
Institute of Materia Medica, Chinese Academy of Medical Sciences
Chinese Pharmaceutical Association

Acta Pharmaceutica Sinica B

Acta Pharmaceutica Sinica B 2014;4(4):248–257
http://dx.doi.org/10.10
2211-3835 & 2014 Ch
Elsevier B.V. This is

nCorresponding aut

E-mail address: Ju
Peer review under r
www.elsevier.com/locate/apsb
www.sciencedirect.com
REVIEW
Therapeutic strategies for a functional cure
of chronic hepatitis B virus infection
Jinhong Chang, Fang Guo, Xuesen Zhao, Ju-Tao Guon
Department of Microbiology and Immunology, Drexel University College of Medicine, Doylestown, PA 18902, USA

Received 10 April 2014; revised 20 May 2014; accepted 23 May 2014
KEY WORDS

Hepatitis B virus;
cccDNA;
Antiviral agents
16/j.apsb.2014.05.00
inese Pharmaceutica
an open access artic

hor. Tel.: þ1 215 48

-Tao.Guo@drexelm
esponsibility of Inst
Abstract Treatment of chronic hepatitis B virus (HBV) infection with the viral DNA polymerase
inhibitors or pegylated alpha-interferon has led to a significant retardation in HBV-related disease
progression and reduction in mortality related to chronic hepatitis B associated liver decompensation and
hepatocellular carcinoma. However, chronic HBV infection remains not cured. The reasons for the failure
to eradicate HBV infection by long-term antiviral therapy are not completely understood. However,
clinical studies suggest that the intrinsic stability of the nuclear form of viral genome, the covalently
closed circular (ccc) DNA, sustained low level viral replication under antiviral therapy and homeostatic
proliferation of hepatocytes are the critical virological and pathophysiological factors that affect the
persistence and therapeutic outcomes of HBV infection. More importantly, despite potent suppression of
HBV replication in livers of the treated patients, the dysfunction of HBV-specific antiviral immunity
persists. The inability of the immune system to recognize cells harboring HBV infection and to cure or
eliminate cells actively producing virus is the biggest challenge to finding a cure. Unraveling the complex
virus–host interactions that lead to persistent infection should facilitate the rational design of antivirals and
immunotherapeutics to cure chronic HBV infection.
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1. Introduction

Hepatitis B virus (HBV) infection is one of the major public health
challenges worldwide. While the availability of a vaccine has
reduced the number of new HBV infections, it does not benefit the
350 million people already chronically infected by the virus1. In
fact, approximately one-third of these chronically infected indivi-
duals will die from serious liver diseases, such as cirrhosis,
hepatocellular carcinoma (HCC) and liver failure, if left
untreated2,3. The therapeutic goal of chronic HBV infection is
thus to decrease the risk of liver disease progression and prevent
its detrimental clinical sequelae, which can be achieved by
sustained suppression of the virus replication, or ideally by curing
the virus infection.

Currently, seven drugs have been approved by the Food and
Drug Administration of USA for the treatment of chronic hepatitis
B, which include two formulations of alpha-interferon (standard
and pegylated) that enhance the host antiviral immune response
and five nucleos(t)ide analogs (lamivudine, adefovir, entecavir,
telbivudine, and tenofovir) that inhibit HBV DNA polymerase
with varying potencies and barriers to resistance4,5. At present, the
preferred first-line treatment choices are pegylated-interferon
alpha-2a (pegIFN-α), entecavir and tenofovir, based on their
superior antiviral efficacy and/or high resistance barrier6. How-
ever, even with the first-line treatment options, pegIFN-α is
effective in achieving sustained virological response in only 30%
of HBeAg-positive and 40% of HBeAg-negative cases7–9 and
usually associated with severe side-effects7. On the other hand, the
nucleos(t)ide analogs are well tolerated and potently suppress
HBV replication in the vast majority of treated patients. However,
even the most potent nucleos(t)ide analogs rarely induce HBV
surface antigen (HBsAg) seroconversion, the hallmark of a
successful immunologic response to HBV with complete and
durable control of infection, or a “functional cure”10–12. Hence,
long-term, and possibly life-long, nucleos(t)ide analog treatment is
required to continuously suppress HBV replication, which may be
associated with significant cost burden and limited by drug-
associated toxicity. It is, therefore, a pressing need for the
introduction of therapeutic regimens that are safer and effective
in achieving a functional cure. Apparently, unraveling the complex
virus-host interactions that lead to persistent infection and better
understanding of the obstacles to a cure are essential for the
development of curative therapeutics for chronic HBV infection.
2. Pathobiological features of HBV infection

HBV is the prototype virus of hepadnaviridae family and contains
a relaxed circular (rc) partially double stranded DNA (3.2 kb in
length) genome13. A hallmark of HBV genomic DNA replication
is protein-primed reverse transcription of a RNA intermediate
called pre-genomic (pg) RNA14,15. However, unlike that of classic
retroviruses, integration of viral genomic DNA into host cellular
chromosomes is not an obligatory step in the HBV life cycle.
Briefly, as illustrated in Fig. 1, HBV virion binds to its cellular
receptor, sodium taurocholate cotransporting polypeptide (NTCP),
on the surface of hepatocyte and is subsequently internalized by
macropinocytosis16. Viral envelope fuses with endosomal mem-
brane to release nucleoacapsid into the cytoplasm, where genomic
rcDNA is deproteinized and delivered into the nucleus to be
converted into covalently closed circular (ccc) DNA by host
cellular DNA repair machinery17–19. The cccDNA exists as an
episomal minichromosome and serves as the template for the
transcription of viral RNAs20. The viral pregenomic (pg) RNA is
translated to produce both the core protein and DNA polymer-
ase14. The DNA polymerase binds to the epsilon sequence within
the 50 portion of pgRNA to prime viral DNA synthesis and initiate
nucleocapsid assembly15,21. The encapsidated pgRNA is then
reverse transcribed into minus strand viral DNA, which serves
as a template for the subsequent synthesis of plus strand DNA by
viral polymerase. The nucleocapsid matures as rcDNA is formed
and can be either enveloped and secreted out of the cell as a virion
particle, or delivered into the nucleus to amplify the nuclear
cccDNA pool22–24.

The outcome of HBV infection as well as the severity of HBV-
induced liver diseases varies widely among the infected individuals.
While over 95% percent of adult-acquired infections are sponta-
neously cleared within 6 months, more than 90% of exposed
neonates and approximately 30% of children aged 1–5 years will
develop chronic infection2,25. Individuals infected during infancy
represent the majority of the global reservoir of chronic carriers.
Other than the occasional appearance of ground-glass hepatocytes in
chronic HBV carriers, which is presumably due to accumulation of
large envelope protein in the endoplasmic reticulum, HBV infection
of hepatocytes induces negligible cytopathic effect26. It is, therefore,
generally believed that the outcome of HBV infection and severity
of its associated liver diseases are determined by the nature and
magnitude of host immune response against the virus27,28.

Studies in HBV infected people and chimpanzees show that
unlike other viruses that promptly induce an inflammatory
cytokine response in the early phase of infection, HBV infection
is stealthy and flies under the radar of the host immune sensors for
a few weeks before the activation of humoral and T lymphocyte-
mediated cellular immune responses28,29. While a polyclonal and
vigorous HBV-specific T-cell response resolves HBV infection
through coordinated kill and cure of infected hepatocytes, a
weaker or barely detectable HBV-specific T-cell response fails to
eliminate the virus and results in chronic infection30,31. Unfortu-
nately, despite extensive research efforts, the precise mechanism
by which HBV fails to induce a vigorous immune response in the
chronic carriers remains elusive.
3. Virologic goal of chronic hepatitis B therapies

In principle, cure of HBV infection means eradication of the virus
from an infected individual, which requires elimination of all
extracellular virions and kill or cure of every virally-infected cell
in the body. Because either extracellular virions or virally-infected
cells dynamically turnover with kinetics regulated by host patho-
physiological cues, such as antiviral immune response and
proliferation of host cells32,33, cure of HBV infection can, in
theory, be achieved by the inhibition of viral replication for a
period of time that allows for complete decay of extracellular
infectious virions and the most stable viral replication intermedi-
ate, presumably the cccDNA, in infected cells. However, if there
are long-living cells infected by HBV, inhibition of viral replica-
tion alone may not be possible to eradicate the virus infection.
Hence, suppression of HBV gene expression as well as constant
immune surveillance of the residual infected cells might be
essential for a durable off-therapy control of HBV infection. In
fact, it is evident that the cccDNA is not completely eradicated
from the liver following resolution of an acute infection, but
appears to be controlled at extremely low levels by host antiviral



Figure 1 Schematic representation of intrahepatic interplays among hepatocytes, non-parenchymal cells (NPC) and lymphocytes and illustration
of antiviral and immunotherapeutic strategies. HBV replication cycle in hepatocytes is illustrated herein and explained in details in text. HBV
antigens from infected hepatocytes can be captured and cross-presented by liver-resident antigen-presentation cells, such as dendritic cells and
Kupffer cells, to activate HBV-specific T lymphocytes that control HBV infection by either cytolytic kill or cytokine-mediated cure of infected
hepatocytes. In addition, activation of TLRs in NPCs by their cognate ligands induces the production of type I IFNs, proinflammatory cytokines
and chemokines. The type I IFNs bind to their receptors on hepatocytes to trigger JAK-STAT signaling pathway and induce the expression of
ISGs, which limit HBV replication via inhibition of cccDNA transcription and encapsidation of HBV pgRNA. The molecular or cellular targets of
the ten antiviral (Red cross with number) and immunotherapeutic (Green arrow with number) strategies currently used in clinic or under pre-
clinical or clinical development for management of chronic hepatitis B are illustrated herein and explained in details in text and Table 2 in the same
numerical fashion.
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immune response10,34,35. This residual infection becomes clinically
relevant only under the condition of systematic immunosuppres-
sion10. Therefore, a realistic virologic goal of anti-HBV therapy
may not necessarily be the eradication of HBV or an absolute cure,
but the suppression of viral replication as well as the restoration of
host antiviral immune response to sustainably control HBV
infection to a condition that is equivalent to that achieved by
natural resolution of an acute infection, i.e., a functional cure11.
However, achievement of the functional cure is currently ham-
pered by the following conditions.
4. Obstacles to a functional cure

4.1. The intrinsic stability of HBV cccDNA

Treatment of chronic hepatitis B patients with nucleoside analogs
for more than a year reduces HBV load in plasma by more than 4
logs. However, analyses of intrahepatic viral DNA indicate that the
antiviral therapies only reduce the cytoplasmic HBV core DNA
and nuclear HBV cccDNA by approximately 2 and 1 log,
respectively36–38. These observations are well corroborated with
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the inability of nucleoside analogs to significantly reduce the level
of HBsAg antigenemia39, which is quantitatively correlated with
the level of cccDNA. Similarly, extensive analyses of intrahepatic
woodchuck hepatitis virus (WHV) and duck hepatitis B virus
(DHBV) DNA intermediates under nucleoside analog therapy
clearly demonstrated that cccDNA become the predominant form
of viral DNA replication intermediates upon long-term suppression
of viral DNA replication40,41. These findings strongly suggest that
cccDNA is the most stable HBV replication intermediate and
elimination of cccDNA is the key to cure HBV infection.

As stated above and illustrated in Fig. 1, cccDNA is initially
synthesized from the rcDNA from the incoming viral nucleocap-
sids during HBV infection of a hepatocyte. In the early phase of
infection, additional cccDNA are produced from newly synthe-
sized cytoplasmic rcDNA through an intracellular amplification
pathway24,42. These two pathways culminate in the formation of a
regulated steady-state population of 5–50 cccDNA molecules per
infected hepatocyte20,22,43. Obviously, persistent infection of
hepadnaviruses relies on the stable maintenance and proper
function of the cccDNA pool in the nuclei of infected hepatocytes
as the source of viral RNAs and therefore, cure of HBV infected
hepatocytes requires elimination of cccDNA24,42,44,45.

Because cccDNA cannot amplify itself via semiconservative
DNA replication, complete inhibition of cytoplasmic rcDNA
synthesis by viral polymerase inhibitors should preclude de novo
cccDNA synthesis. Hence, the cure of HBV infected hepatocytes
by nucleoside analogs relies on the decay of pre-existing cccDNA.
Accordingly, extensive efforts have been made to determine the
half-lives of cccDNA under the variety of condition and obtained
apparently contradictory results (Table 1), implying that the rate of
cccDNA metabolism varies under different pathobiological con-
ditions. Concerning the potential mechanisms of cccDNA decay,
recent studies suggest that inflammatory cytokines, such as IFN-α
and lymphotoxin-β, induce intrinsic cellular response to promote
the decay of cccDNA through APOBEC3 family enzyme-
catalyzed cytidine deamination and subsequent DNA repair
process51,52. In addition, cccDNA can be diluted during cell
division and cccDNA-free cells could arise through multiple
rounds of cell division and unequal partitioning of cccDNA
molecules into daughter cells53,54. Furthermore, studies with
integrated WHV DNA as a genetic maker of virally infected
hepatocytes during transient and chronic WHV infection of
woodchucks unambiguously demonstrated that virus-free hepato-
cytes can be derived from infected cells55,56. In another word,
WHV-infected hepatocytes are indeed curable in vivo. However, it
is not yet clear if the division of infected hepatocytes is required
for the host immune response to purge cccDNA in vivo.

Based on the mechanistic analyses of cccDNA metabolism,
failure of long-term antiviral therapies with viral DNA polymerase
Table 1 Half-lives of hepadnaviral cccDNA.

Experimental condition

HepG2 cells transduced by HBV-expressing baculovirus vector
HBV infected chimpanzees under nucleoside analog therapy
HBV infected chimpanzees during the early phase of clearance
WHV infected primary woodchuck hepatocytes
WHV infected woodchucks under nucleoside analog therapy
Primary hepatocytes from DHBV congenitally infected ducks
DHBV infected woodchucks under nucleoside analog therapy
inhibitors to eliminate cccDNA is most likely due to either
incomplete suppression of HBV rcDNA synthesis, which allows
for continuous replenishment of cccDNA pool via intracellular
amplification pathway, or slow turnover of at least a subpopulation
of HBV infected cells that serve as reservoirs of the virus.

4.2. Incomplete suppression of viral replication

Although clinical studies on the antiviral efficacy of nucleos(t)ide
analogs under the variety of clinical conditions demonstrate
striking reduction of viral load in peripheral blood, intrahepatic
HBV core DNA and cccDNA are still detectable after long-term
antiviral therapy36–38. Moreover, sequential accumulation of drug
resistance mutations during apparently effective nucleos(t)ide
analog therapy provides additional evidence suggesting that
residual HBV replication and de novo cccDNA synthesis occur
under long-term DNA polymerase inhibitor therapy57. Interest-
ingly, analyses of viral DNA replication intermediates and core
antigen-positive hepatocytes in the livers of WHV-infected wood-
chucks under the therapy of clevudine demonstrated that after
more than 30 weeks of therapy, the predominant WHV DNA
species in the liver is cccDNA. However, core-associated viral
DNA replication intermediates, such as partial single-stranded
DNA, are also clearly detectable. Intriguingly, while the vast
majority of hepatocytes become core antigen-negative, a small
fraction of hepatocytes expresses core antigen at the level similar
to that in the pre-treated hepatocytes40. This observation indicates
that while majority of infected hepatocytes have been cured after
long-term nucleoside analog therapy, the residual viral DNA
replication and cccDNA synthesis occur in discrete hepatocytes.
In another word, the failure to cure HBV infection is most likely
due to a fraction of HBV infected cells that are refractory to
nucleoside analog therapies.

Why should this be? Because the nucleoside analogs are
prodrugs that require activation by host cellular nucleoside kinases
in virally infected cells, it is thus possible that the cells refractory
to the therapy are incapable of activating the nucleoside analogs.
Alternatively, considering the important role of cell division in
elimination of pre-existing cccDNA41, it is also possible that the
refractory cells are long-live cells and have not divided during the
therapy. Nevertheless, further understanding the biological feature
of the refractory cell population is important for the treatment of
chronic HBV infection.

4.3. Turnover of HBV host cells

The rate of infected cell turnover is one of the key parameters of
HBV infection dynamics in vivo. Hepatocyte death, initiated
cccDNA half-life (days) Reference

3 46
9–14 47
3 48
442 45
33–50 40
3–5 49
35–57 50
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through attack by antiviral cytotoxic T-lymphocytes (CTL), and
compensatory hepatocyte proliferation, are both believed to be
major contributing factors in the loss of virus DNA during immune
resolution of transient infections. Although non-cytolytic cure of
infected hepatocytes have been approved to occur, it is estimated
that a minimum of 0.7–1 and approximately 2 complete random
turnovers of the hepatocyte population of the liver occurs during
the resolution of WHV infection in woodchucks50 and HBV
infection in chimpanzees48, respectively. Hepatocyte turnover also
plays an important role in viral pathogenesis and immune selection
of hepatocytes infected with mutant strains of HBV and in the
emergence of hepatocytes that appear refractory to HBV infection
through clonal expansion. Under the condition of therapeutic
inhibition of ongoing HBV DNA replication, the rate of HBV
infected cell turnover is a critical determinant of cccDNA decay
kinetics41,58. Accordingly, hepatocyte turnover has been investi-
gated on the variety of pathobiological conditions by either
directly measuring hepatocyte proliferation activity from liver
biopsies or mathematic modeling of viral dynamics. These studies
from multiple laboratories reveal that while the half-life of
hepatocytes in the healthy adult liver is approximately half a year,
the median half-lives of infected hepatocytes in patients with
chronic hepatitis B are 257 h (¼10.7 days) (n¼9, range 112–
762 h)59 and 7 days in patients with chronic hepatitis B under
lamivudine treatment60. The results thus imply the overall rate of
hepatocyte turnover is significantly accelerated in patients with
chronic hepatitis B, which should favor the eradication of cccDNA
with viral replication inhibitor therapies.
4.4. HBV reservoirs or extrahepatic infection

While it is possible that a fraction of infected hepatocytes with
slower rates of turnover may serve as reservoirs for HBV after
immune resolution of transient HBV infection or long-term
antiviral therapy, the existence of extrahepatic reservoirs also
cannot be ruled out. In fact, although there are reports claiming the
existence of HBV DNA or antigens in peripheral lymphocytes and
other tissues, productive HBV infection of cell types other than
hepatocytes has not yet been convincingly approved61,62. How-
ever, DHBV and WHV have been demonstrated to have an
unanticipated broad cell tropism in vivo. For instance, WHV
DNA replication intermediates and/or mRNA can be detected in
lymphoid cells of spleens, peripheral T and B lymphocytes upon
activation63. In addition to liver, DHBV antigen expression, DNA
replication intermediates and/or mRNA can also be detected in the
brain, lung, heart, intestine, kidney, pancreas and spleen64. In situ
hybridization showed evidence of viral replication in the lung
epithelium, germinal center of spleen, acinar cell of pancreas and
tubular epithelium of kidney65. Moreover, DHBV infects both
pancreatic α and β endocrine cells and impairs the arginine-
stimulated insulin response66. Intriguingly, treatment of DHBV
congenitally infected ducks with the guanosine analog, ganciclo-
vir, efficiently reduced intrahepatic viral core DNA and reduced
core antigen-positive hepatocytes. However, the treatment did not
affect viral antigen expression in the bile duct epithelial cells,
putative oval cells and DHBV-infected cells in extrahepatic sites
such as the pancreas, kidney and spleen67. The studies thus
showed that cure of HBV infection requires combination therapies
targeting all types of infected cells, but not only hepatocytes.
However, due to the intrinsic stability of cccDNA in non-dividing
cells, control of HBV replication in the long-lived cell types may
require elimination of the “reservoir” cells or silence the viral gene
expression and replication by host immune response.
4.5. Dysfunction of antiviral immune response

Due to the failure of nucleos(t)ide analog therapy to completely
eliminate HBV infected cells, viral infection can be restored within
a few weeks to several months after the cessation of antiviral
therapy. Hence, cure or durable control of a chronic infection by
HBV replication inhibitor therapy may not be possible in a host
that lacks an antiviral immune response capable of producing
antibodies to neutralize residual viruses and cellular immune
response that eliminate infected cells and keeps the reservoirs
under immune surveillance.

Although failed to resolve HBV infection, specific humoral and
cellular immune responses against HBV antigens are readily
detectable in chronic HBV carriers, which is distinct from the
immune responses observed in patients who resolve transient HBV
infection28,29. For instance, although antibodies against core
proteins, HBeAg, polymerase and X protein can be detected in
all or a portion of chronic HBV carriers, antibodies against three
envelope proteins are not produced or exist in forms of immuno-
complexes. Concerning T cell response, HBV persistence is
always associated with defective HBV-specific CD4 and CD8 T
cell functions68. Despite the phenotypes of the altered immune
response in HBV chronic carriers in the different clinical stages
have been extensively characterized, the mechanism of HBV
infection to induce the dysfunctional immune responses leading
to a persistent infection remains elusive29. However, it is generally
believed that the defective T cell function is maintained primarily
by the effect of the prolonged exposure of T cells to high
quantities of viral antigens and by the tolerogenic features of
hepatocytes and liver resident cells69,70. These two combined
mechanisms can result in the deletion of HBV-specific T cells or in
their functional inactivation (exhaustion), which is characterized
by an increased expression of negative co-stimulatory molecules
and a dysregulation of co-stimulatory pathways, such as PD-1/
PDL1, affect the quality and intensity of the antiviral T cell
response71.

Considering the critical role of the prolonged exposure of T
cells to high quantities of viral antigens in the maintenance of
HBV-specific T cell dysfunction, it is anticipated that reduction of
HBV antigen load through long-term antiviral therapy to signifi-
cantly reduce cccDNA should help improve T cell function, which
might, in turn, lead to sustained suppression or functional cure of
HBV infection. However, although as expected that long-term
nucleoside analog therapy at least partially restores the function of
HBV specific T cells, a durable control of HBV infection could
still not be achieved in the majority of the treated patients72–74.
Hence, although reduction of HBV antigen load is helpful,
restoration of functional T cell immune response requires the
correction of additional defects in the priming, expansion and
differentiation of HBV specific T cells.
5. Strategies toward a functional cure

Obviously, achievement of a functional cure of chronic HBV
infection needs to remove one or multiple obstacles discussed
above. Strategically, the following four therapeutic approaches,
alone or in combination, have the potential to achieve this goal.
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5.1. Combination therapy with antivirals targeting multiple
distinct steps of HBV replication

The key to the success of antiviral therapies against the infection of
hepatitis C virus and human immunodeficiency virus is the combina-
tion therapy with antivirals targeting multiple distinct viral and/or host
functions. Such a therapeutic approach improves antiviral efficacy
and prevents emergence of drug-resistant viruses. However, treatment
of chronic hepatitis B with combination therapies of two different
nucleoside analogs or a nucleoside analog and pegIFN-α does not
demonstrate significantly improved clinical benefits75. Currently,
compounds that inhibit HBV entry into hepatocytes76, RNase H
activity77 and assembly of nucleocapsids78–81 are under preclinical
and clinical development (Fig. 1 and Table 2). It is anticipated that
combination therapies with nucleoside analogs and one or multiple of
the novel antivirals should more potently suppress HBV replication
and de novo cccDNA synthesis in all HBV infected cells, which
could potentially improve the rate of functional cure. In absence of a
functional cure, it is also expected that the combination therapies may
improve the control of HBV replication in the minority of patients for
whom nucleoside analog monotherapy is inadequate to suppress viral
titers below the clinical detection limit91. In addition, the combination
therapy may make the antiviral drugs with low genetic barriers to
resistance, such as lamivudine, retain effectiveness, which is particu-
larly valuable in developing countries92.
5.2. Elimination or functional suppression of HBV cccDNA

Although it is generally believed that noncytolytic eradication of
cccDNA from virally infected cells or permanent silence of its
transcription is essential for a cure or durable control of HBV
infection, promising approaches and molecular targets for ther-
apeutic elimination and/or silence of cccDNA have not been
identified. Despite studies with cccDNA sequence-specific endo-
nucleoases or zinc-finger proteins to cleave cccDNA molecules or
inhibit its transcription have been successfully demonstrated in
cultured hepatoma cells93,94, efficient and targeted delivery of the
genes that express those antiviral proteins in all HBV infected cells
in vivo is the biggest challenge toward their clinical application95.
Table 2 Antiviral agents currently in clinical use or under developm

Therapeutic strategiesa

1. Activation of TLR7
2. Activation of TLR3
3. Inhibition of virus entry
4. Inhibition of cccDNA formation
5. Elimination and/or silence of cccDNA

6. Inhibition of nucleocapsid formation

7. Inhibition of DNA synthesis
DNA polymerase inhibitors
RNase H inhibitors

8. Inhibition of virion assembly/secretion

9. Therapeutic vaccinations
10. Promotion of functional CTL differentiation and maturation

aThe numbers are consistent with that illustrated in Fig. 1.
It is obvious that further understanding the molecular mechanism
of cccDNA biosynthesis, maintenance and functional regulation as
well as developing convenient cell-based assays for investigation
of cccDNA biology and search of cccDNA-targeting compounds
are essential for development of antiviral drugs to eliminate or
silence cccDNA51.

For instance, the recent discovery that IFN-α and lymphotoxin-β
are capable of inducing non-cytolytic degradation of cccDNA
through cytidine deamination invokes possibility to cure HBV
infected cells via pharmacological activation or argumentation of
the host intrinsic antiviral pathway52. Moreover, studying the
molecular mechanism of IFN-α suppression of hepadnavirus cccDNA
transcription reveals that the cytokine induces a distinct silence
network to shut off cccDNA transcription. Hence, identification of
host and viral proteins that are recruited to cccDNA minichromo-
somes and suppress its function in response to IFN-α may reveal host
and viral targets for rationale development of antiviral drugs to
eliminate or transcriptionally silence cccDNA51,85.

5.3. Stimulation of intrahepatic innate immune response

Innate immune response plays an essential role in defending the
host from viral infections. Particularly, the cytokine response
elicited by activation of host pattern recognition receptors (PRRs)
not only contains viral replication and spreading during the early
phase of infection, but also orchestrates the activation and devel-
opment of the adaptive immune response, which ultimately resolves
viral infections96. Intriguingly, HBV infection has been shown to
induce a negligible proinflammatory response during the early phase
of infection. Whether this is due to the failure of the virus to activate
the PRRs or suppression of the PRR signaling pathways by the
virus remains controversial97. However, a plethora of evidence
suggests that artificial activation of intrahepatic Toll-like receptors
(TLR)98,99 and RIG-I-like receptors (RLR)100,101 induces robust
cytokine responses in HBV-replicating mice and efficiently sup-
presses the virus replication. It is also worth noting that HBV
activates other branches of innate immune responses, such as NK
cells and NKT cells, although it is compromised by virus-induced
immunosuppressive cytokine IL-10 or increase of the inhibitory
receptor NKG2A on NK cells102–104. Accordingly, as illustrated in
ent.

Representative drugs or compounds Reference

TLR7 agonists 82
TLR3 agonists 83
Myrcludex-B 76
Disubstituted sulfonamide 84
IFN-α 51,52,85
Lyphotoxin-β 51
Heteroaryldihydropyrmidines 78
Phenylpropenamides 80,86
Sulfamoylbenzamides 81

Nucleos(t)ide analogs 87
77

Iminosugars 88
Tetrahydro-tetrazolo-pyrimidine 89
Extensively reviewed in 90
Extensively reviewed in 29
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Fig. 1, pharmacological activation of intrahepatic innate immune
response in liver non-parenchymal cells, such as Kupffer cells and
dendritic cells, has been considered as a therapeutic approach that
not only suppresses HBV replication in hepatocytes via induction of
antiviral cytokines and activation of NK cells, but also facilitate the
priming and development of a successful HBV-specific adaptive
immune response105,106.

Indeed, the great potential of TLR agonists for treatment of
chronic hepatitis B has been demonstrated by the promising results
obtained with TLR7 small molecular agonists. For instance, four
week treatment of woodchucks chronically infected by WHV with
GS-9620, a potent and orally available TLR7 agonist, resulted in a
greater than 4 log reduction of viral load in all treated animals.
Intriguingly, the suppressive effect on the virus was sustained after
cessation of treatment and antibody against the surface antigen of
WHV became detectable in a subset of woodchucks (Menne et al.,
2011, EASL 46th Annual Meeting, Berlin, Germany). Similarly,
oral administration of GS-9620 to HBV chronically infected
chimpanzees for eight weeks reduced viral load by more than 2
logs and more than ten-fold reduction of viral load persisted for
several months after the cessation of treatment. In addition, serum
levels of HBsAg, HBeAg and numbers of HBV antigen-positive
hepatocytes, were reduced as hepatocyte apoptosis increased. In
consistence with the activation of TLR7, GS-9620 administration
induced production of interferon-α and other cytokines and
chemokines, and activated interferon-stimulated genes82.

In addition to activate intrahepatic cytokine response, recent
studies in a HBV-replicating mice model also showed that
blockade of the natural killer cell inhibitory receptor NKG2A
increases activity of NK cells and clears HBV infection107. This
result suggests that interruption of the interaction between NKG2A
and its ligand HLA-E might be an ideal therapeutic approach to
treat CHB infection in humans.
5.4. Restoration of HBV specific adaptive immune response

Current, it is not yet known at what extent the dysfunction of viral
specific adaptive immunity in chronic HBV carriers is reversible.
Phenotypic analyses of HBV-specific T lymphocytes in chronic
carries suggest that the dysfunctional adaptive immune response is, at
least in part, due to the exhaustion of cytolytic T cells induced by the
prolonged exposure to high quantities of viral antigens. The fact that
reduction of HBV antigenemia and viral load in patients receiving
long-term effective antiviral therapy partially improves the HBV-
specific adaptive immune response seems to support this notion72–74.
However, it remains to be demonstrated whether more profound and
faster reduction of HBsAg antigenemia through inhibition of viral
protein expression and replication by hepatocyte-targeting siRNA,
such as ARC-520108 (http://www.arrowheadresearch.com/press-re
leases/arrowhead-receives-regulatory-approval-begin-phase-2a-trial-
chronic-hepatitis-b), or HBsAg secretion by small molecules89 or
nucleic acid-based polymers (REP9AC) (http://replicor.com/antiviral-
technologies/hepatitis-b/) could further improve the antiviral immune
response and result in a functional cure.

Interestingly, the observation that adoptive transfer of dysfunc-
tional virus-specific CD8 cells from a chronically infected to a
naïve uninfected MHC compatible mouse is not sufficient to
restore the T cell memory maturation and differentiation process
suggests that in addition to reduction of viral antigen load, direct
target cellular pathways mediating the immunopathology of HBV
infection is essential for the reconstitution of a fully functional
immune response against the virus109. The differentiation and
maturation of functional T-cells are regulated by numerous
receptor and ligand interactions in separate cellular compartments
at different phases of the immune response110. Recent studies
suggest that multiple inhibitory receptors, including PD1111,
CTLA-4112, TIM-3113 and LAG-3114, play important roles in T-
cell exhaustion during persistent HBV infection. Hence, strategies
to directly target the negative co-stimulatory pathways involved in
the pathogenesis of T cell exhaustion as well as manipulate the
liver microenvironment that regulates T cell function, such as
production of immunomodulatory cytokines and regulatory T
cells106,115, have been extensively investigated in HBV replicating
mice models, WHV infected woodchucks and humans in clinic.
Data obtained from these studies suggest that the function of the
different immune regulatory pathways is not redundant in the
pathogenesis of T cell exhaustion and combinational interruption
of multiple key regulatory pathways might be required to reverse
the dysfunctional adaptive immune response29,116.

Another immunotherapeutic strategy is to induce functional
anti-HBV immune responses in chronic HBV carriers by vaccina-
tion117. During last two decades, vaccination strategies using
conventional HBsAg vaccine, immunocomplexes of HBsAg and
human anti-HBs, apoptotic cells that express HBV antigens, DNA
vaccines or viral vectors expressing HBV proteins have been
evaluated in animal models and clinical trials, alone or in
combination with antiviral therapy, expression of immune stimu-
latory cytokines or modulators of T cell function118–121. Although
functional antiviral immune response could indeed be induced
under selected experimental conditions, vaccination strategies for
induction of immune response that can resolve or durably control
chronic HBV infection remains to be defined90. It can be
speculated that a successful therapeutic vaccination strategy
should, at least, be able to reduce viral load, break the HBV
antigen-specific immune tolerance and modulate T cell differentia-
tion and maturation to prevent their exhaustion122.
6. Concluding remarks

Achievement of a functional cure of chronic HBV infection relies on
eradication of cccDNA from the vast majority of virally infected cells
as well as sustained immune control of HBV replication in a small
number of residual HBV-infected cells. Hence, keys to the success
are development of drugs targeting distinct viral and/or host functions
to potently suppress HBV replication as well as therapeutics to restore
or induce functional antiviral adaptive immune response. However,
lack of biologically relevant animal models of chronic HBV infection
and efficient HBV infectious cell culture system has hampered our
investigation toward understanding of the HBV immunopathogenesis
and molecular mechanism of cccDNA metabolism/functional regula-
tion as well as search for immunotherapeutic regimes and cccDNA-
targeting antivirals123,124. Research to resolve these important issues
should ultimately lead to the rational design of antiviral and
immunotherapeutic strategies to cure chronic hepatitis B.
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