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Innate and adaptive immunity represent a harmonic counterbalanced system involved in
the induction, progression, and possibly resolution of the inflammatory reaction that
characterize autoimmune rheumatic diseases (ARDs), including rheumatoid arthritis (RA).
Although the immunopathophysiological mechanisms of the ARDs are not fully clarified,
they are often associated with an inappropriate macrophage/T-cell interaction, where
classical (M1) or alternative (M2) macrophage activation may influence the occurrence of
T-helper (Th)1 or Th2 responses. In RA patients, M1/Th1 activation occurs in an
inflammatory environment dominated by Toll-like receptor (TLR) and interferon (IFN)
signaling, and it promotes a massive production of pro-inflammatory cytokines [i.e.,
tumor necrosis factor-a (TNFa), interleukin (IL)-1, IL-12, IL-18, and IFNg], chemotactic
factors, and matrix metalloproteinases resulting in osteoclastogenesis, erosion, and
progressive joint destruction. On the other hand, the activation of M2/Th2 response
determines the release of growth factors and cytokines [i.e., IL-4, IL-10, IL-13, and
transforming growth factor (TGF)-b] involved in the anti-inflammatory process leading to
the clinical remission of RA. Several subtypes of macrophages have been described. Five
polarization states from M1 to M2 have been confirmed in in vitro studies analyzing
morphological characteristics, gene expression of phenotype markers (CD80, CD86,
TLR2, TLR4, or CD206, CD204, CD163, MerTK), and functional aspect, including the
production of reactive oxygen species (ROS). An M1 and M2 macrophage imbalance may
induce pathological consequences and contribute to several diseases, such as asthma or
osteoclastogenesis in RA patients. In addition, the macrophage dynamic polarization from
M1 to M2 includes the presence of intermediate polarity stages distinguished by the
expression of specific surface markers and the production/release of distinct molecules
(i.e., nitric oxide, cytokines), which characterize their morphological and functional state.
This suggests a “continuum” of macrophage activation states playing an important role
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during inflammation and its resolution. This review discusses the importance of the
delicate M1/M2 imbalance in the different phases of the inflammatory process together
with the identification of specific pathways, cytokines, and chemokines involved, and its
clinical outcomes in RA. The analysis of these aspects could shed a light on the abnormal
inflammatory activation, leading to novel therapeutical approaches which may contribute
to restore the M1/M2 balance.
Keywords: Macrophage polarization, Rheumatoid anhritis, Inflammation, Synovitis, bDMARD therapy
INTRODUCTION

Rheumatoid arthritis (RA) is a chronic systemic autoimmune
inflammatory condition affecting approximately 1% of the
population worldwide with considerable regional variation and
an incidence rate higher in female than in male (1). Recognized
as one of the most common autoimmune rheumatic diseases
(ARDs) predominantly observed in the elderly population, RA is
characterized by polyarticular synovitis at the level of small- and
medium-sized joints, symmetrical joint swelling, tenderness, and
redness as a result of the synovial lining layer inflammation,
leading to joint damage and progressive disability (2–4). In this
frame, multiorgan manifestations may arise during disease
progression showing classical circadian rhythms (5).

Uncontrolled RA lowers life expectancy, and RA patients may
have a roughly double average risk for developing malignancy
and cardiovascular diseases (6). Although RA pathophysiology
remains elusive, the presence of a complex interplay among
genotype, epigenetic changes, and environmental factors
underlying chronic inflammation is abundantly described (7, 8).

It is well established that among different risk factors,
cigarette smoking, ozone exposure, and traffic-related air
pollution are environmental elements significantly correlated to
RA susceptibility, especially in those patients seropositive to
rheumatoid factor (FR), anti-citrullinated peptide antibodies
(ACPA), and anti-carbamylated protein antibodies.

Toxic components in smoke may enhance the activation of
peptidylarginine deiminase (PAD) enzymes leading to a massive
lung-protein citrullination. Additionally, smoke recalls antigen-
presenting cells (APC), followed by T-helper-1 (Th1) activation,
and finally anti-citrullinated peptide antibodies (ACPA)-specific
B-cell memory formation (9, 10) .

A growing scientific interest is currently directed to highlight
the role of intestinal microbiota and nutritional habits in RA
patients (11, 12). In fact, diet may critically shape and alter the
human gut microbiota composition, creating a “dysbiotic state,”
which modulates the immune regulatory function and promotes
a pro-inflammatory status (13). Of note, the extra virgin olive oil,
a crucial component of Mediterranean diet, seems to reduce both
presence and function of pro-inflammatory M1 macrophages
and increase that of anti-inflammatory M2 macrophages
(11, 12).

In recent years, the pathophysiological roles of innate
immune system in RA have been investigated. In RA, the
delicate balance among Th1/M1 and Th2/M2 system is
lost giving way to an aberrant and uncontrolled Th1/M1
org 2
activation leading to organ damage (14). Astonishing steps
have been made towards a better understanding of the central
role of macrophages in RA chronic inflammation on-set
and progression.

This review focus on the monocyte/macrophage contribution
in RA pathogenesis primarily highlighting the immune-
pathophysiological impact and imbalance of M1 and M2
macrophages and their precursors monocytes, and the
identification of specific pathways, cytokines, and chemokines
involved in mediating the abnormal inflammatory activation.
Finally, the impact of current therapies that might contribute to
reprogram macrophages, promoting their polarization from a
pro-inflammatory M1 phenotype into an anti-inflammatory M2
phenotype as possible new strategy in the resolution of RA
inflammatory process, is also analyzed.
CIRCULATING MONOCYTES IN RA

Monocytes are circulating cells belonging to the mononuclear
phagocytic system and known as the second line of defense in the
innate immune system (15). Monocytes can play an important
role in the initiation and maintenance of inflammation in the
synovial tissue of RA patients: in fact, these cells are recruited
from the circulation into the synovial tissue by chemotaxis
through the interaction with fibroblast-like synoviocytes (FLSs)
and other autoimmune cells (15).

Monocytes are classified into three subsets: classical
monocytes (CD14++CD16−), intermediate monocytes (CD14++

CD16+), and non-classical monocytes (CD14dimCD16++)
(Figure 1) (16, 17). In RA synovial joints, classical monocytes
seem to be the circulating precursors of osteoclasts involved in
bone erosion (Figure 1) (18).

Moreover, the expression of CD14 and CD16 is upregulated on
the monocyte cell membrane, and the percentage of intermediate
monocyte subset is higher in both peripheral blood and synovial
tissue of RA patients (19, 20). These intermediate monocytes
secrete pro-inflammatory cytokines, such as tumor necrosis
factor-a (TNFa), interleukine-1b (IL-1b), and IL-6, and they
can differentiate into pro-inflammatory M1 macrophages,
contributing to the local synovial inflammation (Figure 1) (21).

RA intermediate monocytes are characterized by an increased
expression of HLA-DR compared to the other two monocyte
subsets, and this increased expression seems to determine a high
production of TNFa (15, 19, 22). In addition, HLA-DR+

intermediate monocytes express high level of the costimulatory
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molecules CD80 and CD86 promoting the induction of
IL17+CD4+ T cells (Figure 1) (15).

Therefore, in the peripheral blood and synovial fluid of RA
patients, the predominance of intermediate monocytes seems to
suggest their functional role in modulating Th17 cell responses
through the production of IL-12, which stimulates CD4+ Th1 cell
polarization, and the release of IL-6, IL-1b, and IL-23 (15). These
cytokines drive Th17 cell polarization and the release of IL-17 by
CD4+ T cells (15, 23).

As described in a previous study, the intermediate monocyte
subset is the major subset to undergo differentiation into pro-
inflammatory M1 macrophages (Figure 1) (24). Together with
classical monocytes, the intermediate monocytes express Toll-
like receptor-2 (TLR2) on their surface membrane in both
peripheral blood and synovial tissue of RA patients. However,
compared to classical monocytes, intermediate monocytes highly
express TLR2, which activates the signaling pathway responsible
for the production of the pro-inflammatory cytokines IL-1b, IL-
6, and TNFa (25, 26).

Conversely, even if non-classical monocytes seem to
participate in the early inflammatory response, they
differentiate into resident M2 macrophages taking part in the
resolution of inflammation (Figure 1) (27).

As is well-demonstrated, monocytes are essential players in the
pathology of several inflammatory diseases, including RA, in which
these cells are one of the two major contributors to the damage at
synovial tissue level, together with macrophages (28). This
fundamental role of monocytes is also related to their plasticity,
which is also achieved by a highly responsive epigenome: this
Frontiers in Immunology | www.frontiersin.org 3
epigenomic plasticity of monocytes is determined by the
occurrence of relevant DNA methylation changes (28).

Several studies revealed how the high expression levels of de
novo DNA methyltransferase 3A (DNMT3A) and the
methylcytosine dioxygenase ten–eleven traslocation-2 (TET2)
in monocytes are essential for the differentiation and activation
of these cells during inflammatory responses, suggesting how
DNA methylation represents the major epigenetic mechanism
that potentially reflects the influence of disease-associated
inflammation in monocytes (29, 30).

The important role of methylation in monocyte
pathophysiology is highlighted by a recent study, which
demonstrated a difference in DNA methylation profiling
between monocytes isolated from RA patients and healthy
subjects: the study revealed how RA monocytes are
characterized by hypermethylated CpG sites related to several
genes, including IFN and TNF, suggesting a potential implication
of these cytokines and their signaling pathways in the acquisition
of a further aberrant DNA methylation signature in RA
patients (28).

Therefore, in RA patients, the high percentage of monocytes,
primarily belonging to the intermediate subset, and their
increased DNA methylation are linked to the inflammatory
environment in the blood, correlating with the high disease
activity (evaluated by 28-joint Disease Activity Scale—DAS28),
serum level of C-reactive protein (CRP), and erythrocyte
sedimentation rate (ESR) (28). All these observations suggest a
role of monocytes as additional biomarker for high disease
activity in RA patients (31).
FIGURE 1 | Monocyte differentiation and related role in RA pathogenesis. Differentiation of circulating monocytes in their three subsets, classical (CD14high),
intermediate (CD14highCD16high), and non-classical (CD14dimCD16high) monocytes. Classical monocytes can differentiate into pro-inflammatory macrophages and
osteoclasts, contributing to synovial tissue inflammation and bone erosion; intermediate monocytes differentiate into pro-inflammatory macrophages contributing
to tissue inflammation; non-classical monocytes differentiate into anti-inflammatory macrophages promoting phagocytosis and resolution of inflammation.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cutolo et al. Macrophage Polarization in Rheumatoid Arthritis Synovitis
Moreover, circulating RA monocytes also express high levels
of several chemokines, including CCR7, which interact with
CCL19; the upregulation of CCR7/CCL19 correlates with
disease activity (DAS28) and the radiographic progression of
joint damage (32).
MACROPHAGES: POLARIZATION AND
SIGNALING PATHWAYS INVOLVED IN RA

Macrophages were described for the first time in 1882 by
Metchnikov as the “big eater” of the immune system and
represent the frontier soldiers of immune system, thanks to
their capability to recognize, engulf, and destroy pathogens
through the activation of TLRs and the production of pro- and
anti-inflammatory mediators (33, 34).

As APCs, macrophages contribute to induce a Th1- or Th2-
mediated immune response through the presentation of non-
self-antigens to naive T cells and the release of cytokines and
growth factors, confirming that their interplay with T
lymphocytes represents a vital check point for T-cell
Frontiers in Immunology | www.frontiersin.org 4
maturation; this is a fundamental function in the regulation of
inflammation and in the maintenance of homeostasis (35, 36).

Indeed, plasticity is a key feature also of macrophages, which
are capable of presenting heterogeneous phenotypes creating
various subpopulations; therefore, these cells are not only
involved in the propagation of inflammation but also in its
resolution, depending on their activation state (M1 or M2)
(37). Therefore, it is becoming increasingly apparent that M1
and M2 phenotypes represent the extremes of a macrophage
activated spectrum, which is characterized by the presence of
“intermediate” phenotypes involved in the immuno-regulation
or in tissue repair and defined by different metabolic pathways,
surface markers, and cytokine production (37–40).

Due to the advanced research, science has made unbelievable
progress during the past years, shedding light on the role of these
cells in the immune response that characterizes RA.

In RA, the inflammatory process is mediated and sustained by
M1 macrophages both in peripheral blood and in synovial tissue
(Figure 2). Indeed, M1 macrophages are pro-inflammatory cells
characterized by the high expression of major histocompatibility
complex (MHC) class II, CD80, CD86, CD38, and TLR4, and the
FIGURE 2 | Representation of acute RA inflammation and remission. Acute RA inflammatory phase is characterized by an imbalance in M1–M2 ratio in synovial fluid
and tissue. This phase is dominated by a higher percentage of pro-inflammatory M1 macrophages, which display specific phenotype markers and release cytokines/
chemokines. Moreover, the activation of osteoclasts contributes to bone erosion. RA disease remission is characterized by a high percentage of anti-inflammatory
M2 macrophages, which display specific phenotype markers and release anti-inflammatory cytokines/chemokines.
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secretion of pro-inflammatory cytokines, primarily IL-1b, IL-6,
and TNFa, and chemokines, such as CCR7 (Figure 2) (35, 41).

Their prompt production of inflammatory cytokines
stimulates the immune system enabling an efficient pathogen
eradication. When self-tolerance is lost, inflammation persists
evolving to a chronic maladaptive immune response. CD80/
CD86 are costimulatory molecules present on these macrophages
(among other cells) in response to activating signals finalized to
pathogen suppression; these surface proteins bind to CD28 on
naive T cells increasing sensitivity to T-cell receptor (TCR)
stimulation and T-cell survival (42).

TLRs belong to a heterogenous receptor family distributed on
the cell membrane or cytosol of APCs, including macrophages,
natural killers, lymphocytes, endothelial and epithelial cells, and
fibroblasts (43).

TLRs are one of the most ancient immunity tolls for host
defense against infection recognizing pathogen-associated
molecular patterns (PAMPs), and TLR2 and TLR4 are
primarily involved in pathogen recognition (44).

Moreover, the expression of TLR4 onmacrophages permits to
recognize endogenous ligands relevant in RA, such as native
articular proteins and citrullinated peptides, and subsequently
induces intracellular signal transduction finalized to a prompt
expression of pro-inflammatory genes through the activation of
Frontiers in Immunology | www.frontiersin.org 5
nuclear factor kappa B (NF-kB) signaling pathway (33, 45): in
fact, the activation of TLR4-induced NF-kB signaling pathway
mediates the pro-inflammatory activity of M1 macrophages
through the production and release of IL-6, TNFa, and IL-1b
in monocyte-derived and synovial macrophages obtained from
RA patients (Figure 3) (46, 47).

The polarization of macrophages toward an M1 phenotype
can be induced by several pro-inflammatory stimuli, including
the activation of IRF5 expression (48).

The upregulation of IRF5 activates the intracellular signaling
pathway, which induces the transcription of several subunits of
IL-12 and the repression of IL-10, with the subsequent induction
of Th17 differentiation of T cells (48). M1 macrophages also
express high levels of IL-15, which promotes MHC class II
overexpression and SOCS3 suppression, contributing to the
activation of the proliferation of CD4+T cells (49).

In RA, another important pathway linked with M1
macrophage-induced inflammation involves the activation of
stress-activated protein kinases/mitogen-activated protein
kinases (SAPK/MAPK) and Janus kinase/signal transducer and
activators of transcription (JAK/STAT), which are activated by
pro-inflammatory cytokines and promote both proliferation and
survival of macrophages (Figure 3) (50). TNFa, IL-1b, and IL-6
also promote the activation of MAPK signaling pathways
FIGURE 3 | Intracellular signaling and metabolic pathways activated into RA anti-inflammatory M2 macrophages. Metabolic pathways activated in M2 macrophages
that contribute to their anti-inflammatory role in RA. NFkB, nuclear factor-kB; SIRT1, sirtuin-1; AMPK, adenosine monophosphate-activated protein kinase; IL-10,
interleukine-10; IL-12, interleukine-12; TGFb1, transforming growth factor-b1; NO, nitric oxide; CD206, mannose receptor-1; UDP-GlcNAc, uridine diphosphate
N-acetylglucosamine.
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cutolo et al. Macrophage Polarization in Rheumatoid Arthritis Synovitis
through the phosphorylation of ERK1/2, JNK, and p38 kinase in
synovial cells derived from patients with chronic RA (Figure 3)
(51, 52).

In the contest of different biological activities of macrophages
that contribute to tissue homeostasis and disease pathogenesis,
an interesting macrophage subset, called arthritis-associated
osteoclastogenic macrophages (AtoMs), was recently identified
in the synovial fluid and tissue of RA patients (53).

These macrophages are characterized as CX3CR1+HLA-
DRhighCD11c+CD86+ cells, and they have a high osteoclastogenic
potential (53). CX3 chemokine receptor-1 (CX3CR1) is a fractalkine
receptor and marker of monocyte-lineage cells including a
population of osteoclast precursor in the bone marrow under
homeostatic condition, and it is also an osteoclast precursor
marker in inflamed synovium (53).

Nevertheless, the expression of CD11c and MHC class II
implies that AtoMs may share functional characteristics of both
macrophages and dendritic cells. Of note, the expression of
CD80 and CD86 indicates that these cells may be involved in
antigen presentation in local foci of arthritic joints.

Moreover, together with their capability to differentiate into
osteoclasts, AtoMs are efficient in inducing the activation of
TNF-producing CD4+T cells, contributing to the amplification of
inflammation and bone destruction (53, 54).

These cells were also identified in a collagen-induced arthritis
(CIA) mouse model, where their differentiation into osteoclasts
seems to be mediated by the activation of receptor activator of
NF-kB ligand (RANKL) signaling pathways and boosted by
TNFa stimulation (53). This pathway involves the activation of
the transcription factor Forkhead box M1 (FoxM1), whose
inhibition blocks the differentiation of AtoMs into osteoclasts
attenuating their inflammatory cytokine production in the
synovium and reduces the articular bone erosion (53).

The “anti-inflammatory” M2 macrophages are phenotypically
characterized by the expression of surface markers including
macrophage scavenger receptors (CD163, CD204), mannose
receptor-1 (CD206), and the MER proto-oncogene, tyrosine
kinase (MerTK) (Figure 2). To fulfill their main role in tissue
homeostasis preservation, these so-called “alternative activated”
macrophages support proliferation, wound healing, and
angiogenesis, and they mitigate inflammatory process. M2
macrophages are responsible for apoptotic cell clearance,
production of extracellular matrix (ECM) components, and
angiogenic and chemotactic factors (55, 56).

Additionally, IL-10 and TGFb are molecules endogenously
produced by M2 macrophages shifting the immune activation
toward a tissue repair pattern (Figure 2) (55, 56). CD163 is a
hemoglobin scavenger soluble or membrane-bound receptor
highly expressed in resident tissue macrophages, which
contributes to the anti-inflammatory local response lowering
hemoglobin levels and promoting inflammation-resolving heme
metabolites (57, 58).

CD206 is a mannose scavenger receptor mainly present in M2
macrophages and dendritic cells, known to be involved in
collagen internalization and degradation (59). MerTK is a
tumor-associated macrophage (TAM) receptor predominantly
Frontiers in Immunology | www.frontiersin.org 6
expressed in M2 macrophages during immunomodulation
processes (60, 61). Through the interaction with the bridging
ligands Gas6 and protein S, MerTK recognizes apoptotic cells
facilitating their phagocytosis; this physiological process of
clearance is fundamental for the maintenance of immune
tolerance (60–63).

Moreover, MerTK-induced Gas6 expression amplifies IL-10
production reinforcing an M2 positive feedback (64). Recent data
have shown a significant correlation in RA patients between the low
relative proportion of MerTK+ to MerTK− synovial tissue
macrophages with disease flare upon drug withdrawal, suggesting
a potential role of this molecule as biomarker (65). In RA
macrophages, a signaling pathway described to promote the
induction of M2 polarization is the adenosine-monophosphate-
activated protein kinase (AMPK)/a-acetyl-CoA carboxylase, which
promotes the upregulation of macrophage-derived chemokine
(MDC), CD206, and IL-10 (Figure 3) (66).

This pathway is induced by sirtuin-1, which downregulates
the pro-inflammatory IL-12, CCL2, and iNOS through the
inhibition of NF-kB signaling pathway and promotes the
polarization toward an anti-inflammatory M2 phenotype in
cultured macrophages obtained from RA patients and CIA
mouse model (Figure 3) (66).

From a metabolic point of view, M1 and M2 macrophages show
opposed metabolic profiles: M1 macrophages use preferentially
aerobic glycolysis, while M2 macrophages relay on oxidative
phosphorylation (Figures 3, 4) (67). Therefore, during articular
inflammation, synovial “pannus” formation and the presence of a
hypoxic inflammatory environment drastically increase glycolytic
activity in macrophages, which are polarized towards a M1
phenotype (Figure 4). Indeed, M1 cells more than other cell
populations commonly present in synovial inflammatory tissues
are responsible for cartilage damage (Figure 2) (68).

In inflamed joints, oxygen levels rapidly drop, while a raise
in hypoxia factor 1a (HIF-1a) and reactive oxygen species (ROS)
production occurs followed by the activation of inflammatory genes
(IL-1b and IL-6), which promotes amassive oxidative tissue damage
(Figure 4) (69). Additional elements may actively contribute to
macrophages metabolic switch: for example, TLR4 activates aerobic
glycolysis finalized to provide sufficient bioenergetic resources to
support cell mature state (Figure 4) (70).

Moreover, succinate is a transformation product of glycolysis
highly present in lipopolysaccharide (LPS)-activated M1
macrophages and able to stabilize HIF-1a and influences IL-1b
expression (Figure 4) (71).

Ornithine and nitric oxide (NO) are the most characteristic
molecules of macrophage polarization toward M1 or M2 active
state, respectively. Both of these molecules are metabolites
obtained through L-arginine cleavage. Ornithine promotes cell
proliferation, tissue healing, and fibrosis through the deposition
of polyamines and collagen. NO instead inhibits cell proliferation
and a raise in IL-12/23 and IL-18 levels (Figure 3) (71).

Based on these observations, a metabolic reprogramming
through the inhibition of glycolysis seems to modulate the
polarization of macrophages from an M1 to an M2 phenotype:
the glycolysis inhibitor 2-deoxyglucose ameliorates adjuvant-
May 2022 | Volume 13 | Article 867260
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induced arthritis by regulating macrophage polarization in an
AMPK-dependent manner (Figure 3) (72).
EFFECTS OF M1 AND M2 MACROPHAGES
IN RA SYNOVITIS

Synovial tissue is the major district of joint inflammation in RA
patients, and the persistent chronic synovitis leads to an
irreversible damage of cartilage and bone (73). The specialized
structure of synovium is composed of two layers: the lining layer,
which is populated by macrophages and FLSs, and a sublining
layer constituted by vascularized connective tissue (74).

The synovial lining layer is a protective barrier, and synovial
fluid is vital for physiological motion, maintaining cartilage and
joints well hydrated. The absence of an epithelial basement
membrane in the synovial lining contributes to its permeability
and the diffusion of different compounds (73). Macrophages of
the lining layer are resident cells involved in the maintenance of
tissue homeostasis; these cells express CX3CR1, forming a
protective tight-junction cell layer that avoids the infiltration of
inflammatory cells responsible for arthritis development (75).
Frontiers in Immunology | www.frontiersin.org 7
In the setting of synovitis, synovial tissue cellularity rises, and
synovial thickening is commonly reported as radiographic feature.
Moreover, most resident macrophages are still characterized by the
expression of CD206, MerTK, and T-cell immunoglobulin and
mucin domain containing 4 (TIMD-4) (75, 76).

Synovial macrophages along with infiltrating monocytes-
derived macrophages are fundamental cells in the initiation
and chronicity of RA synovitis through their capability to
orchestrate the immune response releasing cytokines and
enzymes involved in the inflammatory cascade, which in turn
activate osteoclasts and fibroblasts, leading to joint destruction
and disease perpetuation (Figure 2) (35, 77, 78).

These macrophages express TLRs, primarily TLR2, and
activate local danger signals and modulate their activity (79).

In RA synovial tissue, the interaction between activated M1
macrophages and Th1 cells fosters the production of several pro-
inflammatory mediators, including IL-1b, IL-6, TNFa, IL-23,
CXCLs, and CCLs; this crosstalk is mediated first by MHC class
II and secondarily by costimulatory molecules CD80/CD86,
which are overexpressed in RA M1 macrophages (Figure 2)
(77, 80, 81). In the early-stage of RA, these mediators contribute
to the recall and activation of monocyte-derived macrophages
FIGURE 4 | Intracellular signaling and metabolic pathways activated into RA pro-inflammatory M1 macrophages. Intracellular signaling and metabolic pathways
activated in M1 macrophages that contribute to their pro-inflammatory role in the inflammatory process in RA. TLR4, Toll-like receptor 4; IL-6R, interleukine-6
receptor; IL-1bR, interleukine-1b receptor; TNFR, tumor necrosis factor receptor; NFkB, nuclear factor-kB; SAPK: stress-activated protein kinases; MAPK, mitogen-
activated protein kinases; JAK, Janus kinase; STAT, signal transducer and activators of transcription; Erk1/2, extracellular signal-regulated protein kinases 1 and 2;
JNK, Jun N-terminal kinase; TFs, transcription factors; AKT, protein kinase B; mTOR, mechanistic target of rapamycin; HIF-1a, hypoxia-inducible factor-1a; ROS,
reactive oxygen species; /, break in Krebs cycle.
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from peripheral blood into synovial tissue promoting and
sustaining inflammation (82).

During disease progression, the synovial tissue responds to
inflammatory insults with a maladaptive wound healing
undergoing profound changes: inflammatory and mesenchymal
cells infiltration, inner-layer hyperplasia, neovascularization, and
pannus formation resulting in cartilage destruction.

As previously discussed, CCR7 signaling pathway was
demonstrated to induce monocyte migration and M1
polarization: in fact, CCL21/CCR7 signaling mediates the
migration of CD14+CD86+ monocytes, which polarize into M1
macrophages with a consequential pro-inflammatory cytokine
production, primarily IL-6 and IL-23 (83).

RA macrophages and primarily pro-inflammatory M1
macrophages are characterized by a high expression of CCR7,
and these CCR7-expressing macrophages induce and amplify the
differentiation of Th17 cells (83). Moreover, the activation of
CCL21/CCR7 signaling pathway in these macrophages
determines their differentiation into osteoclasts in a process
that involves the induction of Th17 polarization (83). CCR7
expression on monocytes is enhanced by IFNg and TNFa,
whereas its drastic reduction has been observed in the presence
of IL-4, a typical Th2/M2 mediator (83).

Together with CCL21, IL-23 is another important cytokine
mainly secreted by activated macrophages in the synovial tissue,
which induces the differentiation of ab CD4+ naive T cells into
Th17 cells (23). These CD4+ T cells are the major producers of IL-
17, which characterize the synovial compartment of RA patients
and contribute to the pathogenesis of the disease (23). This cytokine
interacts with its receptor on the surface membrane of several cell
types, including monocytes/macrophages, activating several
intracellular signaling pathways involved in the inflammation,
such as those mediated by Erk1/2, JNK, p38, STATs, and JAK
activation (23). As is well-demonstrated, the synergic effect of IL-17
and TNFa induces the production of pro-inflammatory mediators
by macrophages, including IL-6, IL-1b , and matrix
metalloproteinases (MMPs) that contribute to the progression of
an early inflammation toward a chronic arthritis (84).

Moreover, these inflammatory macrophages are involved in
the turnover of connective tissue and erosion of articular surface
through their production and release of MMPs (85). The massive
release of pro-inflammatory cytokines and chemokines
determines a drastic change in the synovial microenvironment
and allows an efficient activation of cytotoxic cells (85).

As a hallmark of inflammation, the abundant presence of
macrophages (M1) in RA synovitis reflects disease activity, and
therefore, their depletion at the level of target organ may be a
good biomarker of therapeutic response (Figure 2) (86).

Many studies have confirmed the different origin of resident
macrophages and monocyte-derived macrophages (86).

In the synovial tissue of RA patients and healthy subjects,
resident macrophages are identified as CD68- and CD163-
positive cells, able to proliferate and maintain themselves
locally: these cells remain relatively quiescent, while they are
activated during disease flares (75, 87). CD68 was shown to bind
oxidized low-density lipoprotein and to be involved in the
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cell–cell interaction. In the synovial sublining, changes in the
number of CD68+ macrophage correlates with clinical outcomes
evaluated using DAS28, representing a possible further reliable
biomarker of therapeutic efficacy (87, 88).

In a recent study involving long-standing RA patients, the
analysis of transcriptome profile of highly inflamed synovial tissue
demonstrated the upregulation of transcripts related to the signaling
pathways mediated by TLR, TNF, IFN, and IL-6 receptors and
related to chemotactic and inflammatory processes, overlapping
with those monocyte/macrophage patterns activated by bacterial
and fungal pathogens, such as LPS (79).

As is well-demonstrated, in vitro stimulation of circulating
human monocytes with LPS induces their differentiation and
polarization into a pro-inflamatory M1 phenotype, characterized
by the expression of specific surface markers CD80, CD86, HL-
DR, TLR2, and 4, and the release of IL-1b, TNFa, and IL-6
(Figure 2) (42, 89). In RA synovitis, the best represented and
upregulated genes and the secreted proteins are those correlated
to M1 macrophages (79).

Moreover, among these secreted proteins, sCD14, S100A8/A9,
S100P, LBP, CXCL13, MMP-3, and CCL18 showed a good
correlation between their concentration and the DAS28/ESR (79).

In the synovial tissue and fluid of RA patients, CD86highAtoMs
characterized by an increased FoxM1 gene expression show a high
osteoclastogenic potential compared to CD86lowAtoMs, contributing
to the inflammatory process and bone erosion in RA (53).

Conversely, MerTK+CD206+ synovial tissue macrophages
(STMs) are highly expressed in RA patients during the remission
state (Figure 2) (64). MerTK−CD206− STMs are the main source of
pro-inflammatory cytokines in synovitis and the cell–cell
interactions between macrophages and fibroblasts (64).

MerTK is a member of transmembrane receptor tyrosine
kinase family, expressed on the surface membrane of
macrophages and dendritic cells. After activation by its ligand
Gas6 and protein S, MerTK plays an anti-inflammatory action
inducing the phagocytosis of apoptotic cells, a key process for
tissue repair and the maintenance of tissue homeostasis (90).

In human synovial tissue, MerTK+ synovial macrophages are
characterized by a specific regulatory signature depending on the
disease state (healthy, active RA, or remission): in particular, RA
patients who underwent remission show the upregulation of the
genes encoding for the transcription factors Krüppel-like factor 2
(KLF2), KLF4, nuclear receptor subfamily 4 group A member 1
(NR4A1), NR4A2, or the dual-specificity phosphatase1
(DUSP1), representing negative regulators of inflammation
that actively participate to restore tissue homeostasis, through
lipid mediators such as resolvins (64).

OLD AND NEW THERAPEUTIC
STRATEGIES INDUCING THE
M1–M2 POLARIZATION AND
FUTURE PERSPECTIVES

In RA patients, the high expression of pro-inflammatory
molecules induces monocytes, primarily those belonging to the
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intermediate subset, to migrate to synovial tissue and
differentiate into M1 macrophages.

It is evident that the increased presence of activated pro-
inflammatory macrophages in synovial tissue is considered an
early hallmark of RA, and it is correlated with the higher
proportion of M1 macrophages compared to M2 macrophages
(Figure 2) (91, 92).

Therefore, an early inhibition of macrophages activation may
be considered as an effective and well-tolerated therapeutic
strategy in the management of RA (93, 94).

As is well-demonstrated, a prompt diagnosis followed by an
early treatment is mandatory to prevent debilitating bone
erosions, functional decline, and premature mortality in RA
patients (95). Achieving early remission within the
“therapeutic window of opportunity” determines better clinical
outcomes and consequently future treatment avoidance (96).

Conversely, a delay in starting treatment results in prolonged
symptom duration and poorer outcomes (97).

The identification of specific biochemical markers
reflecting macrophage populations could be a useful tool to
identify disease activation state and represent possible
targets for RA treatment, such as the aforementioned
MerTK (58).

Interestingly, in RA patients in disease remission, a high
presence of MerTK+CD206+CD163+ M2 macrophages has
been detected in the synovial tissue, where they formed a tight
lining layer; the increased presence of these cells was negatively
correlated with DAS28/CRP, synovial hypertrophy, and
vasculitis (64).

Of note, the presence of these cells was also observed in
healthy synovial tissues. Conversely, active RA patients were
characterized by the presence of MerTK-CD206-macrophages in
the lining layer of the synovial tissue (64).

Interestingly, this study confirmed that in RA patients where it
was possible to taper and then discontinue biological treatment
before the investigation of synovial tissue macrophages, the disease
remission was maintained in those patients characterized by a high
percentage and proportion of MerTK+CD206+ macrophages (M2
macrophages) (Figure 2); conversely, in those RA patients who
flared after biological treatment discontinuation, the percentage of
these M2 macrophages was lower (64).

These results indicate that MerTK+ macrophages showing an
M2 phenotype seem to characterize the synovial tissue of RA
patients under disease remission and healthy subjects (Figure 2):
these cells produce lipid mediators implicated in the resolution
of inflammation, and they overexpress transcription factors
implicated in the control of local immune responses
and homeostasis.

Therefore, based on this new evidence, the induction of the
MerTK signaling pathway might be considered a promising
approach in driving disease remission in RA patients (63).

Interestingly, compelling evidence have demonstrated a
positive correlation between glucocorticoid therapy and the
augmented MerTK expression on monocyte-derived
macrophages surface membrane, revealing an additional role of
this therapeutic approach in RA flare attenuation.
Frontiers in Immunology | www.frontiersin.org 9
Furthermore, cellular metabolic reprogramming could be an
innovative therapeutic strategy to reduce M1 macrophage
growth and alter inflammatory milieu in favor of anti-
inflammatory M2/Th2 pathways, restoring the correct balance
in the M1–M2 ratio (98).

In the last decades, RA treatment has significantly been
changed, highlighting the pivotal role of treat-to target
strategies aiming to a patient tailored therapy for a better
control of disease activity. Therefore, the acknowledge of RA
pathophysiology has been a crucial guide for the development of
effective and safe treatments. About that, in the past years an
increased number of biological disease-modifying anti-
rheumatic drugs (bDMARDs) have been developed with a
proven efficacy (99).

Indeed, starting with bDMARDs treatment at a very early
stage can modify or even reverse disease progression thanks
to their ability to interfere with biologic processes (96).
Although these drugs are structurally unrelated and have
d i ff e r en t pharmacodynamic and pharmacok ine t i c
properties, their clinical development has been largely
overlapping (99).

Currently, no drugs are specific for macrophages in the
treatment of RA, but their effects are directed to inhibit some
aspects of macrophage activation, in particular the production of
inflammatory cytokines, including TNFa, IL-1b, and IL-6:
monoclonal antibodies or soluble receptors have been used for
many years, but novel agents targeting these molecules seem to
be more efficient in the treatment of inflammatory phase in
RA (92).

TNF inhibitors (including infl iximab, etanercept,
adalimumab, golimumab, and certolizumab) bind to soluble
and membrane-associated TNFa, inhibiting the activation of
those intracellular signaling pathways involved in mediating pro-
inflammatory properties, including NF-kB and RANK ligand
(Table 1) (2).

Tocilizumab inhibits the IL-6-mediated inflammation
through the interaction with IL-6 receptors, whereas the
immune and pro-inflammatory action of IL-1b is contrasted
by the inhibition of the binding with its receptors mediated by
anakinra, a non-glycosylated recombinant form of the
physiological IL-1 receptor antagonist (Table 1) (2, 100).

As matter of fact, in a recent study, the contribution of
some bDMARDs, in particular anti-TNF agents, on the
impact of pro-inflammatory M1 macrophages obtained from
RA patients revealed their indirect capability to modulate the
polarization of these cells toward an M2 phenotype
(Table 1) (101).

The mechanism that promotes this polarization involves the
activation of Gas6 and SOCS3 and the subsequent increase in IL-
10, a process mediated by the induction of STAT3 signaling
pathway (Table 1) (101).

Conversely, this effect in promoting the polarization from a
M1 to an M2 phenotype seems not to be induced by the
treatment with anti-IL-6 receptor and anti-CD20 agents, which
do not determine the upregulation of M2 markers in cultured
macrophages (Table 1) (101).
May 2022 | Volume 13 | Article 867260

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Cutolo et al. Macrophage Polarization in Rheumatoid Arthritis Synovitis
THE RECENT DISCOVERED ROLE OF
CTLA4-IG (ABATACEPT) IN INDUCING
THE M1–M2 POLARIZATION

The capability of a selected bDMARDs to promote the
polarization of pro-inflammatory M1 macrophages to an anti-
inflammatory M2 phenotype was recently tested in vitro for the
CTLA4-Ig fusion protein in cultured monocyte-derived
macrophages obtained from RA patients (Table 1) (42). These
RA monocyte-derived macrophages, which were characterized
by a pro-inflammatory M1 phenotype, as demonstrated by their
upregulation of CD80, CD86, and TLR4 gene expression,
acquired an anti-inflammatory M2 phenotype after treatment
with CTLA4-Ig. This polarization is determined by the
downregulation of the gene expression of M1 phenotype
markers and the upregulation of the gene and protein
expression of M2 cell surface markers CD204, CD163, and
CD206 and MerTK, suggesting also an increased induction of
their phagocytic activity (Table 1) (42).

However, this important result was anticipated by the
demonstration that the inhibition of the CD80-CD86/CD28 co-
stimulatory signaling pathway by CTLA4-Ig generally contributes to
downregulate several pro-inflammatory mediators involved in the
inflammatory cascade of RA (Table 1) (102–105).

In fact, in RA patients, the treatment with abatacept significantly
reduced serum levels of IL-6, IL-12, IL-1b, and soluble E-selectin
and ICAM-1, together with the reduction in IFNg and MMP-1/3
gene expression (Table 1) (102, 103). This reduction of these
important inflammatory mediators determines an improvement
of disease outcomes. Of note, several in vitro studies demonstrated
the capability of CTLA4-Ig to block the differentiation of monocytes
into osteoclasts, reducing the expression of CD80 and CD86,
without affecting mature osteoclasts, the functions of which are
important in terms of physiological bone homoeostasis and bone
turnover (106–108). On the contrary, this physiological effect is not
induced by other bDMARDs (106–108).

RA patients with an inadequate response to bDMARDs have
a significant reduction in the composite score of DAS28/CRP
level and the patient’s global assessment of disease activity after
12 weeks of treatment with abatacept (109).
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More specifically, several in vitro studies highlighted the
capability of CTLA4-Ig treatment to reduce the gene
expression and release of pro-inflammatory cytokines IL-6, IL-
1b, and TNFa directly interacting with CD86 on the surface
membrane of APCs, primarily synovial macrophages and
monocyte-derived macrophages isolated from RA patients
(104, 105). This direct anti-inflammatory effect is mediated by
the inhibition of NF-kB signaling pathway in a short time
(Table 1) (46, 47).
CONCLUDING REMARKS

In the pathogenesis of RA, monocytes and macrophages are
fundamental mediators of the inflammatory process,
contributing to the T-cell activation and production and
release of pro-inflammatory cytokines and chemokines
responsible for the migration of circulating cells to the synovial
tissue and promoting an aberrant immune response that leads to
the perpetuation of inflammation and bone erosion.

The development of this inflammatory environment is
primarily due to an imbalance in M1–M2 monocytes/
macrophages both in the peripheral blood and synovial tissue
with a predominant presence of M1 macrophages, which also
contribute to osteoclastogenesis in RA patients with active
disease (14).

Conversely, the synovial tissue of RA patients under
remission is characterized by a higher presence of M2
macrophages with a phagocytic activity compared to patients
with active disease. Considering that the regulation of M1/M2
imbalance in favor of anti-inflammatory M2 macrophages might
represent a therapeutic goal to restore tissue homeostasis, the
identification of molecules that may promote M1/M2
polarization of RA macrophages may represent valuable
therapeutic targets and could lead to the development of
novel drugs.

Based on the newest acknowledgments concerning the
therapeutic strategies currently used in clinical practice, the
treatment inducing not only the downregulation of pro-
inflammatory cytokines/chemokines but also the polarization
TABLE 1 | Targets, effect, and signaling pathways of biological disease-modifying anti-rheumatic drugs (bDMARDs).

Treatment Target M1–M2 shift contribution Signaling Reference

CTLA4-Ig (abatacept) CD80/
CD86

Downregulation of CD80, CD86, and TLR4
Upregulation of CD204, CD163 and CD206,
MerTK

Inhibition of NFkB (42)
(46)
(47)

TNF inhibitors
(infliximab, etanercept, adalimumab, golimumab and
certolizumab)

TNFa Upregulation of
IL-10, SOCS3, GAS6, CD16

Activation of
STAT3
Inhibition of NFkB

(100)

Rituximab Anti-CD20 Downregulation of CD40 – (100)
Tocilizumab Anti-IL-6R Downregulation of CD40

Upregulation of CD206
– (100)
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from M1 into anti-inflammatory M2 macrophages might be an
interesting approach to better control the aberrant inflammatory
response in RA patients.
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