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Abstract: In this paper, we propose a data-driven approach for the reconstruction of unknown room
impulse responses (RIRs) based on the deep prior paradigm. We formulate RIR reconstruction as
an inverse problem. More specifically, a convolutional neural network (CNN) is employed prior, in
order to obtain a regularized solution to the RIR reconstruction problem for uniform linear arrays.
This approach allows us to avoid assumptions on sound wave propagation, acoustic environment, or
measuring setting made in state-of-the-art RIR reconstruction algorithms. Moreover, differently from
classical deep learning solutions in the literature, the deep prior approach employs a per-element
training. Therefore, the proposed method does not require training data sets, and it can be applied to
RIRs independently from available data or environments. Results on simulated data demonstrate
that the proposed technique is able to provide accurate results in a wide range of scenarios, including
variable direction of arrival of the source, room T60, and SNR at the sensors. The devised technique is
also applied to real measurements, resulting in accurate RIR reconstruction and robustness to noise
compared to state-of-the-art solutions.

Keywords: room impulse response; convolutional neural networks (CNNs); interpolation; sound
field reconstruction; inverse problems

1. Introduction

The processing of sound fields requires the acquisition of multichannel signals in order
to characterize the acoustic properties of a given environment. To this end, room impulse
responses (RIRs) captured with microphone arrays are particularly useful, as they model
the propagation of the sound between the acoustic source and the array of microphones
in the considered room. It follows that the measure of RIRs is at the basis of many tasks
in sound field processing and control [1,2]. In particular, solutions to space-time acoustic
field processing problems such as sound source localization [3], separation [4,5] and sound
field navigation [6] take advantage of information provided by multichannel acquisitions.
RIRs can also be employed for augmented and virtual reality applications, where the user
explores the acoustic environment through immersive audio.

An RIR is customarily measured through specifically designed signals, e.g., sine
sweeps, emitted by a loudspeaker and recorded by a microphone placed at specific points
in the room [7–9]. In order to acquire the sound field, while satisfying the Nyquist–
Shannon sampling theorem in the audible range, i.e., up to 20 kHz, the minimum distance
between two sensors should be roughly lower than 1 cm. It follows that the acoustic
analysis of large enclosures through the measurement of RIRs is a time-consuming and
hardware demanding operation, because many sensors or a moving microphone [10] are
required, also considering the fact that the measurement has to be repeated for all the
source positions of interest. It follows that the aforementioned requirements constitute a
limitation for practical implementations of applications where the sound field has to be
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known over a large region. A demand for solutions to reduce the burden of RIR acquisition
and processing has therefore arisen in the research community.

Different approaches to sound field reconstruction from a reduced number of micro-
phone measurements have been presented in the literature. The goal is either the interpola-
tion or the extrapolation of RIRs related to locations different from those in which physical
microphones or loudspeakers are placed. We can mainly identify two categories of sound
field reconstruction solutions: parametric methods [11–15] and non-parametric [16–21]
techniques. On the one hand, parametric solutions [11–15] rely on simplified parametric
models of the sound field. Hence, the target of these techniques is to convey an effec-
tive spatial audio perception to the user rather than a perfect reconstruction of the sound
field. On the other hand, non-parametric methods [16–18,20–26] aim to numerically esti-
mate the acoustic field. In this category, the sound field is typically modelled as a linear
combination of solutions of the wave equation [27], e.g., plane wave [25,26] or spherical
wave [22–24,28,29] expansions. Alternatively, RIRs are expressed through their modal
expansion [16,17] or exploiting the equivalent source method (ESM) [30]. In general, many
of these techniques employ compressed sensing principles [31] in order to estimate the data
from the undersampled sound field enabling the reconstruction in the target locations.

In [16] the authors adopt the common-acoustical pole and residue model originally
proposed in [17] for modeling the RIR in the frequency domain, i.e., the Room Transfer
Function (RTF). The model discussed in [17] splits the RTF in two components: the acousti-
cal poles that represent the resonance frequencies of the room and the residue that depends
on the source-receiver locations. From a set of microphones distributed in the room the
model parameters are estimated in [16] through sequential non-linear least squares opti-
mization. The reconstruction accuracy of this approach is limited to the low frequencies
due to the inherently restricted validity of the modal representation.

Techniques based on the ESM [30] do not suffer from low frequencies limitations since
the propagation is modelled using Green’s functions [27]. Approaches in this category
typically rely on compressed sensing frameworks and may work directly in the time domain.
In [21], the authors exploit the sparsity of the RIR signal in order to derive a dictionary
of equivalent sources, defined as time-domain equivalent source method (TESM). The
technique is evaluated for far-field measurements in source-free volumes.

A different approach is adopted in [18], where the sound field is decomposed into
its direct and reverberant components. Under the assumption of confining all the sources
in a prescribed region, the direct sound is modelled as a spatially sparse distribution
of monopoles (ESM). Conversely, the reverberation is expressed as a sparse distribution
of plane waves and a low-rank component. Recently, in [19] the authors expanded this
approach including an explicit model of the early reflections through a sparse set of
image sources.

The aforementioned techniques are built on some sparse representations in conjunction
with assumptions on the properties of the acoustic space, i.e., far-field distance, absence
of diffraction, and position of the sources inside the room. As long as the hypotheses are
met, the methods are able to reconstruct the RIRs. However, a great variety of acoustic
environments and setups exist that might differ from the assumed settings.

In [20], compressed sensing is employed to directly exploit the inherent signal struc-
ture of the RIRs without adding further assumptions. As a matter of fact, the mathematical
structure of the wavefronts provides all the information related to the sound propagation in
the environment. This enables in [20] the interpolation of RIRs in a Uniform Linear Array
(ULA). The same strategy was previously adopted for interpolating seismic traces [32],
a problem akin to the reconstruction of RIRs since it also concerns the recovery of prop-
agating wavefronts in a medium. In practice, in [20] RIRs are modelled using a set of
elementary functions, namely the shearlets [33], i.e., a dictionary of wavefronts with several
sizes, orientations, and delays. The final reconstruction is thus given as the solution of
a sparse optimization over the dictionary of shearlets. Although this method provides
accurate results, the performance is highly affected by the background noise, as noted
in [20].
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Recently, deep learning [34] emerged as an effective approach for a wide range of
problems in the field of acoustics [35–39] including RIR reconstruction. The work in [40]
proposes a deep-learning-based solution to the sound field reconstruction problem, given
a limited number of arbitrarily distributed measurements. The authors in [40] employ
a convolutional neural network (CNN) with a UNet-like architecture [41] for recovering
the RTF of a room. This solution is inspired by the literature on computer vision, where
similar architectures proved to be effective for performing image inpainting [42] and super-
resolution [43]. The CNN is trained over a RIR dataset of simulated rectangular rooms
and tested on measurements acquired in a real rectangular room. The main limitation of
this data-driven approach lies in the generalization to more complex acoustic scenarios,
which would require the extension of the training set [40]. In addition, similarly to [16,17],
the system in [40] is limited to the low frequencies (up to 300 Hz).

In this manuscript, we propose a novel data-driven approach to the problem of
RIR reconstruction. Our technique is inspired by the effectiveness of previous solutions
adapted from the literature of image restoration [40] and seismic data interpolation [20].
In particular, we aim to solve the RIR reconstruction problem by adopting the so called
deep prior approach [44,45]. Recently, Deep Image Prior (DIP) [44] has been introduced as
a new framework for solving image restoration tasks (e.g., inpainting, denoising, super
resolution, etc.). The same deep prior strategy has been applied also for the interpolation
of seismic traces [46–48], vibrational data [49], and denoising of audio signals [50]. The
main idea of DIP is to interpret restoration as an inverse problem, for which the adopted
CNN provides a regularization prior [44]. During the optimization loop, the CNN learns
a mapping from a random input to the output only by exploiting the information in the
available data. Capturing the underlying structure of the data, the CNN is thus able to
reconstruct the desired output in an unsupervised fashion without the need of training data
sets. This flexibility comes at the cost of repeating the optimization for each target output,
namely the network is trained for one output only. However, the per-element training
is particularly interesting in the context of RIR reconstruction, due to the wide diversity
of acoustic conditions in which one could be interested to perform RIR reconstruction
e.g., reverberation time of the room, location of the sources with respect to the sensors,
presence of diffraction, noise, etc.

The network architecture adopted in this work for the deep prior framework is a
MultiResUNet [51]. The specific task we aim to solve is that of interpolating RIRs in a ULA,
i.e., some of the channels in the array are missing. Similarly to [20], our solution works
with signals in the time domain. Hence, no inherent frequency limitations are given by
the system. In addition, no specific constraints on the environment or setup are imposed.
However, differently from [20], where the underlying structure of the data is described
using handcrafted features (shearlets), here, we exploit the representation power of CNNs
to directly learn the inherent and hidden structure of RIRs from the data. Moreover, due to
the regularization properties of the deep prior [45] approach, the method in this manuscript
is also robust to additive noise.

The proposed method is validated through an extensive simulation campaign in
Section 4. Simulated data allows us to test the performance in a wide range of scenarios
synthesizing the RIRs with different characteristics. As a matter of fact, RIRs are generated
varying acoustic parameters, such as the room reverberation time, the location of the
sources and the signal-to-noise ratio. In addition, in order to assess the performance of the
RIR reconstruction with real data, in Section 5, we adopt measured RIRs acquired using
ULAs in [20]. Hence, the proposed RIR reconstruction technique based on DIP is evaluated
on real measurements, comparing the results with linear interpolation and the state-of-the-
art method in [20]. The results in Sections 4 and 5 show that the proposed solution provides
accurate reconstruction of RIRs independently from the various considered scenarios.

The rest of the paper is structured as follows. Section 2 introduces the signal model
and the concept of RIR image; then RIR reconstruction is formulated as an inverse problem
whose solution is retrieved through the DIP approach. In Section 3, the adopted architecture
and the loss function are described in detail. The performance of the proposed method
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is assessed in Section 4 through extensive simulations. Section 5 provides results on real
measurements and a comparison with the state-of-the-art technique presented in [20].
Finally, Section 6 draws conclusions and proposes some possible future works.

2. Problem Formulation
2.1. Rir Data Model

Let us consider an acoustic source located at an arbitrary position r′ = [x′, y′, z′]T

and an ULA with M microphones. Given the distance d between two consecutive sensors,
the position of the ith microphone in the ULA is defined as ri = [xa, (i − 1)d, za]T with
i = 1, . . . , M and xa, za fixed for all the sensors in the ULA. Under the assumption that
the acoustic system in which the source and the ULA are located is Linear Time-Invariant
(LTI) and no noise is present, the acoustic pressure acquired by the ith microphone can be
expressed as

p(ri, t) = h(t, ri, r′) ∗ s(t), (1)

where ∗ is the linear convolution operator, t is the time variable, s(t) is the signal emitted
by the source and h(t, ri, r′) is the so-called RIR. The RIR describes the spatio-temporal
propagation of the sound from the source at position r′ to the receiver at position ri. Due to
the LTI assumption a RIR provides a complete characterization of the propagation of sound
waves from the source to the sensor, therefore its knowledge is significantly important to
process the acoustic field.

Different techniques for measuring the RIR between a fixed emitter and a receiver are
available in the literature [8,9].

In practice, the RIRs of an ULA are sampled at sampling frequency Fs and truncated
to a length of N samples beyond which the RIR content vanishes into the noise level. We
collect the RIRs in the matrix H, here referred to as RIR image and defined as

H = [h1, . . . , hM], (2)

where hi ∈ RN×1 is the vector containing the N-length sampled RIR of the ith microphone.
It follows that the RIR image H in (2) has dimension N×M and, in practice, it is formed by
stacking the microphone RIRs along the columns as shown in Figure 1. Given the distance
d in the ULA, an aliasing-free sound field acquisition is bounded to a maximum frequency

Fmax =
c

2d
, (3)

where c is the sound speed in air.
In order to relax the spatial-sampling condition, different strategies for the reconstruc-

tion of RIRs from an undersampled measurement set have been presented in the literature.
Solutions range from compressed sensing frameworks [31] based on assumptions on the
underlying signal model [16,18,21] or on the structure of the RIR image [20], to the recently
proposed deep learning approaches [40].

Similarly to [20], here, we consider the problem of recovering missing RIRs from an
uncomplete observation H̃ of the RIR image in (2) obtained as

H̃ = HS, (4)

where S is a sampling operator, i.e., a M×M diagonal matrix whose elements are

Si,i =

{
1, if the ith channel is available;
0, otherwise;

. (5)

In summary, S indicates the available RIRs, since some channels of the ULA are
missing in the observation H̃. In this manuscript, we aim at estimating the unknown
data from the available channels exploiting a novel data-driven solution known as deep
prior [44].
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Figure 1. Example of a RIR image. The RIRs of the microphones are arranged along the columns
of H.

2.2. RIR Reconstruction Via Deep Prior

In order to interpret the RIR reconstruction task as an inverse problems, we consider
the RIR image H (2) as the true model that we aim at reconstructing from the observations
H̃ (4), i.e., the available channels of the ULA. The solution to the RIR reconstruction problem
requires the inversion of the relation in (4). This is an ill-posed inverse problem, whose
solution is typically constrained in order to obtain meaningful results [31]. The solution of
the inverse problem Ĥ∗ can be found solving the following minimization problem

Ĥ∗ = argmin
Ĥ

J
(

Ĥ
)
= E

(
ĤS− H̃

)
+ R

(
Ĥ
)

, (6)

where Ĥ is the estimated RIR image, while E(·) and R(·) represent a data distance measure
and a regularizer, respectively. The component E(·) provides a data-fidelity term of the
estimated solution with respect to the available observation, e.g., a common choice is the
mean squared error. The regularizing function R(·) expresses the a priori information on
the optimal solution. In fact, due to the ill-poseness of the problem, multiple solutions can
effectively minimize E(·) in (6) leading to match only the available data while providing
poor RIR reconstruction at the missing channels. The definition of the regularizer R(·)
is fundamental for finding an effective solution through the minimization in (6), and,
typically, it is handcrafted and depending on the adopted sound propagation models, such
as plane wave decomposition of the sound field [27] or ESM [30]. In the field of compressed
sensing, a well-known regularization strategy is the `1-norm regularization, defined in
order to promote sparsity in the solution. Different techniques for RIR reconstruction adopt
this approach in order exploit the inherent sparse nature of the considered sound field
model [18–21,29]. It is evident that deviations from the assumed prior models in the actual
data do affect the accuracy of the final estimate.

In this manuscript, we propose to adopt a deep prior [45] approach as an alternative
regularization strategy for the solution of (6). Recently, in [44] the Deep Image Prior (DIP)
method has been successfully employed for solving inverse problems in the context of
image restoration. Similarly, DIP was applied for the reconstruction of irregularly sampled
seismic [48] and vibrational [49] data, problems akin to RIR reconstruction. In this context,
we consider a deep neural network as a generator described by the parametric nonlinear
function f (·) so that Ĥ = f (·) and the solution of the inverse problem is now given by
rewriting (6) as

θ∗ = argmin
θ

J(θ) = E
(

f (θ, Z)S− H̃
)

, (7)
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where θ represents the learnable parameters of the network and Z is a random noise
realization given as input. Hence, the neural network maps its parameters θ to the RIR
image Ĥ given the fixed input Z [44].

By minimizing (7) rather than (6), we search for the solution to the inverse problem
in the space of the neural network parameters instead of the space of the model [45].
This change of domain is at the basis of the deep prior approach. As a matter of fact,
according to (7), the objective function is modified in such a way that we condition the
solution through the inclusion of the prior given by the network. It is worth to underline
that (7) depends solely on the data fidelity with the available observation H̃, hence any
regularization term is replaced by the inherent prior provided by the network. Nonethe-
less, although the fit is performed on the observation, the implicit prior of the network
reconstructs the RIRs also in the missing channels. It follows that the regularization ability
of the neural network is linked to the structure of the architecture that drives the minimiza-
tion (performed iteratively through gradient descent) towards solutions consistent with
the prior.

In this context, convolutional neural networks (CNN) with the structure of an autoen-
coder [46], proved to be effective in exploiting the self-similarity in the data. In a RIR image
(see Figure 1), we can observe how most of the information is shared among the channels,
since the RIRs present the same inner structure, i.e., wavefronts impinging the ULA (shown
as colored lines in Figure 1).

Therefore, we adopt a CNN autoencoder in order to exploit the self-similarities in
the data as a prior information for the RIR image reconstruction. In fact, although the
optimization (7) trains the CNN only on the available observation H̃, the output of the
network provides an estimate of the missing ULA channels. The RIR reconstruction is
achieved because the trained CNN is able to capture the inner structure in the data which is
shared among the signals. The optimal reconstructed RIR image is therefore computed as

Ĥ∗ = f (θ∗, Z), (8)

where θ∗ are the optimal parameters that solve (7).
It is worth to underline that the deep prior paradigm needs no training data. Differ-

ently from traditional deep learning where a huge training data set is typically required to
learn general features, deep prior is optimized for a single RIR image. While optimizing
the network output on the available RIRs H̃, the structure of the CNN includes the prior
information on self-similarities and correlation among the ULA channels. It follows that
the choice of the network architecture represents a key aspect for the final result.

3. Network Description

Inspired by the effectiveness of U-Net-like networks [41] in existing deep prior ap-
plications [44,46,48,49], we decide to adopt the MultiResUNet [51] also for facing the RIR
reconstruction problem discussed in this manuscript. MultiResUNet is first introduced
in [51], where it shows improved results for the segmentation of multimodal medical
images. U-Net-like architectures, such as MultiResUNet, are characterized by a so-called
autoencoder structure as shown in Figure 2. In fact, the input of these architectures is
progressively compressed by a set of convolutional layers that extract spatial features in
the image in order to learn a latent representation of the data. This first process is known
as encoding and the corresponding part of the neural network takes the name of encoder
(block E in Figure 2). Subsequently, in the decoder D, the learned features are expanded
back in order to reconstruct the target network output. Typically, the decoder is symmetric
with respect to the encoder and each layer of the encoding section is connected with the
corresponding decoding layer through skip connections [41].



Sensors 2022, 22, 2710 7 of 15

E D

MultiRes Block

3 × 3 conv

1 × 1 conv Residual path block

E D

Z Ĥ∗

Figure 2. The overall block scheme of the Unet-like structure of the network, along with the block
diagrams of MultiRes and Residual path blocks.

The main feature of MultiResUNet is the possibility to work with different shapes and
scales. This feature proved to be effective for the reconstruction of seismic traces in [46]. This
is desirable also for the problem of RIR reconstruction, since it would allow us to exploit the
self-similarity of the data at different time scales and among the channels. In MultiResUNet,
the standard convolutional layers are replaced by multiresolution blocks (MultiRes). Such
blocks are inspired by the inception architecture [52], which analyses the input features at
different scales varying the kernel size. The block scheme of MultiRes block is depicted
in Figure 2. MultiRes layers are composed of a sequence of small convolutional 3× 3
blocks. The sequence of small convolutional layers effectively approximate greater 5× 5
and 7× 7 convolutional blocks [51] with the advantage of limiting the number of learnable
parameters. Another important feature of MultiResUnet concerns the skip connections.
Skip connections are a key element of UNet architectures that enables the feature sharing
between corresponding layers in encoder and decoder. In MultiResUNet, skip connections
are replaced by Residual Path blocks (see Figure 2). As explained in [51], discrepancy
between features in the encoder and decoder blocks generates the so-called semantic gap. In
fact, the features at the encoder that are passed unprocessed to the decoder are supposed
to present lower level information since they come from earlier stages of the processing.
In the decoder, conversely, the features are derived from the higher level representation
of the bottleneck and possible previous decoding layers. Hence, the idea of Residual Path
blocks is to process the features from the encoding layers to the corresponding decoding
layers through two additional convolutional layers in order to reduce their semantic gap
improving the network performance.

In our work the implementation of MultiResUNet adopts 3 MultiRes layers in the
encoder with the corresponding decoding layers connected through Residual paths. The
downsampling is performed through 3× 3 convolutional layers with 2× 2 stride. On
the other side, the upsampling is achieved with bilinear interpolation. Throughout the
network, we adopted batch normalization and LeakyReLU [53] as nonlinear activation
function after each convolutional layer.

In order to find the optimal weights θ∗ of the network for the RIR reconstruction (8),
we train the MultiResNet by minimizing the `1 distance between the estimate and the
observed RIR image through the Mean Absolute Error (MAE)

L =
1

MN

M

∑
m=1

N

∑
n=1

∣∣[(Ĥ− H̃
)
M
]

mn

∣∣ = 1
MN

M

∑
m=1

N

∑
n=1

∣∣[( f (θ, Z)− H̃
)
M
]

mn

∣∣, (9)

where M is a M × M selection matrix through which we select the available data. The
matrix M allows us to evaluate the loss function only on the observed channels of the
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RIR image since the points on the diagonal associated to missing signals are equal to
zero. As a matter of fact, the deep prior approach evaluates the distance measure (7) only
on the available data. At the same time, the network itself acts as a regularizer since it
also provides an estimate of the missing channels achieving the reconstruction of the RIR
image. As far as the input noise Z is concerned, we adopt a N ×M× 128 tensor of white
Guassian noise with zero mean and standard deviation 0.1. The network is implemented in
PyTorch [54] and trained using the Adam optimizer [55] for 3000 epochs with learning rate
set to 0.01. Similarly to [44,48,49], in order to reinforce convergence at each iteration the
input tensor is perturbed with additional zero-mean white noise of variance 0.03.

In Figure 3, we can observe the procedure of Ĥ generation. The output of the network
is shown at different iterations of the training process. From Figure 3 it is possible to note
how the network progressively reconstructs the RIRs. Starting from a rough estimation
(blurred wide lines), the resolution of Ĥ progressively increases with the iterations, until the
image is sufficiently detailed to discern wavefronts.
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Figure 3. RIRs reconstruction procedure. The network output Ĥ is shown at various iterations.
The observation H̃ and the ground truth RIR image H are reported for reference.

4. Numerical Analysis

In this section, we validate the proposed deep prior (DP) approach to RIR reconstruc-
tion analyzing the interpolation performance on simulated data. This allow us to compare
the reconstruction provided by DP to the synthetic and noiseless ground truth of the simu-
lations. Moreover, using simulations we can flexibly change the setup in terms of source
positions and acoustic conditions of the environment. We consider three different scenarios
with the aim of evaluating the performance of the DP by varying the Direction Of Arrival
(DOA) of the sources, the reverberation time (T60) of the room, and the Signal-to-Noise
Ratio (SNR) of the signals. In particular, we simulated commercially available ULAs [56]
constituted by M = 32 microphones with sensors interspace d = 3 cm. The maximum
frequency satisfying (3) is FMAX = 5.716 kHz. The two considered source configurations
are shown in Figure 4. The microphone array and the sources are located in a room of
dimensions 5.5 m× 3.4 m× 3.3 m with T60 = 0.6 s unless otherwise stated. With the setup
in Figure 4a, we simulate the situation where the ULA receives the source signal from
different DOAs. Hence, we would like to observe if there exists a significant dependency
of the RIR reconstruction with respect to the DOA of the source. In the second setup (see
Figure 4b), the sources are located on the broadside of the array in order to simulate the
typical setting of applications like teleconferencing, soundbar, etc. The sources in Figure 4b
are placed at different distances in order to cover a wide area of the room. Therefore, this
setup represents a general scenario in which we also varied the T60 of the room and the
SNR at the microphones.
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Figure 4. 2D graphical representation of the simulated setups (top view). The microphones of the
ULA are depicted as black dots, while the sources are represented as black triangles. The elements
are scaled with respect to the room dimensions, hence the distance between adjacent microphones of
the ULA is barely noticeable. (a) Variable DOA (θ) and (b) 12 sources setups.

The RIRs between microphones of the ULA and sources have been generated using the
image source method [57,58] with 8 kHz sampling rate and c = 343 m s−1. The stacks of the
simulated RIRs constitute the RIR images H (2). The observation H̃ is obtained from H by
selecting 16 channels, with an undersampling factor of 50%. Similarly to [20], the sampling
operator S is random, with some constraints imposed a posteriori. In particular, the indexes
of the missing channels are chosen following a uniform distribution checking that S has
not to remove more than 5 consecutive microphone channels.

Figure 5 shows an example of target RIR image H, observation H̃, and reconstruction
Ĥ obtained through the proposed DP approach. Note that only the first 9 ms of the RIRs
are shown in the first row of Figure 5 in order to highlight the reconstruction performance
around the direct path and the first reflections. In the second row of Figure 5, the later
parts of the RIRs (ranging from 70 ms to 100 ms), characterized by higher echo density, are
depicted. It is possible to observe that the DP is able to reconstruct the missing channels in
Ĥ (Figure 5c). In particular, the network fills the gaps in H̃ consistently with respect to the
surrounding context. As a matter of fact, comparing H and Ĥ in Figure 5, we can appreciate
how the wavefronts (curved patterns in the RIR images) are effectively reconstructed in the
missing channels. In summary, DP performs an interpolation, thus generating an estimate
of the missing data, by exploiting only the information in the available channels of H̃ and
the prior provided by the network as explained in Section 2.2.

In order to asses the performance of the RIR reconstruction, we evaluate the Nor-
malized Mean Square Error (NMSE) between the estimates and the actual RIRs defined
as [20]

NMSE
(

Ĥ, H
)
= 10 log10

1
M

M

∑
i=1

‖ĥi − hi‖2

‖hi‖2 (10)

where ĥi ∈ RN×1 is the estimate of the ith RIR contained in the ith column of Ĥ.
In addition to the evaluation of the reconstruction error with respect to the ground

truth data, we consider as a baseline comparison the commonly adopted Linear Inter-
polation (LI) technique. Similarly to DP, LI does not impose assumptions on the signal
model and on the acoustic setting, but in practice it implements a low pass filtering in the
wavenumber-frequency domain as explained in [20].
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Ĥ

−0.4

−0.2

0

0.2

0.4

(f)

Figure 5. Example of a RIR image H (a,d), the observed data H̃ (b,e) and the reconstruction Ĥ
obtained through the proposed technique (c,f). (a–c) The time axis is zoomed around the direct path
and the first reflections. (d–f) The time axis is zoomed between 70 ms and 100 ms.

In Figure 4a, the setup used for testing different DOAs (θ) of the source is depicted. In
particular, we simulate 10 sources located on a semicircle in front of the ULA. The sources
are positioned in such a way that DOAs go from θ = 10° to θ = 170° with respect to the
center of the array (see Figure 4a).

Figure 6a shows the NMSE (10) of RIR reconstruction as a function of the DOA (θ).
Inspecting Figure 6a, we can observe that the DP reconstruction consistently achieves lower
NMSE with respect to LI. It is possible to note that the best reconstructions are achieved
for both LI and DP with sources in front of the ULA. However, although the NMSE of
the proposed technique has higher variance than LI, the difference among the results is
limited within 3.2 dB with maximum NMSE = −5.6 dB at θ = 10° and a minimum of
NMSE = −8.8 dB at θ = 110°. Therefore, from the results in Figure 6a we cannot observe a
significant dependency of the reconstruction performance on the source DOA.

In order to perform an analysis on the robustness to T60 of the room and SNR at the
sensors, we consider the setup in Figure 4b. In this case, J = 12 sources are arranged on
a grid broadside the ULA. The distance between the sources and the ULA ranges from
0.3 m to 2.1 m. This allows us to cover a wide area of the room in a region of interest
for different microphone array applications, e.g., source separation, speech enhancement
and localization.

The RIRs are simulated varying the T60 of the room from 0.2 s to 0.8 s. This range
of reverberation time reflects the T60 values typically observed in office-like rooms. The
adopted values are in line with the T60 of the measured RIRs in [20] and in Section 5.
The results in Figure 6b are computed averaging the NMSE obtained reconstructing the
RIRs for each of the sources in Figure 4b. The average NMSE is shown as a function of
the T60 in Figure 6b, where it is possible to observe that the reconstruction provided by
DP outperforms the LI estimation up to more than 4 dB. Interestingly, the reconstruction
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performance of DP constantly increases with the T60. The higher reverberation energy,
corresponding to longer T60, positively affects the estimates of DP. As a matter of fact,
in order to reconstruct the missing channels, DP exploits the texture in the RIR image given
by the higher echo density. This property can be noted also in Figure 3, where the dense
late reflections are fitted before the sparse early reflections and the direct path.

Finally, we evaluate the robustness of the proposed DP approach to noise. In particular,
we simulate an additive white Gaussian noise corrupting the RIRs. The variance of the
noise component is set in such a way that a desired SNR is obtained. We varied the SNR
from 0 dB to 40 dB. Similarly to the analysis on T60, we average the NMSE over all the
sources in Figure 4b.

The average NMSE is reported in Figure 6c as a function of the adopted SNR values.
Consistently with previous results, also in this context, the LI is outperformed by DP
excluding only the case with SNR = 0 dB. In fact, when SNR = 0 dB the energy of the
additive noise signal equals that of the RIRs, and the two techniques performs comparably
with a difference of ≈ 0.88 dB only. Interestingly, DP can achieve low NMSE values up to
5 dB of SNR showing high robustness to additive white Gaussian noise.
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Figure 6. (a) NMSE as a function of the DOA (θ) of the source. (b) Average NMSE as a function of
the T60 of the room and (c) SNR of the sensors.

5. Experimental Analysis

In this section we assess the performance of the proposed method with real data. This
gives us the opportunity to compare it with a state-of-the-art technique in RIR reconstruc-
tion, namely the compressed-sensing-based solution (CS) presented in [20]. In particular,
we apply the proposed DP method on real measurements provided in [20]. The authors
in [20], acquired the RIRs in three different rooms adopting a ULA of M = 100 sensors
with distance d = 3 cm between two consecutive microphones. The rooms considered
in [20] are named as “Balder”, “Freja” and “Munin”, and the estimated T30 are 0.32 s, 0.46 s
and 0.63 s, respectively. Differently from simulations, the measured RIRs were acquired
in rooms of non-convex geometries and they inherently present scattering and diffraction
phenomena. The interested reader is referred to Section 5 of [20] for a detailed description
of the measurement equipment and setups.



Sensors 2022, 22, 2710 12 of 15

The observations H̃ (4) are obtained using two undersampling factors. In fact, in [20],
the RIRs are randomly selected in order to have 20 or 33 channels available, corresponding
to 20% and ≈30% of the ULA signals, respectively. Moreover, the undersampling operation
is performed to have maximum gaps in H̃ of 24 cm in the 20 channels observations and
15 cm when 33 channels are available. Additive white Gaussian noise is then added to the
RIRs varying the SNR at the sensors from 50 dB to 20 dB.

In Figure 7, the NMSE of the reconstructions is reported for the three rooms and
undersampling factors. As expected, the performance of both CS and DP decreases when a
lower number of sensors are available in H̃. In particular, for DP we can observe a constant
offset of ≈3 dB between the NMSE of the two cases.

Inspecting Figure 7, we can note that DP produces consistent estimates regardless
the SNR, differently from CS, which exhibits a decrease in the considered SNR range. The
behavior of DP is in line with the analysis shown in Section 4. For instance, in room Balder
(Figure 7a), the NMSE of DP is on average ≈−7.3 dB and ≈−3.7 dB for 33 and 20 available
microphones, respectively. Similar results can be observed for room Freja (Figure 7b), while
the performance for room Munin (Figure 7c) is around 1 dB better. Although the estimates
of the two techniques are comparable at SNR = 50 dB, the results of CS rapidly deteriorate
with lower SNR values. At SNR = 20 dB, the NMSE of CS is already ≈−0.5 dB for all the
rooms. In addition, the decrease of the reconstruction performance is independent from
the number of available channels.
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Figure 7. NMSE of the RIR reconstruction as a function of the SNR for rooms Balder (a), Freja (b)
and Munin (c) from [20]. The RIR interpolations are obtained using 20 (triangle marks) or 33 (square
marks) microphones. Adapted from Ref. [20], with permission from Elsevier (2022).

6. Conclusions

In this manuscript we proposed a novel method for the reconstruction of room impulse
responses based on deep neural networks. We adopted a MultiResUNet, an architecture
that employs multiple resolution levels in the convolutional layers in order to exploit the
similarities between the multichannel RIRs for the reconstruction. The RIR interpolation
of a uniform linear array is framed as an inverse problem for which the proposed CNN
provides a regularized solution through the deep prior approach [44]. As a matter of fact,
while training the network to reconstruct the available data, an estimate of the interpolated
RIRs is obtained thanks to the inherent prior given by the network itself. Differently from
classical deep learning solutions, this procedure does not rely on standard training, but it
requires a per-element training, avoiding the need of huge data sets.

We evaluate the RIR reconstruction performance of the proposed method on both
simulated and measured RIRs. The performance of the deep prior method is compared
to linear interpolation of the RIRs and a state-of-the-art solution based on compressed
sensing [20]. The results on synthetic data show that the proposed method is able to
provide accurate reconstructions under different scenarios concerning the direction of
arrival, the T60 of the room and the SNR of the signals. Results on measured RIRs shows
that the proposed approach can be applied on real data. In addition, the CNN exhibits
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robustness to noisy measurements with more consistent results with respect to the state-of-
the-art compressed sensing method.

Future works will address the extension of the devised method to arrays of different ge-
ometries. Moreover, we foresee the application of the deep prior approach to similar sound
field processing problems, including for instance, sound field separation and navigation.
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