of cytogenetics, work has focused on the

analysis of mutations generally associated with a

broad range of human malignancies. Genes investi-

gated during the last years include the oncogenes

ras, cmyc and MDM2, the tumor suppressors p53,

p16, and Rb, the metatasis-associated splice

variants of the CD44 adhesion molecule, and

the tumor-speci® c metastasis suppressor gene

nm23H1.110 ± 113,127 None of the studied oncogenes

was found to be altered by mutation or in expression

although occasional low level ampli® cation of

MDM2 has been reported in an independent study

on a similar sized cohort of EFT patients.111 Neither

mutation nor differences in expression levels of the

nucleotide diphosphate-kinase nm23H1 were

observed irrespective of the disease extension.112

Only standard CD44 expression was detectable in

EFT.127 In contrast, homozygous deletions of the

p16 tumor suppressor was identi® ed in about one-

third of primary EFT samples. This ® nding was

surprising since chromosomal aberrations of band

9q21 containing the p16 gene were not reported

before suggesting a high-frequency of microdele-

tions. Expression studies on EFT cell lines sug-

gested that the frequency of p16 inactivation might

be even higher since post-transcriptional gene

silencing was observed in several cases.113 p16 acts

as an inhibitor of the cyclin D1/cyclin-dependent

kinase 4 (CDK4) complex that inactivates the cell

cycle inhibitor pRb by phosphorylation. Inactivation

of p16 should compromise the G1 cell cycle check-

point. Over-expression of either cyclin D1 or

CDK4, or loss of pRb function, is believed to medi-

ate a similar effect.114 In fact, we observed frequent

cyclin D1 over-expression as well as variable CDK4

abundancy in EFT cell lines and loss of Rb in one

case. However, expression data from primary tumor

material are not available yet. In addition, low level

CDK4 ampli® cation was previously reported for two

of 30 EFT samples.111

In virally induced malignancy, G1 check-point

control is frequently compromised by concomittant

inactivation of the pRb and p53 pathways. In

addition, F-MuLV-induced erythroleukemia in-

volves not only the activation of the FLI1 oncogene

as a rate-limiting step but also mutation of p53. The

author and others have, therefore, investigated the

status and expression of p53 and related genes in

EFT.110,115 The frequency of p53 mutations in pri-

mary tumors was found to be lower than 10% as

opposed to a mean frequency of 40± 60% in most

human malignancies. In contrast, in about half of

EFT cell lines, the p53 gene was mutated and

showed loss of heterozygosity. Comparison of p53

gene status between cell lines and the respective

primary tumors of origin, when available, demon-

strated that the observed increase in mutation fre-

quency was due to selection and was not acquired

during in vitro expansion of tumor cells. This result

suggested that p53 mutation might release EFT cells

from some in vivo growth or survival factor depen-

dency. Transient transfection and over-expression of

wildtype p53 in cell lines with endogenous mutant

or wildtype gene status demonstrated frequent but

variable reduction in apoptotic responsiveness,116

suggesting the presence of some as yet unidenti® ed

cell-protective mechanism in EFT cell lines. Prelim-

inary expression analysis of members of the cell

death regulatory Bcl2 gene family did not reveal any

signi® cant variations between individual EFT cell

lines (our unpublished observations). Previously,

high levels and activity of poly(ADP-ribose) poly-

merase, a nuclear enzyme that participates in DNA

replication, repair and the triggering of apoptosis

induced by DNA strand breaks, have been reported

for some EFT cell lines.117 Sensitivity of EFT cell

lines to DNA damaging agents (etoposide, actino-

mycin D, X-rays) varied considerably in a manner

independent from p53 responsiveness and endoge-

nous p53 gene status suggesting that complete



12 H. Kovar

mutational or partial inhibition of the p53 apopto-

sis pathway in EFT cell lines plays a role different

from radio- and chemosensitivity. However, the

physiological signals that stimulate p53-dependent

cell death have not been de® ned so far.

Molecular markers of prognosis

As a result of variable break-point localization in

the involved genes, EWS± ETS gene products vary

considerably in size. Most fusions include EWS

exons 1 to 7 (89%) and FLI1 exons 6 to 9 (54%).

EWS/FLI1 exon 7/6 fusions (type 1) predominate

independent of the disease extension (51%). In

about one-third of EFT, FLI1 exon 5 is included

into the chimeric gene product, most frequently

joined to EWS exon 7 (type 2) (27%). In rare

cases, the chromosomal translocation results in the

inclusion of EWS exons 9 (1%) or 9 plus 10 (10%)

or FLI1 exon 4 (1%). In about 3% of cases, FLI1

exon 6 or exon 6 plus 7 are missing from the gene

fusion. This variability has prompted us to investi-

gate a possib le prognostic impact of the gene fusion

type. The study, performed on 55 patients with

localized disease and 30 patients with metastases at

diagnosis, treated according to the European Inter-

group Coordinated Ewing’ s Sarcoma Studies

(CESS 86 and EICESS 92), revealed a signi® cantly

better outcome for patients with localized disease

carrying a type 1 EWS± FLI1 expressing tumor as

compared to non-type 1 cases.18 A recent update

after a median observation time of 3
1

2
years

con® rmed this result (Zoubek et al., unpublished).

In addition, an independent American study per-

formed on a similar sized cohort of patients after a

median follow up of 31 months, using a similar

treatment regimen, not only supported our ® ndings

but also identi® ed the EWS± ETS gene fusion type

as a prognostic marker independent from the pres-

ence of metastases at diagnosis in a multi-variate

analysis.128 About 55% of the `non-type 1’ group in

the two studies were comprised of type 2 gene

fusions. Because of the low incidence of the indi-

vidual `other-gene’ fusion types, no distinction has

been made between various non-type 1 subgroups

so far. In the absence of a biological explanation

for the observed prognostic differences, large col-

laborative prospective studies are warranted to

highlight the speci® c chimeric molecules and the

protein domains associated with adverse patients’

outcome.

Still, about 20% of patients with localized

tumors and more than half of the patients with

metastases succumb from the disease despite the

expression of a type 1 EWS± FLI1 gene fusion, sug-

gesting the existence of additional adverse factors.

Comparison of pl6 gene status and clinical

course of 23 EFT patients analyzed so far sug-

gested an adverse prognosis associated with this

aberration independent from the extension of the

disease.113 These results, which have not been sub-

jected to statistical analysis, must be considered as

preliminary since patients’ numbers in the study

were small and the median observation period did

not exceed 2 years. Retrospective immunohisto-

chemical analysis of biopsy material from a large

number of patients will help to clarify the prognos-

tic relevance of a disrupted pRb cell cycle regula-

tory pathway in EFT. Also, mutation of p53 might

be linked to an adverse outcome, since none of the

three EFT patients from our series carrying such

an aberration survived. However, because of the

rarity of this alteration it cannot serve as a useful

prognostic marker.

A prognostic relevance for EFT of the observed

numerical and structural cytogenetic changes has

not been demonstrated with con® dence due to low

sample numbers in the studies performed so far.

Most recently, deletion at 1p36, occurring in 6/22

localized EFT, was discussed as being associated

with unfavorable outcome in this group (Hattinger

et al., unpublished).

In the absence of reliable molecular markers to

predict outcome in EFT, the presence of clinically

overt metastases at diagnosis is commonly con-

sidered as the only prognostic criterion that is used

for treatment strati® cation. The EWS± ETS gene

rearrangement as a tumor cell speci® c marker

detectable by the highly sensitive RT-PCR method

provides a powerful means for the detection of

minute numbers of circulating tumor cells that may

be the source of clinically occult micrometas-

tases.118,119 However, except shortly after surgical

intervention,120 mobilization of PCR detectable

amounts of tumor cells ( . 1/106) into the blood-

stream has rarely been observed. In contrast, tumor

cells were detected at diagnosis by this method in

the bone marrow of 30% of patients with localized

disease, 50% of cases with isolated lung metastases

and all patients with bone metastases.120,121 In a

preliminary series of 23 patients lacking clinically

overt dissemination, RT-PCR screening for bone

marrow involvement did not allow the prediction of

early relapse after a median observation time of 30

months. It is, however, necessary to recall several

factors that may affect tumor cell detection in the

bone marrow by RT-PCR: (1) tumor cell

in ® ltration may be focal and bone marrow aspir-

ation may miss these sites, (2) bone marrow aspi-

rates may contain variable amounts of diluting

blood resulting in insuf® cient sensitivity, (3) pri-

mary EFT cells may differ in vitality, although

diluted tumor cells from cell lines can be detected

in blood samples even after 48 h at 4°C, 119 and

(4) bone marrow in® ltrating tumor cells may be in

a resting state and express lower levels of chimeric

EWS RNA than proliferating tumor cells. RT-PCR

measures RNA quantity rather than tumor cell

abundance. In a recent study, up to 10-fold varia-

tions in the content of chimeric EWS± ETS tran-
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scripts between individual EFT cell lines have been

reported.122 Moreover, germ-line EWS expression in

T-cells has been demonstrated to depend on the

proliferative activity.123 Since the EFT-speci® c chro-

mosomal rearrangement places the chimeric gene

under the control of the EWS regulatory sequences,

it is possible that EWS± ETS gene expression may

also vary. Consequently, detectability of EWS± ETS

chimeric transcripts does not necessarily re¯ ect true

tumor cell content. Even if RT-PCR studies fail to

demonstrate signi® cance of positive blood or bone

marrow screening results for relapse in patients with

localized disease, the question of prognostic rel-

evance of tumor cell in ® ltration remains unsolved.

To assess this problem, immunohistochemical stud-

ies may prove to be superior to RT-PCR. While

MIC2 may serve as a valuable surface marker in

tumor diagnosis, its exploitability for tumor cell

detection in hematopoietic tissue is limited.124 The

recently discovered expression of gastrin-releasing

peptide (GRP) by all EFT cell lines and about half

of the primary tumors tested (Lawlor et al., unpub-

lished) may provide a marker that, in conjunction

with MIC2, may allow the identi ® cation of EFT

cells in blood and bone marrow with increased

speci® city. The study of EWS± FLI1 transcriptional

targets may result in the identi® cation of tumor

cell-restricted immunohistochemical markers. In

order to detect positively staining cells with very low

abundance on a routine basis, automated micro-

scopic screening and consequently sophisticated

technical equipment is warranted.

Conclusions

In this review, I have summarized evidence for the

importance of studying EFT-speci® c genetic alter-

ations in an authentic cellular background. Since the

histogenesis of EFT is still enigmatic and no exper-

imental evidence for EWS± FLI-mediated tumorige-

nesis has been reported from transgenic mouse

models so far, EFT cell lines remain the only avail-

able system for such investigations. In this insti-

tution, cell lines could be established from 12 EFT

patients with well documented clinical course. If a

cell line could be expanded from the primary tumor,

all subsequent tumor samples also gave rise to a cell

line. All but one patient died from the disease

suggesting that establishing a cell line selects for

patients with adverse prognosis. In fact, non-type 1

EWS± ETS gene fusions, p16 deletions and p53

mutations were clearly increased in EFT cell lines

from 23 patients investigated. They may, therefore,

represent the most therapy-resistant subpopulation

of tumor cells despite variable in vitro sensitivity to

cytotoxic agents. Thus, EFT cell lines may serve as

a pool for the identi ® cation of putative bad prognos-

tic markers. However, only large cooperative clinical

studies and multivariate statistical analysis will

help to address the question: how far can the

identi ® cation of such markers translate into clini-

cally useful criteria for treatment strati® cation?

When comparing a wide spectrum of EFT-derived

cell lines for marker expression and response to

either differentiation inducing agents, growth factors

or cytotoxic compounds, an immense variability was

observed. Consequently, in order to sort out the

biological defects common to all EFT, a large panel

of genetically well de ® ned cell lines will have to be

investigated. In the long term, such studies will

result in the identi ® cation of EWS± ETS-speci® c

target genes and in a more detailed knowledge of the

mechanism of malignant conversion of the enig-

matic EFT precursor cell. Hopefully, for the bene® t

of the patients, this knowledge will potentially pro-

vide novel targets for therapeutic intervention.
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