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Abstract
The liver has remarkable regenerative potential, with the capacity to regenerate 
after 75% hepatectomy in humans and up to 90% hepatectomy in some rodent 
models, enabling it to meet the challenge of diverse injury types, including 
physical trauma, infection, inflammatory processes, direct toxicity, and immuno-
logical insults. Current understanding of liver regeneration is based largely on 
animal research, historically in large animals, and more recently in rodents and 
zebrafish, which provide powerful genetic manipulation experimental tools. 
Whilst immensely valuable, these models have limitations in extrapolation to the 
human situation. In vitro models have evolved from 2-dimensional culture to 
complex 3 dimensional organoids, but also have shortcomings in replicating the 
complex hepatic micro-anatomical and physiological milieu. The process of liver 
regeneration is only partially understood and characterized by layers of 
complexity. Liver regeneration is triggered and controlled by a multitude of 
mitogens acting in autocrine, paracrine, and endocrine ways, with much 
redundancy and cross-talk between biochemical pathways. The regenerative 
response is variable, involving both hypertrophy and true proliferative 
hyperplasia, which is itself variable, including both cellular phenotypic fidelity 
and cellular trans-differentiation, according to the type of injury. Complex 
interactions occur between parenchymal and non-parenchymal cells, and 
regeneration is affected by the status of the liver parenchyma, with differences 
between healthy and diseased liver. Finally, the process of termination of liver 
regeneration is even less well understood than its triggers. The complexity of liver 
regeneration biology combined with limited understanding has restricted specific 
clinical interventions to enhance liver regeneration. Moreover, manipulating the 
fundamental biochemical pathways involved would require cautious assessment, 
for fear of unintended consequences. Nevertheless, current knowledge provides 
guiding principles for strategies to optimise liver regeneration potential.
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Core Tip: The liver has remarkable regenerative potential, allowing recovery from 90% 
hepatectomy in some rodent models. Current understanding of liver regeneration 
comes from in vitro and animal models. Liver regeneration is controlled by mitogens 
acting in autocrine, paracrine, and endocrine ways. Complex cross talk occurs between 
parenchymal and non-parenchymal cells. Regeneration involves hypertrophy and 
hyperplasia, with both cellular phenotypic fidelity and transdifferentiation, which come 
into play according to the nature and magnitude of the injury, and the presence of 
underlying liver disease. Current knowledge provides guiding principles for strategies 
to optimise liver regeneration potential in the treatment of liver tumours.

Citation: Hadjittofi C, Feretis M, Martin J, Harper S, Huguet E. Liver regeneration biology: 
Implications for liver tumour therapies. World J Clin Oncol 2021; 12(12): 1101-1156
URL: https://www.wjgnet.com/2218-4333/full/v12/i12/1101.htm
DOI: https://dx.doi.org/10.5306/wjco.v12.i12.1101

INTRODUCTION
The process of liver regeneration is highly complex, and incompletely understood. 
Moreover, the components of this complexity are multiple. Firstly, liver regeneration 
may be triggered by a wide range of diverse injury types, occurring in isolation or 
combination, and including physical trauma, infection, inflammatory processes, direct 
toxicity, and immunological insults. Commensurate with the range of injuries, the 
biochemical mechanisms which trigger liver regeneration in the first place are also 
diverse, but only partly identified. Second, the response to injury is not only 
dependent on the type of injury, but also its magnitude. For example, liver growth 
after 30% partial hepatectomy in the rat model is predominantly by hepatocyte 
hypertrophy (liver growth by hepatocyte volume increase), in contrast to the 
hyperplasia (liver growth by hepatocyte proliferation) seen after 70% hepatectomy. 
The mechanism underlying this observation is poorly understood. Third, even in the 
context of liver regeneration by proliferation, different pathways are activated 
depending on the magnitude of the injury and the status of the background liver. 
Thus, when the default pathway of phenotypic fidelity (hepatocytes dividing to 
produce more hepatocytes, cholangiocytes dividing to produce more cholangiocytes, 
and so on) fails, alternative pathways are recruited whereby intrahepatic bipotential 
cells transdifferentiate to hepatocytes or cholangiocytes to meet the deficit. Fourth, the 
triggers and drivers to liver regeneration are an expanding multitude of cytokines, 
hormones, and growth factors (collectively referred to as hepatic mitogens), from 
hepatic and extra-hepatic sources, acting either synchronously or metachronously, 
each subject to complicated and ill-defined control mechanisms and feedback loops. 
The mitogen maelstrom is characterized by much redundancy (ablation of particular 
mitogens is compensated by others) and overlapping ‘biochemical promiscuity’ (with 
mitogens impacting on more than one receptor, or intracellular signalling pathway). 
This degree of overlap and redundancy is understandably a highly valuable 
evolutionary adaptation to meet the diverse insults the liver is exposed to. Whilst 
many mitogens have been identified and characterized, the complexity of the 
interactions make it extremely difficult to assign quantitative relative contributions or 
importance. Fifth, the complexity of interactions in mitogenic stimuli is further 
enhanced by the interplay between parenchymal cells (hepatocytes and cholan-
giocytes) and non-parenchymal cells [Kupffer cells (KC), hepatic stellate cells (HSC), 
liver sinusoidal endothelial cells (LSEC)], with the latter group, though present in 
much smaller numbers, playing critical roles. Sixth, the regenerative response is 
significantly affected not only by the nature of the injury and its magnitude, but also 
by the health of the underlying liver. Thus, liver regeneration in the face of established 
steatosis, steatohepatitis, fibrosis, cirrhosis, or biliary outflow obstruction is much 
altered to that in healthy liver tissue. Seventh, although the processes driving liver 
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regeneration are only partially understood, those controlling the stop signals, once the 
liver has grown sufficiently, are even less well defined. Lastly, although many in vitro 
and animal models are available for the study of liver regeneration, all have their 
limitations, and their results cannot necessarily be extrapolated to the human situation 
where information is most limited.

This review provides an overview of liver regeneration biology, and the implic-
ations of our current understanding for the treatment of liver tumours. We discuss the 
subject in separate sections listed below. It is emphasized that the presentation of the 
subject in this way, though designed to orientate the reader, is somewhat artificial in 
the context of a biological process characterized by multiple synchronous and 
overlapping events. There is therefore a degree of overlap between sections, with 
references made to key events in one section subsequently expanded upon in later 
ones.

Section 1 describes the models of liver regeneration and provides an account of the 
in vitro, animal, and human models that provide our current knowledge of liver 
regeneration.

Section 2 describes the very early events post liver injury (provided by the 
hepatectomy model) and provides an account of the known early triggers to liver 
regeneration.

Section 3 provides an account of the multiple hepatic mitogens which contribute to 
initiating and maintaining liver regeneration.

Section 4 describes the contribution of non-parenchymal cells to liver regeneration.
Section 5 describes the ‘alternative pathways’ of liver regeneration, in which stem 

cell trans differentiation is recruited as a mechanism to deal with situations when 
phenotypic fidelity fails.

Section 6 describes the influence of underlying liver disease to liver regeneration.
Section 7 describes current knowledge of the mechanisms underlying ceasing of 

liver regeneration.
Section 8 considers how our current knowledge of liver regeneration affects therapy 

for liver tumours currently and in terms of future developments.

SECTION 1: MODELS OF LIVER REGENERATION
Although the clinician’s perspective may aim to use understanding of liver reg-
eneration to optimize and develop therapeutic interventions in humans, much of our 
current knowledge of liver regeneration is based on animal and in vitro models. This 
section describes the historical evolution of liver regeneration research, the current 
predominant animal models: Rat, mouse, and zebrafish, the modern tissue culture in 
vitro models, and finally human studies of liver regeneration.

Historical evolution of liver regeneration research
Early research and the flow theory: The history and evolution of animal models used 
for the study of liver regeneration is described in detail within the excellent review by 
Mortensen et al[1]. The very first liver regeneration research is attributed to Nicolas 
Eck, a 29-year-old Russian military surgeon, in his investigation of portocaval fistula in 
dogs[2].

From this early period and into the early 1900s, the prevailing view, referred to as 
‘the flow theory’ hypothesized that liver homeostasis and regeneration could be 
maintained provided that the liver sinusoids were supplied with mechanical flow of 
blood, irrespective of its source.

The theory was seemingly supported by experiments showing liver regeneration in 
dogs after 70% hepatectomy who had undergone total portocaval transposition (thus 
delivering exclusively systemic venous blood to the sinusoids)[3], and by similar 
experiments showing liver regeneration in dogs after 42% hepatectomy who had 
undergone portocaval shunt and arterialization of the hepatic portal stump[4] (thus 
delivering exclusively arterial blood to the sinusoids). With hindsight, the inte-
rpretation of these results was incorrect, in that in both cases, liver regeneration was in 
fact supported by growth factors of portal origin spilling into the systemic circulation.

The humoral theory: The concept that constituents of portal blood were essential to 
liver homeostasis and regeneration only gradually gained acceptance, despite early 
evidence form Hahn who described liver failure in dogs undergoing portocaval shunts
[5]. In the 1920s, Rous and Larimore reported that unilateral portal ligation produced 
ipsilateral atrophy with contralateral hypertrophy in a rabbit model[6]. From the 1960s 
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onwards many more investigators pursued the idea of portal flow as critical in liver 
regeneration, in experiments including those of Marchioro et al[7], who carried out 
canine split portocaval transposition in which one portal branch is supplied with 
venous blood from the inferior vena cava and the second portal branch receives portal 
blood, showing atrophy and hypertrophy of the respective parts of liver parenchyma. 
Furthermore it was demonstrated that adjusting flow and oxygenation alone did not, 
in a dog model, compensate for the absence of portal blood[8].

Characterising portal blood constituents: With the recognition of the importance of 
portal blood came an impetus to define the source and nature of vital portal blood 
constituents. Thus splanchnic portal flow separation experiments were carried out 
separating portal flow of distal stomach, duodenum, pancreas and spleen from that of 
small intestine, with the overall finding that the grafts supplied with small intestinal 
portal flow atrophied, in contrast to those supplied with portal blood from the upper 
intestinal tract[9,10].

Thereafter, searches for candidate hepato-trophic factors were carried out by 
infusing individual growth factors and hormones in portal deprived parenchyma to 
see if rescue could be achieved. In this way, it was demonstrated that insulin infusion 
into one portal branch of liver after portocaval shunt could partially rescued atrophy 
of the liver[11], though insulin was unable to prevent liver atrophy following complete 
splanchnic evisceration[12].

This portocaval shunt rescue model of experimentation allowed the identification of 
other factors which promoted liver regeneration including thyroxine (T 3), insulin-like 
growth factor II, transforming growth factor alpha (TGFα) and hepatocyte growth 
factor (HGF)[13]. Although portal in origin, the systemic blood dissemination of the 
factors involved in liver regeneration were shown in canine experiments with auto-
transplantation of small liver grafts to the jejunal mesentery, then randomising 
animals to sham surgery or 70% hepatectomy. In contrast to sham surgery, autografts 
in hepatectomised animals did not atrophy, indicating a growth stimulus via the 
systemic circulation[14].

Similar results were obtained in parabiosis experiments. Thus, using rats with 
surgically conjoined systemic circulations, partial hepatectomy in one rat, resulted in 
liver hypertrophy in the non-hepatectomised rat[15,16].

Thus, the early experiments establishing the underlying principles of liver 
regeneration were performed using predominantly large animal models. In the more 
recent era, small animal models have preferentially been used because, as well as 
providing similar physiology and anatomy to the large animal models, they presented 
advantages in terms of cost, animal husbandry, rapidity of experimentation, and, in 
the mouse in particular, greater opportunity for genetic modification as an invest-
igative tool. The sections below follow on to describe the rat and mouse models, with 
the subsequent evolution to the zebrafish model.

It should be emphasised that drawing conclusions from these different models 
presents additional complexity per se, in that the observations of one species model 
may not necessarily be extrapolated to the others. Moreover, even within one species, 
different liver injury types may present differing characteristics. For example, in the 
mouse model, epidermal growth factor receptor (EGFR) blockade markedly inhibits 
liver regeneration after paracetamol injury[17], but only delays it after partial 
hepatectomy (PH)[18].

Current predominant animal models: rat, mouse, and zebrafish
Rat model: The rat model has gained favour over larger animal models (i.e., dogs, 
rabbits, baboons and pigs) due to advantages in terms of ethics, costs, and practic-
alities such as husbandry, handling, and shorter experimental times[19] although their 
size renders surgery more intricate.

As early as 1931, Higgins & Anderson described a standardized technique for 
partial hepatectomy in rats, which resulted in liver regeneration[20]. Two decades 
later, Bucher et al[15] reported on parabiotic experiments, whereby rats that 
underwent partial hepatectomy were joined to partner rats with intact livers by way of 
an abdominal wall anastomosis. The authors found that mitosis increased both within 
the operated and the intact livers, thus concluding that liver regeneration is influenced 
by factors in the systemic circulation. In a contemporaneous report of parabiotic rats, 
Wenneker & Sussman[16] found that liver weight and number of hepatic cells 
increased both in hepatectomized and “normal” rats, thus reaching the same 
conclusion. Moolten & Bucher[21] investigated this further by establishing carotid-to-
jugular cross-circulation from partial hepatectomy to normal rats, and demonstrating 
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that DNA synthesis increased in the normal livers, dependent on the extent of 
hepatectomy in the parabiotic partner. Since these early experiments, a variety of 
surgical and hepatotoxic rat models have been developed for the study of regeneration 
in acute and chronic liver disease.

The rat liver consists of four main lobes: middle (38% liver mass), left lateral (30%), 
right (22%), and caudate (8%)[19]. In descriptions where the paracaval portion is 
considered separate from the caudate, this amounts to 2% of liver mass. These lobes, 
and their subdivisions, are analogous to the human liver segments described by 
Couinaud[22]. Specifically, the caudate lobe (which consists of the Spiegel lobe and 
paracaval portion) corresponds to the human segments (Sg) I and IX, the left lobe to Sg 
II, the left component of the middle lobe to Sg III, the right component to Sg IV, V, and 
VIII, and the right lobe to Sg VI and VII[23].

The classical surgical model involves a 70% (2/3) hepatectomy, as described by 
Higgins & Anderson[20], and remains the most common surgical model for liver 
regeneration. Impressively, rat liver can completely regenerate within 8 d of 70% 
hepatectomy[24]. Variations to this model can result in 5%-97% partial hepatectomies, 
depending on the combination of liver lobes resected[19]. Impressively, 90% 
hepatectomy in rats is survivable[25]. Furthermore, survival can (perhaps counterintu-
itively) be enhanced by suppressing the abrupt early regenerative response of the 
remnant liver via the mitogenactivated protein kinase pathway, thus rendering 
regeneration linear in the acute phase[26] or by selective bowel decontamination with 
gentamicin[27]. These phenomena point towards a substantial regenerative reserve in 
rats, which unfortunately is not found in humans and which limits extrapolation from 
rodent models to humans. Bile duct ligation (BDL) is another commonly used surgical 
model, which involves dividing the common bile duct between ligatures, thus 
providing a model for the study of cholestatic disease[28]. Yet another surgical model 
is portal branch ligation, after which ipsilateral atrophy and contralateral hyperplasia 
is observed in rats[29] analogous to human clinical scenarios such as portal vein 
embolisation (PVE) or associating liver partition and portal vein ligation for staged 
hepatectomy (ALPPS).

Hepatotoxic models have been extensively studied in both rats and mice, shown in 
Table 1, with the aim of replicating acute or chronic liver disease. Their mechanisms 
are also described below in the context of mouse models. The hepatotoxic approach 
has been used to demonstrate the protective effects of flavonoids[30], thiamine[31] 
protocatechuic acid[32], Lactococcus lactis in probiotic preparation[33] and 5-methoxy-
tryptophan[34], to mention a few examples. An alternative approach to hepatotoxicity 
is the manipulation of the cell cycle. Specifically, 2-acetaminofluorene (AAF) has been 
shown to inhibit hepatocyte proliferation, whilst inducing the proliferation and 
transdifferentiation of oval cells (hepatic progenitor cells) to hepatocytes after partial 
hepatectomy[35,36], thus shedding light on alternative liver regenerative pathways.

Mouse model: Although much knowledge on liver regeneration has been generated 
from partial hepatectomy rat models, the mouse model provides an attractive 
alternative due to lower costs (mice generally require fewer expensive reagents and 
less expensive housing)[39] relative ease of handling, and immense experimental 
potential afforded by genetically altered (transgenic and knockout) mice[19].

Mouse models of liver regeneration have been described in various contexts, 
including: partial hepatectomy[40], portal branch occlusion[41], bile duct ligation[42], 
chemical, pharmacological or immune-mediated injury[43-47], and chronic conditions 
such as non-alcoholic fatty liver disease[48] and liver cancer[49].

The lobar anatomy of the mouse and rat liver is broadly similar, and the inferior 
vena cava is intrahepatic in both species[39]. A significant distinction is the absence of 
a gallbladder in the rat[19]. In the mouse, the normal liver consists of seven lobes with 
the following mass proportions: left posterior (37%), left anterior (12%), right anterior 
(22%), right posterior (14%), right middle (8%), and two omental lobes (7%)[50]. The 
classical surgical model in rodents is the partial hepatectomy, which most commonly 
results in removal of 70% of the liver mass (also referred to as a “2/3 hepatectomy”)
[19]. Portal branch occlusion can be performed radiologically in humans and in large 
animals but requires an open surgical approach in rodents[19]. BDL has also been 
developed as a model of cholestasis[42], with relevance to the study of malignant 
biliary obstruction. Although the total BDL rat model has existed for decades, mice 
have been used more recently in the partial BDL model, whereby (rather than 
transecting the bile duct between ligatures) a 7-0 needle is ligated onto the duct. When 
the needle is removed, a reproducibly narrow bile duct lumen is left, which results in 
less liver necrosis[42] and may more closely resemble chronic cholestasis. These 
surgical models are of particular interest with regards to single or staged hepatec-
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Table 1 Hepatotoxins used in rodent models

Toxin Mechanism Necrosis pattern

Acetaminophen (paracetamol)[19,36,37] Free radical enhancement and Kupffer cell activation Pericentral

Carbon tetrachloride[19,30,37] Free radical enhancement and Kupffer cell activation Pericentral

Concanavalin A[37] T-cell activation; cytokine release; ICAM-1 & VCAM-1 upregulation. Centrilobular

D-Galactosamine[19,37] Uridine metabolite deficiency Random

Ethanol[19,31] Increases production of reactive oxygen species and infiltration of inflammatory cells None

Lipopolysaccharide[37] Kupffer cell activation Centrilobular

Thioacetamide[19,37,38] Increases production of toxic metabolites and reactive oxygen species Pericentral

ICAM-1: Intercellular adhesion molecule 1; VCAM-1: Vascular cell adhesion molecule 1.

tomies with or without portal vein occlusion in human patients with liver tumours, 
where physiological reserve, oncological and technical resectability, as well as liver 
tumour burden and status of background parenchyma will determine the most 
optimal approach. However, recapitulating human liver procedures in mouse models 
is limited by the fact that mice are relatively very small, and (as in humans) there is 
significant anatomical variability in their hepatic vascular and biliary systems[39]. 
Furthermore, rodents can typically survive with much smaller liver remnants than 
humans, and the kinetics of liver regeneration vary between species. Nevertheless, 
surgical techniques in mice are well established and are characterized by reprodu-
cibility and minimal operative mortality[39].

The most frequently used hepatotoxins used to induce liver injury in mouse models 
are carbon tetrachloride (CCl4), d-galactosamine, paracetamol (acetaminophen), 
ethanol[51] and thioacetamide[19]. CCl4 can induce acute and chronic liver injury 
through its action on cytochrome P450, leading to the production of free peroxide 
radicals which cause lipid peroxidation of hepatocyte[19]. The disadvantage of the 
CCl4 model is the inflammatory and immune response caused during hepatocyte 
injury, which may confound models of liver regeneration[19]. D-galactosamine is 
thought to induce liver injury via intracellular deficiency in uridine metabolites and 
can additionally induce hepatocyte apoptosis when combined with lipopolysaccharide
[19]. Paracetamol is metabolized by cytochrome P450 and in overdose leads to toxic 
levels of N-acetyl-benzoquinone imine, free radical formation and centrilobular 
apoptosis/necrosis[19]. The kinetics of liver regeneration after CCl4, D-Galactosamine 
and paracetamol-induced injury are similar[19]. Ethanol induces liver injury via 
mitochondrial dysfunction, oxidative stress, inflammatory cell infiltration and translo-
cation of intestinal bacteria which can then enter the portal and systemic circulation
[19]. Finally, thioacetamide leads to oxidative stress via its conversion to thioacetamide 
disulfoxide which increases the production of reactive oxygen species[19].

In addition to the hepatotoxic models mentioned above, several dietary models are 
used in mice to model liver disease. These include the 1,4dihydro2,4,6trimethyl-
pyridine-3,5-dicarboxylate (DDC) diet, which leads to biliary injury and regeneration
[52], the modified choline-deficient ethionine diet, which leads to hepatocellular 
injury, steatosis and spread of ductular cells from the portal tract[53]. More recently, a 
mouse model with rapid progression from normal liver to non-alcoholic steatohep-
atitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) within 24 wk 
has been described by Tsuchida et al[49]. This was achieved by feeding C57BL/6J mice 
a western diet (high-fat, high-fructose and high- cholesterol) and administering 
weekly intraperitoneal doses of CCl4.

The development of transgenic and knockout mouse models has enabled closer 
scrutiny of pathophysiological mechanisms with regards to liver regeneration after 
surgery or chemical/diet-induced injury, also highlighting the importance of the 
innate and adaptive immune system in liver regeneration[54].

The opportunities offered by these models and their relevance to the treatment of 
liver tumours in humans will be elaborated in the sections to follow. Table 2, whilst 
non-exhaustive, gives an impression of the breadth and potential of transgenic and KO 
mouse models in the study of liver regeneration.

Zebrafish model: Following their discovery in the Ganges River in the late 19th 

century, zebrafish (Danio rerio) were initially used by embryologists to investigate 
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Table 2 Studies of liver regeneration involving transgenic or knockout mice

Yr First author Gene 
product Study title Ref.

1994 Webber TGF-α “Overexpression of transforming growth factor-alpha causes liver enlargement and increased hepatocyte 
proliferation in transgenic mice”

[55]

1996 Cressman IL-6 “Liver failure and defective hepatocyte regeneration in interleukin-6-deficient mice” [56]

1997 Yamada TNF “Initiation of liver growth by tumor necrosis factor: deficient liver regeneration in mice lacking type I tumor 
necrosis factor receptor”

[57]

1998 Greenbaum C/EBP-β “CCAAT enhancer-binding protein beta is required for normal hepatocyte proliferation in mice after partial 
hepatectomy

[58]

1998 Rai iNOS “Impaired liver regeneration in inducible nitric oxide synthase-deficient mice” [59]

1998 Roselli uPA “Liver regeneration is transiently impaired in urokinase-deficient mice” [60]

1998 Yamada TNFR-
1TNFR-2

“Analysis of liver regeneration in mice lacking type 1 or type 2 tumor necrosis factor receptor: requirement for 
type 1 but not type 2 receptor”

[61]

2002 Anderson PPAR-α “Delayed liver regeneration in peroxisome proliferator-activated receptor-alpha-null mice” [62]

2003 Leu IGFBP-1 “Impaired hepatocyte DNA synthetic response posthepatectomy in insulin-like growth factor binding protein 
1-deficient mice with defects in C/EBP beta and mitogen-activated protein kinase/extracellular signal-
regulated kinase regulation”

[63]

2003 Strey C3a/C5a “The proinflammatory mediators C3a and C5a are essential for liver regeneration” [64]

2004 Borowiak Met “Met provides essential signals for liver regeneration” [65]

2004 Mohammed TIMP3 “Abnormal TNF activity in Timp3(–/–) mice leads to chronic hepatic inflammation and failure of liver 
regeneration

[66]

2004 Nakamura OSM “Hepatocyte proliferation and tissue remodeling is impaired after liver injury in oncostatin M receptor 
knockout mice”

[67]

2004 Oe TGF-β “Intact signaling by transforming growth factor beta is not required for termination of liver regeneration in 
mice”

[68]

2005 Duffield DTR “Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair” [69]

2005 Mitchell HB-EGF “Heparin-binding epidermal growth factor-like growth factor links hepatocyte priming with cell cycle 
progression during liver regeneration”

[70]

2005 Oliver MT “Impaired hepatic regeneration in metallothionein-I/II knockout mice” [71]

2005 Seki MyD88 “Contribution of Toll-like receptor/myeloid differentiation factor 88 signaling to murine liver regeneration” [72]

2006 Fernández Caveolin-1 “Caveolin-1 is essential for liver regeneration” [73]

2006 Olle MMP9 “Matrix metalloproteinase-9 is an important factor in hepatic regeneration after partial hepatectomy in mice” [74]

2007 Mayoral Caveolin-1 “Dispensability and dynamics of caveolin-1 during liver regeneration and in isolated hepatic Cells” [75]

2009 Tumanov Rag1LT “T cell-derived lymphotoxin regulates liver regeneration” [54]

2010 Erhardt CCR5, 
CXCR3

“Tolerance induction in response to liver inflammation” [47]

2010 Liu GPC3 “Suppression of liver regeneration and hepatocyte proliferation in hepatocyte-targeted glypican 3 transgenic 
mice”

[76]

2012 Borude FXR “Hepatocyte-Specific Deletion of Farnesoid X Receptor Delays But Does Not Inhibit Liver Regeneration After 
Partial Hepatectomy in Mice”

[77]

2013 Bhave GPC3 “Regulation of Liver Growth by Glypican 3, CD81, Hedgehog, and Hhex” [78]

2014 Kong FGF15 “Fibroblast growth factor 15 deficiency impairs liver regeneration in mice” [79]

2014 Yang Lrp5/6 “β-catenin signaling in murine liver zonation and regeneration: a Wnt-Wnt situation!” [80]

2015 Lu Mdm2 “Hepatic progenitor cells of biliary origin with liver repopulation capacity” [81]

2016 Swiderska-
Syn

Cre 
recombinase

“Hedgehog regulates yes-associated protein 1 in regenerating mouse liver” [82]

2018 Tsagianni MET “Combined Systemic Disruption of MET and Epidermal Growth Factor Receptor Signaling Causes Liver 
Failure in Normal Mice”

[83]

“Mice depleted for Exchange Proteins Directly Activated by cAMP (Epac) exhibit irregular liver regeneration 2019 Asrud Epac [84]
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in response to partial hepatectomy”

2019 Fortier p38α MAPK “Hepatospecific ablation of p38α MAPK governs liver regeneration through modulation of inflammatory 
response to CCl 4-induced acute injury”

[85]

2019 Modares IL-6R “IL-6 Trans-signaling Controls Liver Regeneration After Partial Hepatectomy” [86]

2019 Zhou Rictor “Mammalian Target of Rapamycin Complex 2 Signaling Is Required for Liver Regeneration in a Cholestatic 
Liver Injury Murine Model”

[87]

2020 Laschinger CGRP-
RAMP1

“The CGRP receptor component RAMP1 links sensory innervation with YAP activity in the regenerating 
liver”

[88]

2020 Seguin Mfrn1, Mfrn2 “The mitochondrial metal transporters mitoferrin1 and mitoferrin2 are required for liver regeneration and cell 
proliferation in mice”

[89]

2020 Xue GPC3 “Phosphorylated Ezrin (Thr567) Regulates Hippo Pathway and Yes-Associated Protein (Yap) in Liver” [90]

developmental biology[91]. Their relative low cost, rapid development from one-cell 
embryo to free-swimming larva 5 d post-fertilisation, optical transparency enabling 
direct observation using light and fluorescent microscopy, and relative genetic conser-
vation compared to the human genome with approximately 70% of human genes 
having a zebrafish orthologue[92] has led to their role within medical research 
expanding considerably. In the realm of liver biology, applications include the study of 
high throughput drug discovery and hepatotoxicity screening, forward genetic 
screening, heritable and developmental liver diseases, the molecular and cellular 
factors that contribute to human liver disease, liver cancer biology and liver 
regeneration[91,93-95]. The research opportunities and disadvantages presented by 
zebrafish are summarized in Table 3.

Cell types are highly conserved between zebrafish and mammalian livers, with the 
exception of hepatic immune cells (Kupffer cells), which have not been identified in 
zebrafish. Whilst zebrafish provide immensely useful models, this difference 
highlights the caution needed in the extrapolation of results between species. As 
discussed below, Kupffer cells play an important part in cytokine priming of 
hepatocytes, implying that a different priming mechanism operates in zebrafish, or 
that this role is played by different cell type. Cellular morphology and physiology are 
also largely conserved with zebrafish livers demonstrating similar functions to 
mammalian livers including secretion of bile, glycogen and lipid storage, insulin 
responsiveness, ammonia metabolism and the production and secretion of proteins 
including complement, clotting factors and a protein resembling albumin. The 
morphological composition of the zebrafish, however, is distinct to the mammalian 
liver with the liver arranged into 3 Lobes that lack a pedicle that separates the lobes in 
the mammalian liver. Moreover, the portal architecture of mammalian livers is not 
observed. In fish, the hepatocytes are arranged into tubules with bile ductules running 
between two rows of hepatocytes[91].

Liver regeneration in mammalian livers involves a compensatory regeneration with 
hepatocyte proliferation and hypertrophy. In contrast, zebrafish demonstrate true 
epimorphic regeneration in response to partial hepatectomy with regrowth of the 
resected lobe, again highlighting significant inter-species differences. Genome-wide 
gene expression studies have demonstrated that liver regeneration is the result of a 
coordinated expression of thousands of genes, and whilst several pathways have been 
identified as important in liver regeneration in both mammals and zebrafish including 
WNT, fibroblast growth factor receptor (FGFR) and bone morphogenic protein 
receptor, in isolation they are insufficient to drive the complex process of liver 
regeneration. The mechanisms underlying the difference between mammalian liver 
regeneration and zebrafish, and epimorphic regeneration are still to be elucidated[96].

In vitro models
The observation of interspecies variability, the ethical guiding principles of the 3R 
principles (replacement, refinement, and reduction of animal testing), and the 
opportunity of better-defined experimental conditions have motivated the 
development in vitro models to study liver biology. Thus, two- and three-dimensional 
(2D and 3D) in vitro models have increased our understanding of the mechanisms of 
liver injury, hepatotoxicity, and mechanisms of liver regeneration[97].

2D culture models: 2D in vitro liver models, have traditionally used immortalised cell 
lines such as the HepG2 and the HepaRG cell lines derived from human progenitor 
cells[98], or mechanically and enzymatically dissociated primary cells[99] expanded on 
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Table 3 Advantages and disadvantages of zebrafish as a model for human liver pathophysiology

Advantages Disadvantages

Vertebrate body plan Partial genome duplication in teleosts

Ease of husbandry Differences in microanatomy and liver architecture

Inexpensive to maintain Less conserved physiology than mammalian 
models

Large numbers of embryos produced rapidly Less conserved morphogenesis than mammals

External development Less developed cell culture technology

Optical clarity during development Poorly developed embryonic stem cell technology

Zebrafish liver not required for foetal haematopoiesis

Amenable to forward and reverse genetics

Molecular conservation of development

Amenable to high-throughput screening: (1) Phenotype assessment; and (2) Drug/chemical 
screening

plastic surfaces, or supported by extracellular matrix (ECM) scaffolding[100]. Though 
presenting advantages in terms of ease of tissue culture, such systems have limitations; 
for example, cells lines have fundamentally different gene expression profiles to 
primary hepatocytes, owing to their immortalised nature[101]. Primary hepatocytes 
have some benefits in this regard, but are difficult to source (in the human case), 
exhibit donor variability[102], and rapidly lose their differentiation and function (such 
as morphology and toxicant related genes expression) in plastic culture[100,103,104].

The presence of ECM partially addresses these shortcomings. Culturing primary 
hepatocytes between two layers of collagen, termed sandwich-cultured hepatocytes 
(SCH)[105], results in extended viability, retained cellular polarity with correct 
localization of basolateral and canalicular transporters[106] as well as formation of 
functional bile networks[107]. However, despite their promising properties compared 
to monolayer cultures, sandwich cultures have their own disadvantages including the 
barrier to introduced materials created by the collagen layers, and low levels of 
expression of cell-to-cell adhesion proteins that are critical for cell function and differ-
entiation[108]. As such the role of sandwich culture in the experimental process is 
often limited to short term studies.

3D culture models: Significant progress has been made using 3D in vitro hepatic 
models with benefits in terms of maturity of hepatocytes, long term viability, and 
more precise representations of the microenvironment of the in vivo liver[109]. In vitro 
liver modelling studies with human cells have allowed investigation of liver 
development, liver disease modelling, liver regeneration, and therapeutic tran-
splantation. Given the complex 3D structure and functional regionalization of the 
liver, 3D liver models including organoids offer the advantage of more closely recapit-
ulating spatial organization, important cell-cell and cell-ECM contacts that stimulate 
proliferation, differentiation, liver specific expression, and responsiveness to 
exogenous stimuli[110]. These advantages have been further emphasised by the use of 
coculture in such systems, allowing the inclusion of key non-parenchymal cells[97].

Human-induced pluripotent stem cells (hIPSCs) offer an effectively unlimited 
source of genetically diverse cell lines that can be generated from both healthy and 
diseased livers. Furthermore, these cells are amenable to genetic modification using 
the CRISPR technology in order to facilitate disease modelling[111]. hIPSCs have 
further expanded the opportunity for 3D in vitro culture systems by the development 
of hepatic organoids from hIPSCs[112]. Thus, reports describe the design of organoids 
involving multiple cell types by co-differentiating hepatocytes and cholangiocytes
[113], or hepatocytes with other supporting cell types including stellate-like and 
Kupffer-like cells[114]. However, an important limitation is the relative immaturity of 
hepatocyte-like cells generated from hIPSCs. This is demonstrated by continued alpha-
fetoprotein (FP), low albumin expression, and distinctive CYP expression and 
function[115]. The problem of functional maturity has been partially addressed by 
modifying culture conditions, including the medium composition (e.g., inclusion of 
specific growth factors, hormones)[115]. More recent approaches to circumvent the 
disadvantages of hIPSCs have involved the use of primary cells to form organoids. 
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Thus, Huch et al[116] generated human liver organoids from primary ductal 
Epidermal Cell Adhesion Molecule positive cells grown in a defined human liver 
media allowing culture with stable function for over 6 mo, and Justin et al[117] 
describe the formation of biliary organoids from primary cholangiocytes.

In spite of these advances, 3D ex vivo cultures do carry their own drawback 
including difficulties in controlling cellular distribution, innervation, and vascular-
ization-with the latter aspect of particular importance given the central role of the liver 
sinusoids to hepatic function.

Repopulation of decellularised livers: Repopulation of decellularised liver scaffolds 
with cells has offered a further refinement to the in vitro investigation of liver 
regeneration as well as potential therapeutic opportunities[118].

Earlier approaches to generating functional livers include hepatocyte trans-
plantation in humans[119], as well as in animals[120]. In the latter case, microcarriers 
and biodegradable polymer scaffolds have been described, resulting in albumin 
production and clearance of bilirubin and urea metabolites[120]. These efforts have 
laid the ground for three-dimensional scaffolds[121] which are either biological 
membranes[122], collagen sponges[123], or synthetic hydrogels[124], and which enable 
the production of hepatic organoids. In another approach to liver regeneration, 
chimeric murine models have been developed, whereby mouse liver is extensively 
repopulated with human hepatocytes, thus permitting the study of liver disease (e.g., 
viral hepatitis) within humanised organs in vivo[125].

More recently, techniques in whole liver decellularization and repopulation have 
moved the field further, although significant challenges remain. In general terms, the 
process involves removal of the liver’s cellular and immunogenic components, thus 
creating a scaffold which retains the ultrastructure and properties of the ECM[126]. 
This is usually followed by static cultivation of cells (e.g., hepatocytes) and their 
subsequent infusion into the scaffold.

In one of the first such studies, Uygun et al[127] demonstrated that ischaemic rat 
livers can be decellularised whilst preserving structural and basement-membrane-
based components of the ECM, as well as the microvasculature. The investigators 
achieved decellularisation by portal vein perfusion using sodium dodecylsulfate (an 
anionic detergent), and repopulation with primary rat hepatocytes via the same route. 
Recellularised grafts were implanted in rats for 8 h, and after explantation underwent 
ex vivo blood perfusion for 24 h, demonstrating ongoing hepatocyte metabolic activity. 
Others have demonstrated that implanting repopulated ECM liver scaffolds into rats 
which had undergone extended hepatectomy improved liver function and extended 
their mean lifespan from 16 to 72 h[128]. In the last 10 years, a variety of animal 
models, decellularisation techniques, repopulation routes and cell sources have been 
described, with promising outcomes in terms of vascular repopulation[118,129,130], 
hepatocyte survival[131] as well as formation of biliary duct-like structures and 
activation of liver detoxification enzymes[132]. One of the commonest sources of liver 
scaffolds is the rat[118,127,132-137] repopulated with rat hepatocytes (although 
cholangiocytes[136] and lineages from pluripotent stem cells, mesenchymal cells, and 
fibroblasts have also been described[137] usually via the portal vein. With regards to 
human tissue, Verstegen et al[138] demonstrated that decellularised human livers can 
be repopulated with human umbilical vein endothelial cells, leading to re-endothelial-
isation of the vascular tree. Table 4 presents further examples of the different 
approaches to liver decellularisation-repopulation developed thus far.

The main challenges in producing a viable whole organ from liver decellularisation-
repopulation techniques include heterogeneity of cell engraftment, thrombosis (partly 
related to incomplete or suboptimally functional endothelium as well as microvascular 
injury[121,130]), the re-creation of an intact and functional biliary tree, as well as 
attaining the specific distribution of liver cell types seen in the native healthy organ. 
Mesenchymal and pluripotent stem cells for repopulation are currently considered 
attractive research avenues[121] as they may lead to more clinically applicable models.

Human models 
The study of human liver regeneration is limited to observational data in the context of 
clinical pathology and applied therapies, and thus contrasts to the directed experi-
mental approaches possible in animal models. Moreover, access to human liver tissue 
during the regenerative process is not possible as liver biopsy can only be justified by 
clinical need, given the risks of the procedure including a measurable mortality[139]. 
The available observational data comes from a combination of clinical findings, serum 
biomarker measurements, and imaging. Clinical observations and blood bio markers 
are subject to difficult interpretation because of the confounding effects of the hetero-
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Table 4 Examples of liver decellularization-repopulation studies

First 
author Yr

Liver 
scaffold 
source

Cell source & type Repopulation 
route Outcomes Ref.

Uygun 2010 Rat Rat hepatocytes Portal vein Recellularised liver grafts implanted in rats, perfused in 
vivo for 8 h, explanted and assessed after 24 h, 
demonstrating hepatocyte survival, albumin secretion, 
urea synthesis and cytochrome P450 expression.

Uygun 2010
[127] 

Zhou 2011 Mouse Human foetal hepatocytes Portal vein Recellularised liver matrix implanted in mice, achieving 
hepatocyte survival after 6 wk, with albumin secretion 
and cytochrome P450 expression.

Zhou 2011
[131]

Ko 2014 Pig Murine endothelial cells, 
after scaffold conjugation 
with rat anti-mouse CD31 
antibodies

Portal 
veinHepatic 
arteryInferior 
vena cava

Recellularised liver grafts implanted in pigs, 
demonstrating good blood flow and patency throughout 
vascular network over 24 h after transplantation.

Ko 2015
[130]

Navarro-
Tableros

2015 Rat Human liver stem-like cells Portal vein Loss of embryonic markers, expression of albumin, 
lactate dehydrogenase and cytochrome P450 subtypes. 
Production of urea and nitrogen.

Navarro-
Tableros 
2015[133]

Ogiso 2016 Rat Mouse hepatocytes Biliary tree; Portal 
vein

(1) > 80% of cells seeded via biliary tree entered the 
parenchyma; (2) Approximate 20% of cells seeded via 
portal vein entered the parenchyma; and (3) Increased 
gene expression of foetal hepatocyte albumin, glucose 6-
phosphatase, transferrin, cytokeratin 19, and gamma-
glutamyl transpeptidase, activation of liver 
detoxification enzymes, formation of biliary duct-like 
structures.

Ogiso 2016
[132] [PMID 
27767181] 

Verstegen 2017 Human Human umbilical vein 
endothelial cells.

- Re-endothelialisation of vascular tree, demonstrated by 
luminal vimentin and von Willebrand Factor/F8 
staining.

Verstegen 
2017[138]

Butter 2018 Rat Rat hepatocytes Hepatic artery 
and portal vein

In vitro demonstration of hepatocyte spread to all liver 
lobes, with proliferation, and production of 
aminotransferases, lactate dehydrogenase and albumin.

Butter 2018
[134]

Chen 2018 Rat Rat hepatocytes Portal vein None (description of materials and methods). Chen 2018
[135]

Chen 2019 Rat Rat cholangiocytes Rat 
hepatocytes

Common bile 
duct; Portal vein

In vitro viability and function demonstrated by albumin 
and urea secretion, and gene expression of functional 
proteins.

Chen 2019
[136]

Harper 2020 Rat Rat bone marrow cells Portal vein Stem cells engrafted in portal, sinusoidal and hepatic 
vein compartments, achieving expression of endothelial 
cell surface markers for up to 30 d.

Harper 2020
[118]

Takeishi 2020 Rat Human hepatocytes, biliary 
epithelial cells, and vascular 
endothelial cells derived 
from pluripotent stem cells, 
mesenchymal cells, and 
fibroblasts.

Biliary tree; Portal 
vein; Central 
veins

Auxiliary grafts implanted in rats, achieving in vivo 
functionality for 4 d.

Takeishi 
2020[137]

geneity of the study population, diverse pathologies, and varied clinical scenarios even 
within a defined patient group. Although there are reports of serum biomarkers such 
as αFP and micro RNAs correlating with liver regeneration, their clinical applicability 
remains to be established. Combining clinical and serological measurements, scores 
such as the Acute Liver Failure Study Group index has allowed the identification of 
patients likely to require liver transplant[140-142].

In this context, the relatively non-invasive nature of modern imaging techniques has 
provided the main means of assessing liver growth and function, as markers of 
regeneration. Although liver function correlates well with liver volume in 
uncompromised livers, this relationship is less clear in patients with pre-existing 
parenchymal liver[143,144]. Estimation of remnant liver function instead of remnant 
liver volume is a better predictor of clinical outcome after liver resection in patients 
with decreased liver function[145]. In order to avoid PHLF, clinicians must ensure that 
the future remnant liver (FRL) will be sufficient to sustain life. Traditionally, this 
functionality assessment is made by pre-operatively measuring the volume of the FRL 
as a surrogate measure of functionality[144]. Volumetry, however, assumes liver 
parenchymal homogeneity and normal underlying liver function, which are not 
always present in patients undergoing extensive hepatic resections. This lack of 
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homogeneity in hepatic function can cause a discrepancy between FRL volume (FRL-
V%) and FRL function (FRL-F)[146] which is especially important in patients who 
present with pre-existing liver disease or who have previously received chemotherapy 
that resulted in steatotic or microvascular liver changes[146]. As such, FRL-V% cut-off 
values may not accurately predict the quality of the FRL in some patients, with 
implication on the development of PHLF and associated mortality. The radiological 
modalities most used to predict the FLR are outlined below.

Standard liver volumes can be calculated from the patient’s body surface area or 
mass using the formulas originally proposed by Vauthey et al[144]. However, these 
formulas are limited by subject demographics (healthy individuals) and by their 
modest correlation to liver sizes calculated by more advanced forms of volumetry
[147]. CT volumetry of the liver was first performed on cadavers by Heymsfield et al
[148] in 1979 and was shown to be accurate within 5% of water displacement 
volumetry. CT is more commonly used due to its greater accessibility, higher spatial 
resolution, and short acquisition time. MRI, conversely, offers multiple contrast 
mechanisms and the ability to assess vascular and biliary anatomy in addition to 
parenchymal pathology. Additionally, MRI also minimises the risk of contrast induced 
nephrotoxicity and eliminates concerns of radiation exposure[149]. Liver segmentation 
has emerged as the preferred technique CT volumetry can be used to calculate the 
volume of the FLR and is widely used to exclude patients from liver resection or to 
select patients who will benefit from a procedure to increase the volume of the future 
remnant, such as PVE[150]. However, the outcomes of previous reports correlating the 
findings of CT volumetric analysis of the future remnant with post-resectional 
outcome, have not been consistent and the role alternative imaging modalities has 
been examined[150,151].

Hepatobiliary scintigraphy using 99mTc-iminodiacetic acid analogues, such as 
99mTc-mebrofenin, can be used to measure segmental liver function. 99mTc-
mebrofenin is excreted into the bile by adenosine triphosphate–dependent export 
pumps the multidrug-resistance-associated proteins 1 and 2 without undergoing 
biotransformation during transit through the hepatocytes[146,152,153] . Previous 
reports in the literature have shown that 99mTc-mebrofenin hepatobiliary scintigraphy 
(HBS) can provide clinicians with information on FRL-F instead of volumetric 
information alone[153]. HBS provides visual and quantitative information of global 
and regional liver function as well as excretory function (intrahepatic and extrahepatic 
bile transport). 99mTc-mebrofenin is intravenously injected and consequently excreted 
in bile by the hepatocytes without undergoing biotransformation. As such, the 
clearance measurement of Technetium-99m mebrofenin using scintigraphy can 
quantify hepatic function[146,153]. FRL-F assessment using HBS has been proven to be 
superior to volumetry in the prediction of PHLF and PHLF(M), making HBS the 
imaging modality of choice prior to proceeding with major hepatectomy. Reports in 
the literature have illustrated that an HBS cut-off value of 2.7%/min/m2 can 
outperform volumetry cut-off values in the prediction and prevention of PHLF and 
PHLF(M) by identifying high-risk patients with borderline predicted remnant liver 
function, and consequent selection for pre-operative PVE or other hypertrophic 
strategies (e.g., ALPPS[154,155]. Certain hepatobiliary units have already implemented 
HBS in favor of CT volumetry before hepatic resection based on emerging evidence in 
the literature.

SECTION 2: EARLY EVENTS POST LIVER INJURY AND TRIGGERS TO 
LIVER REGENERATION
The PH model in rodents has allowed the examination of immediate events which 
occur within minutes of liver resection and provides an insight into the mechanisms 
that trigger the process of liver regeneration. These early events relate to vascular 
portal flow, tissue hypoxia, haemostatic mechanisms, and changes in extracellular 
matrix integrity.

Vascular events
Following PH, the increased portal blood flow through the remnant liver exerts a 
heightened shear stress on the LSECs[156]. Shear stress on LSEC induces numerous 
physiological changes[157] including microscopically visible ones such as increased 
sinusoidal diameter and changes to LSEC fenestrae and sieve plates[158,159]. Shear 
stress also induces biochemical responses including the release of vascular endothelial 
cell growth factor (VEGF) from LSEC[160], the secretion of VEGF and HGF from 
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hepatic stellate cells[161], and the LSEC production of nitric oxide (NO) by Nitric 
Oxide synthase (NOS), which increases hepatocyte sensitivity to HGF[162,163]. The 
physiological importance of NO is suggested by the finding that inhibition of NOS 
severely impairs liver regeneration in mice after PH[59].

Shear stress also induces the hepatocyte priming cytokine interleukin 6 (IL6) in 
LSEC[164], as well as expression in of liver regeneration associated WNT, VEGF, and 
epithelial cell adhesion molecules in hepatic progenitor cells[165].

Another consequence of increased portal flow through the remnant liver is 
increased exposure to lipopolysaccharide (LPS), which is derived from gut bacteria, 
and which translocates from the gut into portal blood. PH increases the concentration 
of LPS in the remnant liver not only because of diversion of more portal blood to the 
remnant liver, but also because the rise in portal pressure increases intestinal 
permeability, allowing greater LPS translocation[166,167]. In the sinusoids, LPS binds 
Toll like receptors (TLR) on Kupffer cells, resulting in the secretion of the hepatocyte 
priming cytokines IL6 and tumour necrosis factor alpha TNFα[168], in a signalling 
pathway that is dependent on myeloid differentiation factor 88[169].

The increased expression of liver regeneration promoting biochemicals is not 
confined to the liver. Following PH in the rat, increased expression of VEGF, HGF, and 
hypoxia inducible factor (HIF) is also observed portal vein drained tissues such as the 
spleen and small intestine, whereupon portal VEGF concentrations exceed those of the 
systemic circulation. The mechanism stimulating this extrahepatic expression of 
growth factors from portal drained tissues is unclear but may also be related to portal 
pressure changes[170].

Hypoxia
Following PH, increased portal flow brings about a reflex arterial vasoconstriction (the 
arterial buffer response), which can result in hypoxia in the remnant liver, given the 
low partial pressure of oxygen (pO2) in portal venous blood[171].

An important outcome of hypoxia is the induction of HIF, which in turn leads to the 
activation of multiple genes involved in tissue adaptations to hypoxia ranging from 
glycolytic metabolism to angiogenesis[172].

In the liver, PH leads to increased expression of HIF and subsequently VEGF[173]. 
In elegant experiments, Dirscherl et al[174] show that the hypoxic environment triggers 
hepatic stellate cell expression of HIF, resulting in increased expression of VEGF, 
which then elicits a range of responses in LSEC including proliferation and an-
giogenesis, but also genes associated with matrix remodelling (discussed in a later 
section), and LSEC expression of the potent hepatocyte mitogen HGF[174], as well as 
other liver regenerative genes[175]. Thus, the authors suggest that HSC function as 
hypoxia sensors in the liver, and trigger angiogenesis in liver regeneration, 
highlighting the complexity of intercellular cross-talk in this process. In addition, 
hypoxia induced secretion of complex regeneration promoting molecules from stem 
cells at extra-hepatic locations may also contribute to promotion of liver regeneration
[176].

Haemostasis related factors
The injury to liver tissue in PH results in the activation of mechanisms for haemostasis 
carried out by platelets and the coagulation cascade. The role of platelets is not 
confined to haemostasis, but also includes functions relating to liver regeneration
[177], and studies in animals and humans suggest impaired liver regeneration in 
individuals with low platelet counts[178,179].

Following PH, platelets migrate to the space of Disse, where they release liver 
regeneration promoting biochemical including serotonin, VEGF, and HGF from 
secreted cytoplasmic granules[180]. In addition to growth factor containing vesicles, 
platelets contain cytoplasmic RNA, which can be transferred to nearby hepatocytes, 
resulting in gene expression, and promoting hepatocyte proliferation[181]. Finally, 
platelets may stimulate liver regeneration by activation of immune cells which also 
have an important role in cellular cross-talk[180].

In addition to the role of platelets, the coagulation cascade both individually and in 
combination with ‘damage associated molecular patterns’ (DAMPs) (including 
mitochondrial DNA and peptides)[182], activates elements of the complement cascade
[183]. These include C3a and C5a, which have a role in stimulating pathways involved 
in the priming of hepatocytes[184], enabling them to respond to growth factors, as 
discussed in “Priming of hepatocytes”.

Other elements of the coagulation cascade may also play key roles in liver 
regeneration. Thus, Groeneveld et al[185] report that intrahepatic deposition of 
fibrinogen after PH is a key driver to platelet accumulation in the liver. Fibrinogen 
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depletion was associated with impaired liver regeneration in a mouse model, and in 
humans undergoing liver resection, low intrahepatic fibrinogen and low post op 
serum fibrinogen levels were associated with poor liver function an increased 
mortality.

ECM changes
Urokinase-type plasminogen activator (uPA) activity increases within one minute of 
PH in rats[186], resulting in the activation of plasminogen to plasmin, which then 
activates key metalloproteinases (MMP) such as MMP-9[187,188], which remodel the 
hepatic ECM, where HGF is present in its inactive form. uPA also activates HGF to its 
active form[189], releasing it locally in the liver parenchyma and also into the 
circulation in significant quantities[190]. uPA knockout mice show impaired liver 
regeneration[60]. As well as HGF, the ECM contains other inactive forms of growth 
factors including HB-EGF and fibroblast growth factor (FGF)[191]. Moreover, the 
importance of matrix alteration in the initiation goes beyond the release of growth 
factor stores in the ECM in that hepatocyte response to key growth factors is 
ineffective in the presence of intact ECM, and that ECM changes are required for 
growth factor driven hepatocyte proliferation[192,193].

Thus, the rapid action of uPA following PH provides a mechanism to kick start the 
liver regenerative process by liberating ECM stored growth factors, until such time as 
other mechanisms begin to contribute to maintaining the liver regenerative process.

SECTION 3: HEPATIC MITOGENS
Liver regeneration is characterized by hypertrophy and rapid proliferation allowing 
return to the starting volume of liver even if recovering from a 25% remnant in 
humans, or a 10% remnant in some rodent models. The proliferation of hepatocytes is 
controlled by a maelstrom of growth factors with different but overlapping effects. 
Within this complexity exists a hierarchy of functions, whereby hepatocytes first 
require to be primed (“Priming of hepatocytes”), after which they become responsive to 
a range of mitogens referred to as complete (“Complete mitogens”) auxiliary (“Auxiliary 
mitogens”), and complex (“Complex mitogens”). “Intracellular signalling pathways” 
summarizes the intracellular pathways which transmit the effect of the growth factors 
described in sections “Priming of hepatocytes” - “Complex mitogens”.

Priming of hepatocytes
Hepatocyte transition from G0 to G1: Although proliferation of hepatocytes is 
stimulated by a wide range of biochemicals in response to injury, most hepatocytes in 
uninjured liver do not proliferate[194], although there is some heterogeneity in this 
regard as discussed in “Hepatocyte response heterogeneity after PH” entitled ‘hepatocyte 
regenerative heterogeneity’. The stimulus to proliferation from the multitude of 
mitogens requires hepatocytes to be ‘primed’, a complex phenomenon characterized 
by the induction of > 100 genes[195], which then enables the hepatocytes to respond to 
these mitogenic stimuli.

Although cell cycle biology is outside the scope of this review, a brief summary of 
key events is useful to frame the subsequent sections relating to the priming effects of 
cytokines and proliferative stimulus of mitogens on hepatocytes.

The cell cycle is divided into 2 main phases: mitosis (the actual process of cell 
division) and interphase (the phase preparing the cell for mitosis). Interphase is further 
divided into 3 stages, which, in order, consist of the G1 phase (during which the cell 
synthesises protein and organelles), S phase (during which DNA is replicated) and G2 
phase (during which the machinery for mitosis is assembled). Although some cells 
undergo this cycle continuously, others exit the cycle and enter a stationary phase G0. 
In order for a cell in G0 to replicate, it first needs to be ‘primed’ by molecular signals to 
return to G1, whereupon a different set of signals will determine the speed of 
replication and how long it continues.

Hepatocytes provide an example of this situation, and are, in the absence of injury, 
almost entirely in G0[194]. Their proliferation therefore requires priming factors to 
return them to G1. The priming function is carried out by cytokines TNFα and IL6.

Thus the current working model[184] (illustrated in Figure 1) suggests that the 
cytokine priming mechanism starts with the activation of nuclear factor-kappa B 
(NFκB) in Kupffer cells. NFκB activation may be triggered by several stimuli including 
(1) Binding of TNFα to its receptor; (2) Binding of complement components C3a & C5a 
to their receptor; or (3) Binding of lipo-polysaccharide to the TLR receptor. Activation 
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Figure 1 Cytokine priming of hepatocytes. PH induced increase in portal pressure exerts sheer stress on LSEC inducing IL6 secretion. Gut derived LPS, 
complement components C3 & C5, ICAM1, and LTXα from T lymphocytes all induce IL6 and TNF expression from Kupffer cells. IL6 & TNF� prime hepatocytes after 
binding to IL6R and TNFαR. LTXα also acts directly on hepatocytes via the TNFαR. LSEC: Liver sinusoidal endothelial cell; IL6: Interleukin 6; IL6R: Interleukin 6 
receptor; LPS: Lipopolysaccharide; TLR: Toll-like receptor; TNFα: TNF alpha; TNFαR: TNF alpha receptor; CtR: Complement receptor; ICAM1: Intercellular adhesion 
molecule 1; ICAM1R: Intercellular adhesion molecule 1 receptor; LTXα: Lymphotoxin alpha; LTXαR: Lymphotoxin alpha receptor.

of NFκB results in increased expression of both TNF and IL6. TNFα may stimulate its 
own further expression in the Kupfer cell in an autocrine manner. IL6 binds IL6R on 
hepatocytes, producing activation of signal transducer and activator of transcription 3 
(STAT3), which results in the transcription of multiple other genes which push 
hepatocyte from G0 to G1, thus priming the cell to be responsive to circulating growth 
factors.

Crucially, in vivo, infusion of the powerful complete mitogens EGF and HGF 
produces only modest hepatocyte proliferation, whereas marked hepatocyte prolif-
eration is observed if EGF and HGF infusion is preceded by the priming effect of a 
single TNF injection[196].

Consistent with this model the following events are observed in the minutes after 
PH: (1) TNFα and IL6 mRNA and protein increase immediately[197,198]; and (2) 
Activation of the transcription factors NFκB and STAT3[199,200]. Moreover, DNA 
replication in hepatocytes is blocked by TNF antibodies[201], TNF receptor (TNFR)
[57] and IL6[56] knockout mice show impaired liver regeneration, and liver 
regeneration in TNFR knockout mice is rescued with IL6 infusion[57].

Of note, highlighting the necessary caution needed before extrapolating between 
animal models, TNFα levels after PH differ between rats and mice, with higher levels 
in rats. Also, the model exemplifies the recurring theme of redundancy in the system 
with the TNFα knockout mice showing normal liver regeneration because of the ability 
of other ligands to bind the TNFR[202]. Similarly, the activation of STAT3 may be 
achieved by other cytokines than IL6, such as Stem Cell Factor[203] and Oncostatin
[203].

Triggers to cytokine priming: The initial triggers to expression of the priming 
cytokines TNF and IL6 after PH are doubtless numerous and not all identified, but at 
least 5 stimuli have been demonstrated.

Firstly, PH results in an immediate increase in portal venous pressure which causes 
a sheer stress on liver sinusoidal endothelial cells[156]. This physical stimulus has 
many consequences[159] which are discussed in more detail in section 2 on early 
events post hepatectomy, but which include the induction of IL6 expression in LSECs
[164], thereby contributing to the priming of hepatocytes .

Secondly, another trigger to cytokine expression after PH is binding of LPS derived 
from gut bacteria and translocated to portal blood, to the TLR, and producing 
expression of IL6 and TNFα. The increase in portal pressure resulting from PH 
increases gut permeability and may therefore result in exposure of the remnant liver to 
higher concentrations of LPS[204]. Supporting the physiological relevance of this 
hypothesis, is the observation that rodents with germ free guts have impaired liver 
regeneration[205]. The effects of LPS on liver regeneration may not be limited to 
induction of the priming molecules IL6 and TNF, but also producing an increase in 
secretion of hepatic mitogens including insulin, epidermal growth factor, and triiodo-
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thyronine[204] (see “Complete mitogens” and “Auxiliary mitogens” on complete and 
auxiliary mitogens).

Thirdly, it is also known that binding of complement cascade components C3 and 
C5 to the complement receptors on Kupfer cells also triggers an NFκB dependant 
increase in both IL6 and TNF. Thus, complement activation resulting from physical 
injury to liver in PH may also contribute to the initiation of cytokine priming of 
hepatocytes. The significance of this mechanism is suggested by the finding that 
following PH, C3-5 knockout mice show diminished activation of NFκB and STAT3, 
decreased expression of TNFα and IL6 impaired liver regeneration[64].

Fourthly, it is observed that mice lacking the receptor intercellular cell adhesion 
molecule 1 (ICAM1) show diminished TNFα and IL6 expression and impaired liver 
regeneration after PH. It is thought that leucocytes, attracted to a liver injury site may 
mediate triggering of ICAM 1 on Kupfer cells, thus providing another stimulus to 
initiating the cytokine cascade[206].

Fifth, it is known that the TNFR may be activated not only by TNFα, but also by the 
protein lymphotoxin alpha (LTxα). This is markedly upregulated in intra-hepatic T 
lymphocytes after PH[207] and may thus allow T cells to contribute to initiation of the 
cytokine cascade by activation of TNFR on Kupffer cells. Consistent with this, mice 
lacking both TNF and LT show impaired liver regeneration[208]. Moreover, LTxα 
may act directly on hepatocytes.

Thus, having been primed by the initial injury triggered cytokine cascade, 
hepatocytes return to the G1 phase of the cell cycle where they are susceptible to 
stimulation by mitogens including growth factors, hormones and other biochemicals 
to accelerate the rate of proliferation.

The concept of mitogen hierarchy: A multitude of different hepatocyte mitogens have 
been identified which originate from a variety of different tissues, different cell types 
within a given tissue, acting via different receptors, or sometimes overlapping in their 
receptor binding, and producing a variety of different effects on the target hepatocyte. 
This complexity exemplifies a key feature of liver regeneration biology, which is the 
existence of high levels of redundancy, presumably an evolutionary outcome enabling 
the liver to cope meet the wide range of physical, biochemical and infectious injuries it 
may encounter.

Amongst this complexity however, as arisen the concept of a hierarchy amongst 
hepatic mitogens, classifying them as ‘complete mitogens’, ‘auxiliary mitogens’, and 
‘complex mitogens’[209]: (1) Complete mitogens cause proliferation of hepatocyte 
cultures in serum- free media, and, when injected into whole animals, cause liver 
enlargement and hepatocyte DNA synthesis. Moreover, ablation of both the MET and 
EGFR pathways leads to complete inhibition of liver regeneration. The complete 
mitogens are (a) Hepatocyte growth factor which binds to its receptor MET; and (b) 
Ligands of the EGFR: EGF, transforming growth factor-α (TGFα), heparin- binding 
EGF- like growth factor and amphiregulin; (2) Auxiliary mitogens do not cause 
hepatocyte proliferation in culture in serum free media, do not cause hepatocyte DNA 
synthesis and liver enlargement when injected in vivo, and ablation of their signalling 
pathways delays but does not abolish liver regeneration. The auxiliary mitogens are 
noradrenaline and the α1- adrenergic receptor, VEGF and its receptors (VEGFR1 and 
VEGFR2), bile acids, serotonin, insulin, and growth hormone; and (3) Complex 
mitogens are the third category and are much less well defined than complete or 
auxiliary mitogens, with pathways involving multiple overlapping extracellular 
signals, disruption of which delays but does not abolish liver regeneration. The 
complex mitogens are the proteins involved in the Wnt, β-catenin, Hippo and Yap 
pathways.

Complete mitogens
Hepatocyte growth factor: HGF was the first complete hepatic mitogen, identified in 
1984 with the human homolog cloned in 1989[210]. Thus, HGF produces hepatocyte 
proliferation in serum free media in vitro, and liver enlargement when infused in vivo. 
HGF mediates its effect on hepatocytes by binding to its receptor MET, a receptor 
tyrosine kinase with wide ranging roles in diverse areas of cell biology including not 
only cell survival and proliferation[211], but also metabolism[212], growth and 
development[213]. MET signalling is dependent on the transcription factor 
CCAAT/enhancer-binding protein beta C/EBP beta[214], and Inhibition of MET 
signalling results in blocking of mitosis and increased expression of apoptosis genes 
after PH[215].
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After PH, HGF is mobilised in a biphasic manner, first with the activation and 
recruitment of ECM bound inactive HGF in the immediate minutes after PH, and then 
secondly by secretion of newly expressed HGF in a second wave.

Thus, whilst HGF is bound in inactive form in the ECM in resting liver[216], ECM 
remodelling[187] resulting from PH results in activation of HGF with binding to 
hepatocytes and released into the circulation[217], which peaks 30-60 min after PH.

Thereafter, peaking at 24 h post PH[218], a second wave of HGF is observed, newly 
synthesized by LSEC and stellate cells in the liver, but also from extra-hepatic cells and 
tissues including platelets[219], lung[220], kidney, spleen[221], thyroid, brain, and 
salivary glands[221]. In spite of these multiple sites of HGF production, experiments 
using genetically altered mice showed that inhibiting HGF production specifically in 
LSECs resulted in impaired liver regeneration, suggesting that extra-hepatic HGF 
production cannot compensate for depletion of hepatic HGF production[222]. The 
factors that stimulate HGF expression in the second wave after its release from ECM 
include noradrenergic signals[223], insulin like growth factors[224].

Epidermal growth factor: Ligands of the EGFR make up the other known complete 
mitogens. EGF is one member of a family of 7 Ligands which bind a group of 4 
receptors (EGFR/ErbB1, HER2/ErbB2, HER3/ErbB3 and HER4/ErbB4)[225]. Of the 7 
known ligands, the ones that relate to liver regeneration are epidermal EGF, 
transforming growth factor-alpha (TGFα), Amphiregulin (AR), and Heparin bound 
EGF-like growth factor (HB-EGF), with their role illustrated in Figure 2.

EGF is a complete mitogen and produces hepatocyte proliferation in vitro and in vivo 
when infused[226]. It is produced in many tissues[227], but the most relevant sites of 
production are the Brunner glands of the duodenum which provide a constant supply 
of EGF to the liver via the portal vein[228]. EGF production is increased by nora-
drenaline which is secreted during the physical stress of PH[229]. EGF is also 
produced in significant quantities in salivary glands, and sialadenectomised rats do 
show impaired liver regeneration after hepatectomy[230].

TGFα is produced by hepatocytes themselves during liver regeneration[231] and 
therefore functions as a mitogen in an autocrine or paracrine way[232]. TGFα knockout 
mice have no liver regeneration deficiency however, presumably as a result of the 
considerable redundancy in the EGFR signalling pathway[233].

Amphiregulin, like TGFα, is produced by hepatocytes. Its expression is in part 
regulated by inflammatory mediators providing a mechanism for its upregulation 
following PH. Its significance is suggested by the observation that AR knockout mice 
have impaired liver regeneration[234,235].

HB EGF is produced Kupffer cells and sinusoidal endothelial cells[236]. Its 
expression seems to be in part determined by the magnitude of liver resection, as it is 
increased in 2/3 PH but not 1/3 PH. Its physiological significance is emphasised by 
the fact that HBEGF transgenic mice[237] and HB EGF knockout mice[70] have 
accelerated and delayed liver regeneration, respectively.

In the midst of these multiple ligand binding events, EGFR activation peaks at 60 
minutes post PH[238], and ablation of EGFR by antisense RNA impairs liver 
regeneration[239].

Auxiliary mitogens
Bile acids: Primary bile acids are synthesized in the liver by a multistep oxidative 
metabolism of cholesterol and secreted in bile. In the intestine, bile acids emulsify fats 
thus facilitating their digestion. Bile acids are metabolized by gut bacteria to produce 
secondary bile acids, and although some are lost through faecal excretion, a significant 
proportion are reabsorbed in the gut and recycled in the liver, in the entero-hepatic 
circulation[240].

Above a certain concentration, bile acids are toxic to liver and may induce apoptosis 
and necrosis, such that bile salt synthesis is tightly regulated by means of negative 
feedback loops involving bile acid receptors in the ileum[241]. At non-toxic concen-
trations however, bile acids play an important part in regulation of liver regeneration. 
Both the negative feedback controls and liver regenerative roles are mediated by bile 
acid receptors which comprise the extracellular TGR5 receptor (TGR5) on Kupffer cells
[242], and intracellular Farnesoid X receptor (FXR) within hepatocytes[243].

Bile acids were first investigated as candidate factors for controlling liver 
regeneration in part because of their exclusively hepatic synthesis, offering the 
potential for a feedback loop hepatostatic mechanism. Thus, dietary bile acid supple-
mentation was found to produce hepatomegaly in mice with non-injured livers, and 
increase liver regeneration after PH, in an effect that was dependent on the FXR. 
Conversely, bile acid sequestering agents resulted in impaired liver regeneration[243]. 
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Figure 2 Summary of ligand binding to epidermal growth factor receptor in liver regeneration. Endocrine EGFR signalling by EGF from Brunner’s 
glands and salivary glands. Paracrine EGFR signalling by HB EGF from LSEC and Kupffer cells, autocrine EGFR signalling by amphiregulin and TGFα from 
hepatocytes. LSEC: Liver sinusoidal endothelial cell; EGF: Epidermal growth factor; EGFR: Epidermal growth factor receptor; HB EGF: Heparin bound EGF-like 
growth factor; TGFα: Transforming growth factor α.

Furthermore, genetically engineered bile salt deficient mice also show impaired liver 
regeneration after PH[244], and rats having undergone PH with biliary fistula also 
show impaired liver regeneration, which can be rescued by intestinal delivery of bile 
acids[245].

After PH, serum bile acid concentration increases in blood within minutes, peaks at 
24 h, and diminishes again by 48 h. The mechanism of this serum bile acid increase is 
not fully understood, but may involve neurological pathways activated by PH related 
changes in portal pressure[246], consistent with the observation that bile acid increase 
is also seen after portal vein embolization[247].

The binding of bile acids to the FXR stimulates activation of transcription factor 
Forkhead box M1b (FoxM1b), an injury-induced transcription factor that promotes cell 
cycle progression[248]. In addition, bile acids also contribute to liver regeneration by 
binding extra-hepatic FXR situated in the ileum, resulting in expression of fibroblast 
growth factor (Fgf15/FGF19). Fgf15/FGF19, which then binds it receptor FGFR4[249] 
on hepatocytes, stimulating cell cycle progression[241]. In comparison to the FXR 
receptor, the role of bile acid binding to the TGR5 receptor on Kupffer cells is less well 
understood, but is clearly important as TGR5 knockout mice show impaired liver 
regeneration after PH, as well as severe hepatic necrosis[250].

Thus, bile acids have an important role in the control of liver regeneration and may 
contribute to the post liver injury hepatostat.

Noradrenaline: Noradrenaline secretion increases following PH[251] and is produced 
by the adrenal medulla, sympathetic neurons, as well as by hepatic stellate cells.

Noradrenalin not only stimulates the production of EGF (from Brunner’s glands) 
and HGF from fibroblasts, but also augments their mitogenic effect[252], and activates 
the proliferation associated STAT3 pathway[253], whilst reducing the mito-inhibitory 
effects of TGFβ[254]. Thus, α1 receptor blockade, and also hepatic sympathectomy 
significantly delays liver regeneration after PH[251]. Noradrenaline may also stimulate 
liver regeneration by activating WNT and β-catenin pathways via β-adrenergic 
receptors[255].

Serotonin: Serotonin is a neurotransmitter stored by platelets and which has a role in 
the control of inflammation. Mice with absent platelets or lacking tryptophan 
hydroxylase 1 (a key enzyme in serotonin synthesis) show significantly delayed liver 
regeneration after PH[256], which is rescued by serotonin infusion. Moreover, 
serotonin agonist produces LSEC fenestration changes, and a VEGF dependent 
increase in hepatocyte proliferation[257]. Serotonin may also act via the Hippo prolif-
erative pathway[258]. Although serotonin deficient mice show significantly impaired 
liver regeneration, serotonin exemplifies the need for caution in assuming that the 
results of one animal model may be extrapolated to others, as it is noted that rats 
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lacking the serotonin transporter which are unable to store serotonin in platelets do 
not show any liver regeneration impairment after PH[259].

Insulin: Insulin is produced by the beta cells of the pancreas, and was one of the 
earliest identified hepatic mitogens, having been found to prevent liver atrophy when 
infused directly into the liver via the portal stump in dogs having undergone 
portocaval shunt[11,13]. Although insulin is not a complete mitogen in that it does not 
induce hepatocyte proliferation in vitro, its presence is essential for hepatocyte survival 
in culture[260] and is essential for the effects of complete mitogens EGF and HGF in 
vitro[261].

The paradox that insulin is not a complete mitogen in vitro, but able to prevent liver 
atrophy after portal diversion is not fully understood but may be partly explained by 
interactions of the insulin receptor with EGFR and MET, thus triggering those prolif-
erative pathways[212].

Growth hormone and insulin-like growth factor: Growth hormone is synthesized in 
the pituitary gland and has widespread growth-related roles in many tissues[262]. The 
effects of GH can be mediated directly via the GH receptor, or indirectly by insulin-like 
growth factor (IGF), which is synthesized by hepatocytes in response to GH and 
secreted into the circulation bound to IGF binding protein (IGFBP). Whilst hepatocytes 
do not have IGF receptors[263], Kupffer cells and stellate cells do[264], allowing a 
possible paracrine role for IGF in the liver. GH may also act directly on hepatocytes by 
upregulating the EGFR[265] and also stimulating activity of the EGFR in cross-talk 
with the GHR[266]. Consistent with this, in the rat model, exogenous dietary or 
infused GH enhances liver regeneration after PH, and mice lacking IGFBP show 
impaired liver regeneration after PH[63].

In terms of the physiological relative importance of these pathways, Pennisi et al
[267] showed that GH lacking mice showed the greatest impairment to liver 
regeneration, with less marked liver regeneration impairment seen in IGF and IGFBP 
lacking mice, suggesting that whilst both direct and indirect GH actions impact on 
liver regeneration, the direct effect of GH is more significant that IGF mediated effect.

Thyroid hormone: The thyroid hormones Triiodothyronine (T3) and thyroxine (T4) 
are produced in the follicular cells of the thyroid gland, and have extensive roles in 
carbohydrate, protein, and lipid metabolism, regulation of metabolic rate, oxygen 
consumption, thermal regulation, muscle function, and roles in tissue growth and 
development[268].

In terms of liver regeneration, thyroid hormones have been shown to act as 
incomplete mitogens with impaired liver regeneration seen in thyroid receptor 
knockout mice[269], and conversely accelerated liver regeneration in T3 treated rats 
after PH[270].

In terms of molecular mechanisms of action in promoting liver regeneration, the 
thyroid hormones do not act via the NFκB or STAT3 pathways which are typically 
activated by the complete mitogens. Rather, thyroid hormones mediate hepatocyte 
proliferation by a number of pathways including (1) Increase in expression of 
transcription factors of the E2F family, which accelerates the transition of hepatocytes 
from G1 to S phase[271]; (2) Increased expression of cell cycle promotion genes Cyclins 
A, D1, and E, and diminished expression of their inhibitors[272]; (3) Decreased levels 
of p53 and p73 (tumour suppressor proteins involved in growth arrest and apoptosis)
[269]; and (4) Activation of the Wnt/b-catenin signalling pathway[273].

VEGF: The VEGF family of growth factors comprises a group of at least 6 isoforms 
(VEGF A, B, C, D, E, F), which bind to the 3 different receptors (VEGFR 1, 2, 3), with 
roles in cell proliferation, migration, metabolism, vasodilation, blood vessel formation 
and remodelling[274]. Though not directly mitogenic on hepatocytes directly, VEGF 
plays a central role in liver regeneration in several ways, including the orchestration of 
proliferation of LSECs, and inducing the LSEC population to produce key hepatocyte 
mitogens including HGF[175,275].

In a rat 70% PH model, Bockhorn et al[276] showed that blocking VEGF signalling 
with anti VEGF antibodies almost completely suppressed hepatic proliferation in the 
first 24 h after surgery, and conversely that exogenous VEGF promoted hepatocyte 
proliferation, suggesting a physiologically relevant role for VEGF in the early stages of 
liver regeneration.

Complex mitogens
WNT/β-catenin signalling pathway: The WNT family of genes are named after the 
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gene responsible for the Wingless-type phenotype in Drosophila melanogaster, and int-1 
(a target for insertional activation of mouse mammary tumour virus, and a secretory 
glycolipoprotein-encoding gene which is regarded as the prototype for several 
mammalian genes)[277]. The resulting glycolipoproteins participate in several 
fundamental signalling events, which influence cell proliferation and tissue 
homeostasis[278].

β-catenin is a protein encoded by the CTNNB1 and is a subunit of the cadherin 
protein complex which acts as an intracellular signal transducer in the context of WNT 
signalling, but which also interacts with a variety of transcription factors such as T-cell 
factor and hypoxia-inducible factor 1α[279]. β-catenin plays an important role in 
human embryogenesis, including liver development[280]. It is widely expressed in the 
adult liver and is always active in the pericentral region. Usually bound to a 
multiprotein degradation complex, it can be activated by several pathways, including 
WNT.

The WNT/β-catenin pathway has been shown to be active during liver 
regeneration, contributing towards mass and functional recovery from a the very early 
stages of liver injury[281]. β-catenin is in fact detected in rat hepatocyte nuclei within 5 
minutes of partial hepatectomy[282]. Upon WNT binding to its receptor (Frizzled), β-
catenin translocates to the nucleus, where it promotes the expression of key genes, 
such as high-level controllers of transcription like c-myc and cell cycle regulating genes 
like cyclin D1[279].

In the normal liver, β-catenin regulates the expression of genes in pericentral 
hepatocytes and influences hepatic lobular zonation[279] and is involved in cell-cell 
adhesion[280]. Additionally, it implicated in a variety of diseased liver states, although 
the exact mechanisms remain incompletely understood. Specifically, β-catenin appears 
to be involved in the development of NASH, partly by binding to TCF4 and HNF4α, 
thus regulating hepatic gluconeogenesis and lipogenesis. In hepatic fibrosis, the 
literature is currently conflicting regarding the role of WNT/β-catenin signalling. 
Nevertheless, evidence is accumulating to show that this signalling pathway is 
activating during hepatic stellate cell activation and fibrosis, and that WNT blockade is 
associated with an antifibrotic effect[279].

This pathway has also been identified in hepatic neoplasia. In focal nodular 
hyperplasia (FNH), glutathione synthetase (the expression of which is regulated by 
WNT/β-catenin signalling) stains FNH, which may be of diagnostic value[279]. Other 
relevant neoplastic processes include hepatocellular adenoma both with and without 
the presence of CTNNB1 mutations, HCC where mutations may lead to autonomous 
WNT-mediated activation of β-catenin, and hepatoblastoma, where 90% of tumours 
are associated with CTNNB1 mutations[279].

Hedgehog signalling pathway: Emerging evidence in the literature has shown the 
importance of the activation of the Hedgehog (Hh) pathway in the context of liver 
regeneration. Hh is a protein produced as a 45-kDa precursor that undergoes 
proteolytic processing in the endoplasmic reticulum[283]. The Hh pathway is a highly 
complex signalling cascade, which may be summarised in four fundamental 
components: (1) The ligand Hedgehog; (2) The receptor Patched (Patch); (3) The signal 
transducer Smoothened (Smo); and (4) The effector transcription factor, Gli. 
Components of the Hh pathway concentrate in the Primary cilia and a complex 
Primary cilium trafficking system regulates the interaction of Hh pathway components 
to enhance, or block, the Hh-initiated signal[284-286].

Previous work in adult rodents has demonstrated that Hh ligand expression 
increases transiently but significantly following partial hepatectomy[287]. 
Furthermore, inhibiting Hh pathway induction with a direct pharmacologic antagonist 
of Smo was found to decrease both recovery of liver volume and overall survival[288]. 
Evidence in the literature suggests that, mice subjected to portal vein ligation (a 
procedure commonly done in humans to allow the remnant liver to enlarge prior to 
hepatectomy) with simultaneous administration of systemic Hh, performed as well as 
mice submitted to ALPPS, supporting the evidence that Hh signaling plays a major 
role in promoting liver regeneration[289]. Further evidence suggests that the 
extracellular matrix of the healthy adult liver, the proteoglycan glypican-3 binds 
normally to Hh to prevent Hh from binding to Patch in order to constrain activation of 
the Hh pathway[78].

The evidence above highlights the role of the Hh pathway in post-hepatectomy liver 
regeneration. Further translational studies are required in order to explore the role of 
administering a recombinant form of Hh in the pre-operative setting in patients 
undergoing major hepatectomy who are potentially at risk of liver insufficiency.
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Hippo Yap signalling pathway: The Hippo signalling pathway was originally 
identified in Drosophila melanogaster and its components have mammalian homologs
[290]. The Hippo signalling pathway exerts a controlling influence on organ size by 
regulatory effects on cell proliferation, apoptosis, and stem cell self-renewal[291].

The pathway consists of a series of protein kinases, activation of which results in the 
phosphorylation of yes-associated protein (YAP), thus preventing its translocation to 
the nucleus. In the nucleus YAP interacts with a family of transcription enhancer 
factors. This family of nuclear proteins are involved in the modulation and regulation 
of multiple genes involved in promoting cell proliferation[292-294].

Multiple signals may activate Hippo signalling, including mechanical stimuli and 
cell attachment. Thus, in situations of high cell density, activation of Hippo signalling 
leads to the inhibition of YAP nuclear translocation, and thereby a break on cell prolif-
eration[295]. Conversely, decreased Hippo pathway signalling allows YAP mediated 
pro-proliferation signals and is associated with an increase in organ size through 
excessive proliferation and inhibition of apoptosis[292]. Consistent with this, and 
suggesting its physiological importance, mice with liver specific YAP deletions show 
significant impairment in liver regeneration[296].

However, the Hippo-YAP signalling pathway is the final step of multiple opposing 
signalling pathways that contribute to liver regeneration and repair and the conflicting 
nature of these signals makes the study and understanding of the role of this pathway 
challenging[209].

Intracellular signalling pathways
The complexity inherent in the multitude of extracellular molecules implicated in the 
control of liver regeneration is reflected by a similarly complex array of intracellular 
signalling pathways which transmit the effect of ligand-receptor binding to the 
nucleus to activate effector genes.

In the same way that there is much redundancy in growth factor function extracel-
lularly, there is also much overlap in the intracellular pathways, probably reflecting an 
evolutionary mechanism to safeguard against failure of any one individual pathway.

The complexity of each pathway, the activation of different pathways by diverse 
ligands, and the intracellular cross-talk between pathways makes it difficult to assign 
quantitative importance to any one pathway. Nevertheless, the section describes the 
main recognized intracellular pathways relating to liver regeneration. A full account of 
this area is beyond the scope of this review, but the summary below is intended to give 
a general overview and an impression of the ramifying complexity of the processes 
involved.

Figure 3A shows the pathways separately in summary form. Figure 3B shows the 
overlap in ligand binding, and Figure 3C provides an impression of the cross-talk 
between the various pathways.

Ras/Raf/MEK/ERK pathway: The Ras/Raf/MEK/ERK Pathway is triggered by 
binding of ligands to receptor tyrosine kinase receptors, which triggers autophos-
phorylation of tyrosine residues on the intracellular aspect of the receptor, resulting in 
the sequential activation of downstream components, ultimately controlling the 
expression of multiple growth controlling genes including high level ‘master genes’ 
such as c-myc, c-fos, and c-jun[297]. The first molecule, RAS, once activated, can activate 
multiple different signalling intracellular pathways including not only the 
Raf/MEK/ERK pathway, but also the MEKK/SEK/JNK pathway, and pathways 
involving NFκB[298,299].

In liver regeneration, the growth factor which activate this pathway include HGF, 
the EGFR ligand family members, fibroblast growth factor, and VEGF[299].

Phosphatidylinositol 3’-kinase/AKT kinase (also known as protein kinase B)/ 
mammalian target of rapamycin (PI3K/Akt/mTOR) pathway: The PI3K/ Akt/mTOR 
is a ubiquitous pathway is involved in the regulation of fundamental physiological 
processes including transcription, apoptosis, cell cycle progression, and translation
[299]. The pathway is activated by binding of ligands to receptor tyrosine kinases or G-
protein-coupled receptors[300], ultimately promoting cell growth, proliferation, 
survival [301], and malignancy when dysregulated[302]. In the context of liver 
regeneration, the main growth factors activating the PI3K/Akt/mTOR pathway 
include TNF-α, IL-6, HGF, EGF, and transforming growth factor (TGF)-α[303] 
(Figure 3B and C).

Janus Kinase pathway: Activation of the Janus Kinase (JAK) kinase pathway promotes 
cell proliferation, differentiation, migration, growth. Like RTKs, JAKs activate by 
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Figure 3 Intracellular signal transduction map. A: Intracellular signal transduction in liver regeneration; B: Ligand overlap and receptor binding redundancy; 
C: Intracellular cross talk between signalling pathways. HGF: Hepatocyte growth factor; FGF: Fibroblast growth factor; VEGF: Vascular endothelial cell growth factor; 
EGFR: Epidermal growth factor receptor; IL6: Interleukin 6; TNF: Tumour necrosis factor; LPS: Lipopolysaccharide; RTK: Receptor tyrosine kinase family (including 
HGF receptor, FGF receptor, VEGF receptor, EGF receptor); GPCR: G protein coupled receptor; IL6R: Interleukin 6 receptor; TNFR: Tumour necrosis factor receptor; 
TLR: Toll like receptor; RAS/RAF/MEK/ERK: signalling components downstream of receptor tyrosine kinase; PI3K: Phosphatidylinositol 3’-kinase; AKT: Akt kinase 
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(also known as protein kinase B); mTOR: Mammalian target of rapamycin; JAK: Janus Kinase; STAT3: Signal Transducer And Activator Of Transcription 3; YAP: 
Yes-associated protein; NFκb: Nuclear factor kappa B.

autophosphorylation. STAT3 is the key downstream messenger which translocates to 
the nucleus and functions as a high level transcription factor in liver regeneration with 
resultant induction of gene expression including cytokines[304]. In the context of liver 
regeneration, this pathway is primarily activated by IL-6 and its receptor, IL-6R.

Interestingly, following PH, a circulating (rather than membrane bound) form of the 
IL6R cleaved by matrix metalloproteases appears to have a key role in initiating liver 
regeneration[86].

NF-κB pathway: In priming of hepatocytes, Kupffer cells are induced to secrete TNF-α 
and IL-6 after stimulation by a variety of stimuli (see section on hepatocyte priming) 
including complement factors and LPS from the gut. This action of Kupffer cells is 
mediated by the NF-κB signaling pathway. Once activated, NF-κB migrates to the 
nucleus, where it promotes the further expression of TNF, IL-6, and VEGF[305].

WNT/β-Catenin pathway: The Wnt/β-catenin pathway regulates processes including 
cell proliferation, and tissue morphology[282]. Upon WNT binding to its receptor 
(Frizzled), β-catenin translocates to the nucleus, where it promotes the expression of 
key genes, such as high-level controllers of transcription like c-myc and cell cycle 
regulating genes like cyclin D1[279].

Hippo pathway: The Hippo signalling pathway is involved in cell proliferation, 
apoptosis, and stem cell self-renewal[291], and may have a key role in the ending of 
hepatocyte proliferation after regeneration[295]. YAP is a key downstream effector of 
the Hippo pathway, which translocates to the nucleus, once activated to promotes 
expression of target genes. The pathway is activated by numerous factors including 
organ size, cell attachment, mechanical stress, hormones, growth factors[295], as well 
as vascular shear stress[306].

Cross-talk between pathways: Mirroring the redundancy and overlap in extracellular 
growth factors and receptor binding, there exists a complex crosstalk between 
pathways. Just a few examples of the known positive feedback interactions are shown 
in Figure 3C, which, albeit incomplete and without including negative feedback 
interactions, provides an impression of the intricacy of intracellular interactions 
between pathways[297]. Thus, Ras interacts with phosphatidylinositol 3’-kinase (PI3K)
[307]. The NF-κB pathway cross-talks with the PI3K/Akt/mTOR, pathways[308]. β-
catenin interacts with the Hippo signalling pathways[195]. YAP cross-talks with 
PI3K/Akt pathway[309].

SECTION 4: THE CONTRIBUTION OF NON-PARENCHYMAL CELLS TO 
LIVER REGENERATION
The proliferation of hepatocytes in liver regeneration is in critical ways dependant on 
the role of non-parenchymal cells (Kupffer cells, stellate cells, and liver sinusoidal 
endothelial cells). Conversely, proliferating hepatocytes provide many growth factors 
that elicit non parenchymal cell proliferation, thus suggesting an interdependence 
allowing proportionate expansion of each cell type to produce liver tissue containing 
all key constituents. Thus, proliferating hepatocytes produceVEGF and angiopoietins 1 
and 2 (LSECs mitogen), TGFα (LSECs and stellate cell mitogen), fibroblast growth 
factor 1 (FGF1) and FGF2 (HSC and LSEC mitogen), and granulocyte–macrophage 
colonystimulating factor (GMCSF) (Kupffer cells mitogen)[191,310,311]. In this section 
we examine in more detail the part played by non-parenchymal cells in liver 
regeneration.

Liver sinusoidal endothelial cells
LSECs have a key role in the immediate events that trigger the onset of hepatocyte 
proliferation after PH. Thus, shear stress resulting from portal pressure changes after 
PH induces the expression of the hepatocyte priming IL6[164].
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Once liver regeneration is initiated, hepatocytes form clusters which are initially 
avascular. The production of VEGF, and angiopoietin 1 & 2 stimulates endothelial cells 
to migrate into the avascular structures, proliferate, differentiate to a liver sinusoidal 
phenotype[312]. LSECs also produce VEGF[313], as well as the potent mitogen HGF, 
and NO[160,162] which increases hepatocyte sensitivity to HGF[163].

In the rat hepatectomy model, liver sinusoidal cell repopulation is not only achieved 
by resident LSECs, but also by recruitment of LSEC progenitors in the bone marrow 
which, under the influence of VEGF, undergo proliferation, migration into the 
bloodstream, and engraftment in the liver, where they contribute a significant 
proportion of the total HGF production.

Of note, the importance of bone marrow derived LSECs in this model is emphasised 
by the fact that bone marrow ablation by irradiation abolishes liver regeneration, 
which can be rescued by exogenous infusion of LSECs[314,315]. Thus, LSECs play a 
key role, not only in allowing the vasculature of the liver to keep pace with 
regenerating hepatocytes, but also in providing the very growth factors (such as HGF) 
that allow hepatocyte to proliferate.

Stellate cells
Stellate cells are situated in the Space of Disse between LSECs and hepatocytes [316], 
and though representing only approximately 8% of cells in the liver, have multiple 
long cytoplasmic projections[317] which contact hepatocytes, LSECs, and Kupffer cells, 
allowing a central role in intercellular signalling in part by production of growth 
factors such as HGF and VEGF. Stellate cells also exhibit cellular contraction, 
permitting the control of sinusoidal blood flow[318], and have a key role in the 
regulation of ECM, both in its production and degradation[319].

After hepatic injury, HSC become activated myofibroblast-like cells. In the midst of 
liver regeneration, the initiation, perpetuation and resolution of HSC activation only 
adds further complexity, in processes which are poorly understood[320], but which 
ultimately result in the laying down of ECM to provide the vital framework on which 
regeneration may proceed[321].

The triggering of HSC activation is multifactorial, but includes the secretion by 
hepatocytes of growth factors such as FGF1 & 2, and PDGF, the latter being a potent 
mitogen and chemo-attractant for HSCs[322], and highlighting an example of interde-
pendent complex paracrine stimulation (with HSCs producing the hepatocyte mitogen 
HGF and hepatocytes producing the HSC mitogen PDGF).

Following activation, HSC production of HGF increases, in a mechanism dependant 
on the neurotrophin receptor P75NTR[323], and its downstream mediator Rho[324]. 
Activated HSCs also produce Noradrenaline, which enhances HGF production by 
mesenchymal cells[223] and production of EGF from Brunner’s glands[229]. HSCs 
interact directly with LSECs to stabilise and remodel sinusoids[325], via combined 
actions of PDGF, TGF-β1, FGF, VEGF, and angiopoietin. HSC are the principal cell 
source of ECM constituent production, and of ECM remodelling control by expression 
of matrix metalloproteases, thus providing the scaffold in which liver cells can 
regenerate[326].

The importance of HSC activation in liver regeneration is suggested by the 
observation that following ablation of HCS activation, liver regeneration is markedly 
impaired in both the mouse acetaminophen[327] and rat acetyl amino fluorene[328] 
models of liver injury with much reduced proliferation of hepatocytes and oval cells 
respectively, and with rescue of liver regeneration by infusion of medium conditioned 
by HSC[329].

Kupffer cells 
Amongst the different resident intrahepatic macrophages, Kupffer cells are the 
predominant type, and originate from erythromyeloid progenitors in the foetal liver
[330]. In the homeostatic situation, Kupffer cells have wide-ranging roles in (1) 
Clearance of cellular debris in blood[331]; (2) Maintenance of iron homeostasis via 
phagocytosis of red blood cells[332]; (3) Regulation of cholesterol homeostasis[333]; (4) 
Antimicrobial defence[334]; and (5) Promotion of immunological tolerance[335].

Kupffer cells have a limited half-life (of approximately 12 d in mice)[336]. Their 
maintenance is achieved by self-replenishment in the healthy liver[337], but is to an 
extent dependant on extra-hepatic progenitors in the case of liver injury[338].

There is evidence that replenishment of Kupffer cells following injury may be 
achieved by engraftment and differentiation of monocyte derived macrophages into a 
Kupffer cell phenotype, in a manner controlled by HCS and LSEC, highlighting once 
again the complex cross-talk between the non-parenchymal cell types[339]. The 
monocyte derived macrophage precursors may originate from within the liver, but 
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also from the peritoneum[340] and spleen[341].
Kupffer cells are strategically placed with access to the sinusoidal lumen and space 

of Disse, and carry multiple surface receptors to injury related molecules (the Pattern 
Recognition Receptors), suggesting a key role for Kupffer cells as sensors of hepatic 
injury[342].

Thus, Kupffer cells are able to detect, and become activated by: (1) DAMPs, e.g., 
mitochondrial DNA (mtDNA), and ATP, from damaged hepatocytes; (2) Pathogen-
associated molecular patterns (PAMPs)[343]; (3) Hypoxic liver environment[344]; and 
(4) Extracellular vesicles secreted from various cells containing proinflammatory 
stimuli[345].

The activation of Kupffer cells by any of the above stimuli results in the secretion a 
wide range of bioactive molecules including chemokines such as C chemokine 2 which 
attract inflammatory and immune response cells to the injury site[346], and proinflam-
matory cytokines such as IL6 and TNF which prime hepatocytes out of G0 phase an 
also activate HSCs[347].

Thus, Kupffer cells have a central role in the initiation and orchestration of liver 
regeneration, and their importance is suggested by the observation that depletion of 
macrophages[206] or inhibition of monocyte[348] recruitment results in impaired liver 
regeneration following PH.

SECTION 5: THE ‘ALTERNATIVE PATHWAYS’ OF LIVER REGENERATION
The liver regenerative response varies not only according to the nature of the injury, 
but also its magnitude and the status of the underlying liver parenchyma. These 
different contexts dictate how regenerating cells behave, but also the recruitment of 
different types of cells to accomplish the task. Current knowledge on the mechanisms 
of liver regeneration is largely derived from experimental models involving 2/3 PH in 
rodents[195], where “standard” liver regeneration occurs. This involves the prolif-
eration of hepatocytes and cholangiocytes from homotypic precursors[209] and is 
addressed in the first subsection below. In the second subsection, the “alternative” 
liver regeneration pathways, which involve liver progenitor cells (LPCs) and transdif-
ferentiation, will be examined. As seen in other aspects of liver regeneration, the 
mechanisms outlined below are subject to ongoing scientific scrutiny and are currently 
incompletely understood.

Hepatocyte response heterogeneity after PH
Liver regeneration after PH is achieved in different ways according to the magnitude 
of the liver resection. Thus regeneration after 1/3 PH is achieved principally by 
hypertrophy, with few cell divisions[349]. In contrast, during liver regeneration after 
resections larger than 1/3PH, although hypertrophy precedes hyperplasia, 
hyperplasia occurs increasingly as well, such that hypertrophy and hyperplasia 
contribute equally to liver regeneration in 70% PH. Moreover, during the hyperplastic 
response, although the majority of hepatocytes entered S phase of the cell cycle, not all 
undergo actual cell division, and the known significant number of polyploid 
hepatocytes[350] are shown to undergo division to produce mononuclear hepatocytes.

Thus, hepatocyte behaviour during liver regeneration is not uniform. Hepatocytes 
within a liver lobule are not equivalent and show functional heterogeneity. The liver 
lobule may be separated into 3 zones: Zone 1 (periportal) hepatocytes are in the 
vicinity of the portal triad, zone 3 (perivenular) hepatocytes are situated near the 
central vein, and zone 2 (pericentral) hepatocytes reside between zones 1 and 2. 
Metabolically speaking, zone 1 hepatocytes carry out gluconeogenesis and b-oxidation, 
in contrast to glycolysis, lipogenesis, and detoxification performed by zone 3 
hepatocytes[195].

Moreover, there is some evidence that there is heterogeneity in baseline hepatocyte 
turnover during homeostasis, with a population of cells in zone 3 replenishing the 
lobule population, albeit slowly[351].

Hepatocyte proliferation heterogeneity is also apparent in the context of the 
regenerative response. In the context of true proliferative response after PH, lineage 
experiments have identified a population of hepatocytes in the periportal region zone 
1 which appear to have greater proliferative potential. These are referred to as ‘hybrid 
hepatocytes ‘in that in addition to hepatocyte markers, they express progenitor cell 
genes and biliary transcription factors[352]. There appears to be further heterogeneity 
in proliferative response in that hepatocytes in proximity to LSEC proliferate faster 
than ones which are more distant[175].
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Facultative stem cells and transdifferentiation pathways
The alternative liver regenerative pathways are characterized by deviation from the 
phenotypic fidelity in which hepatocytes or cholangiocytes proliferate to produce 
more of the same cell type. In this “alternative” context, liver epithelial cells (i.e., 
hepatocytes and cholangiocytes) can operate as facultative stem cells for one another 
in conditions where regeneration of one or other is impaired[209,353], presumably as a 
rescue mechanism. This mechanism appears beneficial from an evolutionary 
standpoint, is plausible from a developmental biology perspective given that both 
hepatocytes and cholangiocytes are derived from hepatoblasts[354], and has been 
demonstrated in previous studies[81,355-357]. Nevertheless, there is controversy in the 
field regarding the in vivo capability, conditions, and extent to which liver epithelial 
cells can transdifferentiate and achieve regeneration.

The term “LPCs” is seen in the literature, yet such cells have not been identified on 
microscopy or tissue dissociation of liver lobules in the resting state and are thought to 
possibly arise from the transdifferentiation of hepatocytes and cholangiocytes[353] as 
mentioned above. A central event in this process is the “ductular reaction”, which 
occurs when hepatocyte proliferation is suppressed, thus leading to the expansion of 
progenitor cells[209] and which can be observed both in acute and chronic liver 
disease models, typically after extensive hepatocyte injury.

In conditions such as fulminant hepatic failure, some liver epithelial cells 
demonstrate an overlapping set of biomarkers (e.g., cholangiocytes may express 
“hepatocytic” biomarkers such as HNF4, albumin, and HEPPAR3)[353]. The extensive 
necrosis and apoptosis characteristic of fulminant hepatic failure is thought to pivot 
liver regeneration towards LPCs, as reflected in elevated α-fetoprotein levels[358] and 
as demonstrated by histological findings of “regenerative clusters”, which consist of 
atypical ductules lined by cells exhibiting a combination of cholangiocyte and 
hepatocyte biomarkers[209].

In the context of PH, once a certain resection threshold is exceeded (e.g., > 80%), 
adequate liver regeneration cannot be achieved by the relatively small number of 
remaining hepatocytes, and the alternative pathway is thus activated. In this process, 
biliary epithelial cells (cholangiocytes) de-differentiate into progenitor cells and then 
re-differentiate into hepatocytes in order to repopulate the liver[195]. As described in 
the rat models subsection above, Evarts et al[359] demonstrated that administration of 
2-AAF to rats which had undergone PH was associated with differentiation of oval 
cells (a putative hepatic progenitor cell) to hepatocytes. However, this model did not 
allow for genomic-based cell lineage tagging[209].

More recently, Lu et al[81] induced widespread hepatocyte injury in mice through 
Mdm 2 deletion, which results in p53 upregulation with p53-induced hepatocyte death 
and senescence. The authors found that widespread hepatocyte injury was associated 
with a ductular reaction, whereby hepatocyte progenitor cell populations expanded 
and where bromodeoxyuridine-positive hepatocyte progenitor cells were often closely 
associated with bromodeoxyuridine-positive hepatocytes, thus suggesting that (in this 
context) hepatocytes arise from progenitor cells[81]. In a zebrafish model, Choi et al
[355] found that after severe hepatocyte depletion, biliary epithelial cells de-differen-
tiated into hepatoblast-like cells and then differentiated into highly proliferative 
hepatocytes, thus leading to liver regeneration.

Although the above studies focused on transdifferentiation from cholangiocytes to 
hepatocytes, the inverse has also been demonstrated in a murine model of Alagille 
syndrome (a human genetic condition associated with biliary underdevelopment). In 
this study, Schaub et al[360] found that hepatocytes converted to mature cholan-
giocytes that were effective in supporting biliary drainage and remained so after 
cholestasis resolved, in a TGFβ signalling mediated process. This persistent phenotypic 
change is distinct from the reversible conversion of human or murine hepatocytes to 
progenitor cells seen in other studies[361] and which may more accurately be 
described as “metaplasia” rather than “transdifferentiation”. In their chimeric liver rat 
model, Michalopoulos et al[362] injected dipeptidyl peptidase IV (DPPIV)-positive rat 
hepatocytes into DPPIV-negative rats which then underwent partial hepatectomy and 
bile duct ligation, with or without additional biliary injury by methylene diamiline 
(DAPM) administration. On animal sacrifice after 30 d, the authors found that ductules 
exhibited the DPPIV marker, and that this was enhanced 36-fold in rats with 
additional DAPM-mediated biliary toxicity.

Evidence in support of liver epithelial cell transdifferentiation for regeneration is 
accumulating, yet several areas of controversy remain to be resolved. In addition to the 
findings described above, self-renewing facultative stem cells have been located in 
peribiliary glands and liver progenitor cells of bipotential differentiation capacity have 
been located in association with the canals of Hering. However, their role in liver 
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regeneration has been disputed[195]. Also, it remains unclear whether all mature 
hepatocytes are capable of dedifferentiation to progenitor cells, or whether this is only 
possible in a subset of cells[195]. Finally, various signalling pathways (e.g., YAP, Rho 
kinase, TGF-β, glycogen synthase kinase 3) have been implicated in hepatocyte 
dedifferentiation in animal models[195], yet their role with respect to human 
hepatocytes remains to be clarified.

SECTION 6: THE INFLUENCE OF UNDERLYING LIVER DISEASE ON 
LIVER REGENERATION
The processes and mechanisms of liver regeneration are not only influenced by the 
magnitude and type of injury, but also by the status of the underlying liver 
parenchyma prior to injury. Although the PH model has contributed much 
information relating to events relating to regeneration of normal liver, significant 
differences come to light when the underlying liver is diseased. This section describes 
the ways in which liver regeneration is altered in the instances of age-related liver 
impairment, acute liver injury, hepatic steatosis, fibrosis, and cirrhosis.

Age-related liver impairment
Although the adult liver retains regenerative capacity throughout life, this is reduced 
in old age[363], through several suggested mechanisms. FoxM1B is a transcription 
factor expressed during embryonal development and also in liver regeneration[364]. 
Its expression is diminished in aged mice, whose liver regeneration can be rescued 
through its transgenic overexpression[365]. Age-related liver regeneration impairment 
may also be mediated by changes in the expression and function of cell cycle affecting 
genes such as CCAAT/enhancer-binding protein (C/EBP)α, which is an inhibitor of 
Cyclin D[366]. Budding uninhibited by benzimidazole-related 1 (BubR1) is involved in 
the control of mitosis and is found to be diminished in old age. Genetically 
manipulated mice expressing low levels of BubR1 show impaired liver regeneration
[367].

In addition to these mechanisms, Conboy et al[368] and Liu et al[369] have 
demonstrated in parabiotic experiments that the blood or plasma of young mice 
partially rescues the liver regenerative compromise seen in old mice, suggesting the 
presence of currently unidentified circulating factors, in work reminiscent of the early 
experimental approaches used to demonstrate the existence of portal mitogens.

Acute liver injury
Severe acute liver injury may result from a variety of insults including viral infection (
e.g., Hepatitis A, B, C), poisoning (e.g., paracetamol) or auto-immune disease. Though 
different in nature, these diverse insults nevertheless have the common feature of 
causing significant necrosis and apoptosis, in the midst of which regeneration must 
happen.

Specific models provide some mechanistic information. For example, the mouse 
model of paracetamol injury suggests that beyond a threshold of injury, regeneration 
fails, and that this is associated with failure of β catenin activation, consistent with the 
correlation of β-catenin activation and regeneration seen in patients[370].

In the setting of widespread necrosis, the contribution of non-parenchymal cells 
may be particularly important. Macrophages are essential in clearing toxic cellular 
debris[371], and thus mice deficient in CSF1 which promotes the maturation of 
macrophages have impaired liver regeneration[372], and CSF1 serum levels correlate 
with recovery from paracetamol liver injury[373].

Hepatic steatosis
Hepatic steatosis is known to be detrimental to liver regeneration not only in experi-
mental models[374], but also in the clinical setting[375]. The mechanism is not fully 
understood but may include cell cycle machinery defects in steatosis[376]. Down 
regulation of the EGFR pathway may also contribute, and EGFR overexpression has 
been shown to rescue liver regeneration in a mouse model of PH in steatosis[377]. 
Steatosis may also compromise liver regeneration by inhibition of NFκB[378]. Finally, 
failure to activate growth arrest and DNA damage-inducible protein GADD34 in fatty 
liver may partly contribute to impaired liver regeneration, which can be rescued by 
transgenic overexpression of growth arrest and DNA damage-inducible protein 
GADD34 in a mouse experimental model[379].
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Hepatic fibrosis and cirrhosis
In the setting of overwhelming injury where the capacity of hepatocytes to proliferate 
is overwhelmed, oval cell transdifferentiation provides a mechanism to assist cellular 
repopulation. Such injury is, however, also associated with activation of stellate cells to 
myofibroblasts, which secrete ECM[380]. Excessive ECM secretion is nonetheless 
harmful because it inhibits the ductular reaction[381] and hepatocyte proliferation
[382]. Moreover, excessive fibrosis impairs portal flow, leading to arterialisation of the 
liver, and senescence of hepatocytes and cholangiocytes[383]. The distortion of the 
macro and micro-anatomy of the liver results in major compromise to liver function 
leaving affected patients in an extremely precarious state characterized by rapid and 
severe decompensation, which can be triggered by relatively minor physiologically 
stresses.

SECTION 7: MECHANISMS UNDERLYING CESSATION OF LIVER 
REGENERATION
In the rodent PH model, liver regeneration proceeds until the liver have returned to its 
pre-PH weight, approximately 10 d later, at which point regeneration ceases. The 
mechanisms resulting in termination of liver regeneration have received less attention 
than those driving it, but are equally important, not only from the perspective of the 
study of liver regeneration biology but also in terms of the light they shed on other 
pathologies including liver malignancy. Nevertheless, several regeneration 
termination pathways have been identified, relating to TGFβ, the activins, the ECM, 
and glypican-3 (GPC3)

TGF β
TGFβ is a multifunction cytokine with wide ranging roles in growth and development. 
It exists in 3 isoforms resulting from differential protein cleaving and binds to 3 
different TGFβ receptors. Binding to the TGFβR results in autophosphorylation, and 
activation of SMAD, which translocates to the nucleus, delivering an inhibitory signal 
to cell proliferation[384]. Although TGFβ does inhibits hepatocyte proliferation in vitro
[385], other experimental results in vivo cast some doubt on its role in termination of 
liver regeneration in that liver specific TGFβR knockout mice terminate liver 
regeneration appropriately[68]. However, this result does not necessarily rule out TGF
β as a significant factor in liver regeneration termination: given the redundancy seen in 
the processes that drive regeneration, it seems likely that similar redundancy exists in 
its termination, such that ablation of one mechanism may readily be rescued by other 
pathways.

Activins
The activins are a family of proteins which are similar in structure to the TGFβ family, 
which also transduce signals via receptors that activate SMAD, and convey a growth 
inhibitory effect. Activins are upregulated during the liver regeneration[386], and 
blocking their action pharmacologically results in excessive regeneration and hepato-
megaly following PH in rats[387].

ECM and integrin linked kinase
The ECM is thought to convey a growth controlling influence on liver cells in a 
mechanism whereby integrin proteins in intact ECM bind hepatocyte cell membrane 
Integrin linked kinase (ILK) receptors, which deliver a growth inhibitory signal[388]. 
Consistent with this, the growth response of hepatocytes to mitogens in vitro is much 
reduced when grown in the presence of ECM in comparison to plastic[389]. Moreover, 
ILK knockout mice show not only hepatomegaly in the native state[390], but also an 
exaggerated regeneration after PH[391]. Thus, it may be that the activation of matrix 
metalloproteases that occurs early after liver injury[188] results in degradation of the 
controlling influence of integrins, and that this is gradually recovered during 
regeneration as new ECM is laid down.

GPC3 
GPC3 is a heparan sulphate proteoglycan found on the cell surface of many tissues 
which conveys a growth inhibitory effect[392]. It is not detectable in quiescent liver but 
is expressed coinciding with the end of regeneration after PH in rats[393]. Moreover, 
loss of function mutations of GPC3 results in organ overgrowth[394], and transgenic 
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over-expression of GPC3 delays liver regeneration after PH[393].

C/EBP
C/EBP is one member of a family of transcription factors with a role in producing cell 
cycle arrest. Although complete ablation of C/EBP is fatal in mice[395], altering the 
function of the protein by mutation results in partial loss of function with mice 
exhibiting excessive regeneration and hepatomegaly after PH and CCl4 injury[396], 
thus suggesting that the native protein has a role in the control of liver regeneration.

Cyclin E1 and E2
The cyclins are a group of proteins which impact on the progression of the cell through 
the cell cycle. Amongst these cyclins E1 and E2 influence the advancement of the cell 
from the G1 phase (during which the cell synthesizes protein and organelles), to S 
phase (during which DNA is replicated)[397]. Cyclin E1 and E2 have opposing roles, 
with Cyclin E1 promoting entry into S phase[398], and Cyclin E2 halting it[399]. Thus, 
mice with ablated Cyclin E2 show increased DNA synthesis and hepatomegaly after 
PH suggesting a role for Cyclin E2[398,400].

Of note the hepatomegaly seen after CyclinE2 ablation is not due to cell division, 
but hypertrophy, providing a possible mechanism to explain to the observation that 
liver growth after 30% PH is hypertrophic rather than the hyperplasia seen in 70% PH.

Hippo/YAP pathway
The Hippo/Yap signalling pathway is conserved in a wide range of organisms and 
associated with growth suppression[401]. YAP is key downstream effector of Hippo 
and its activation when dephosphorylated leads to massive liver overgrowth[402], 
suggesting a possible regulatory role in control of liver regeneration.

Micro RNAs
Micro RNAs are short RNA molecules which bind to messenger RNA and thus affect 
expression of the gene product by interfering with translation of mRNA to protein
[403]. Several micro RNAs have been identified which target the mRNAs of key 
regeneration promoting proteins, and thus may play a part in controlling liver 
regeneration. Thus miR-23b targets the growth inhibiting SMAD protein such that the 
observed downregulation of miR-23b following PH may provide a mechanism for 
slowing liver regeneration[404]. miR-34a targets several mRNAs including that which 
codes for the HGF receptor MET, again providing a potential mechanism for limiting 
hepatocyte proliferation[405].

SECTION 8: LIVER REGENERATION: IMPLICATIONS FOR THERAPY OF 
LIVER TUMOURS
The complexity of liver regeneration biology, combined with our currently limited 
understanding has to date much restricted specific clinical interventions to enhance 
liver regeneration. Moreover, the processes involve such fundamental biochemical 
pathways that attempts to manipulate these would require very careful assessment, 
for fear of unintended consequences in the liver and other organ systems. 
Nevertheless, current knowledge allows clinicians to anticipate what scenarios or 
treatments may compromise liver regeneration and provides guiding principles which 
may allow planning treatment strategies to optimise liver regeneration potential.

Liver tumours, be they primary or metastatic, may be treated by chemotherapy in 
systemic or locoregional delivery methods, or by surgical intervention with resection 
or local ablation techniques. Radiotherapy, although used to an extent, has a much 
lesser role and evidence base. In this section, we discuss how the biology of liver 
regeneration affects treatment choices and delivery, not only in terms of chemotherapy 
and surgery, but also in relation to wider organ system physiology that relates to liver 
regeneration.

Chemotherapy and liver regeneration
The principal scenario in which chemotherapy impacts on liver regeneration is the use 
of neoadjuvant chemotherapy prior to a planned liver resection, or in the instance of 
downsizing an initially unresectable lesion, most usually in the context of colorectal 
liver metastases[406]. Chemotherapy affects not only individual cell types within liver 
parenchyma, but also key extra-hepatic tissues pertinent to the liver regenerative 
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process such as the bone marrow, and in some cases affects key liver regenerative 
pathways.

The main toxicities inflicted on the liver by chemotherapy are steatosis, steatohep-
atitis, and sinusoidal obstruction syndrome (SOS). Steatosis is the excessive deposition 
of fat within hepatocytes. This may trigger an inflammatory reaction leading to steato-
hepatitis, and in turn to fibrosis and cirrhosis. Sinusoidal obstruction syndrome is a 
separate entity with direct toxicity to LSEC leading to occlusive phenomena in the 
sinusoids[407].

In the context of treatment of (colorectal liver metastases) CRLM, 5FU is associated 
with steatosis[408], probably as a result of impaired oxidation of fatty acids[409]. 5FU 
also triggers the activation of pro-inflammatory genes, which may contribute to the 
evolution of steatohepatitis[410]. Chemotherapy associated Steatohepatitis (CASH) is 
also particularly associated with regimens containing irinotecan[411] which also 
inhibits fatty acid oxidation, but elicits steatohepatitis by activation of ERK[412], which 
if inhibited, leads to a reduction in steatohepatitis. SOS is associated with oxaliplatin 
regimens. Although not fully understood, a contributing mechanism is the increased 
expression of matrix metalloproteases, resulting in lifting of LSEC from the basement 
membrane and allowing infiltration of red blood cells into the space of Disse, thus 
causing an occlusive phenomenon in the lumen of the sinusoid, and an inflammatory 
reaction with stellate cell activation and perisinusoidal fibrosis[413].

In addition to these directly hepatotoxic effects, the above agents are myelosup-
pressive, and may thus compromise the bone marrow constituents that play important 
roles in liver regeneration, including (1) LSEC progenitors which are important in 
repopulating LSEC after PH and a key source of the important mitogen HGF[314,315]; 
(2) Macrophage progenitors which have a key role in clearing cell debris in 
preparation for regeneration[206]; and (3) Megakaryocytes which replenish platelets, 
with their important role in delivering liver regenerative signals[178,179].

5FU, oxaliplatin, and irinotecan are frequently used in combination with biological 
agents targeting specific proliferative pathways within tumours, which overlap with 
biochemical pathways promoting liver regeneration. Thus, the anti-EGFR antibody 
cetuximab blocks binding of EGFR ligands including the key mitogen EGF, acting via 
the RAS-RAF-MEK pathway. Another example is the anti-angiogenic antibody 
bevacizumab which delivers antitumor effects by blocking VEGF-binding to its 
receptor, but thereby also interfering with LSEC repopulation in the liver[406]. Thus, 
the commonly used chemotherapeutic agents and antibodies used in the treatment of 
CRLM have a multitude of liver regeneration compromising properties. The challenge 
for clinicians is to find the optimal balance between the oncological benefits and liver 
regenerative toxicity.

Clinical trials provide some guidance in this regard. Thus 5FU, oxaliplatin and 
irinotecan-based regimens have been shown to produce CRLM response rates 
allowing increased potential for curative resection[414,415], with additional benefits 
attributed to the use of anti EGFR[416] and anti VEGF antibodies[417]. Interestingly, 
whilst the use of EGFR antibody regimens is established as a means to downsize 
tumours to increase operability, their perioperative use in primarily resectable CRLM 
is detrimental[418].

In terms of duration of chemotherapy, the theoretical ideal is the delivery of the 
oncological hit to the tumour whilst minimising liver toxicity. In this regard Karoui et 
al[419] found that patient receiving fewer than 6 chemotherapy cycles experienced 
significantly fewer post liver resection complications than those who had received 
more than 6 cycles (19% vs 54% complication rate) although there was no impact on 
mortality rates. Similarly, Nguyen et al [420]showed a greater incidence of post-
operative liver failure in patients undergoing more than 10 cycles of chemotherapy. 
Moreover, the general practice of leaving an interval of 4-6 wk between chemotherapy 
and surgery is intended to allow reversible inflammatory changes and bone marrow to 
recover[421].

The prospect of specific interventions to minimise chemotherapy related injury is 
the subject of research but has not yet reached widespread clinical application. 
Nevertheless, there have been reports that bevacizumab may reduce SOS in oxaliplatin 
regimens[422], and S-adenosylmethionine (SAMe) may have a protective effect in 
chemotherapy-induced liver injury[423], with SAMe infusion associated with lower 
serum concentrations of aspartate transaminase and alanine transaminase during 
chemotherapy treatment[424].

Liver volume manipulation
In the context of a healthy underlying liver parenchyma, up to 75% of the liver may be 
resected. However, this is the very limit and liver surgeons are often faced with the 



Hadjittofi C et al. Liver regeneration and liver tumour therapies

WJCO https://www.wjgnet.com 1131 December 24, 2021 Volume 12 Issue 12

problem of some degree of parenchymal pathology or dysfunction, which may present 
a higher requirement in terms of the remnant liver volume. As discussed in section 1.4, 
pure volume assessments are gradually being complemented by liver functional 
assessments, principally by hepatobiliary scintigraphy[146,152].

In instances where future remnant liver volume/function is deemed insufficient, 
PVE has become an established technique to produce atrophy of the tumour bearing 
liver parenchyma, and compensatory growth of the future remnant liver, allowing a 
safer hepatectomy[425]. In the context of resections for CRLM, this technique increases 
resection rates by 10%-20%[426].

In the instance where PVE fails to produce sufficient hypertrophy, perhaps caused 
by the development of collateral intrahepatic portal vessels between the embolized 
and non-embolized parts of the liver, further growth of the future remnant liver may 
be achieved by parenchymal section to interrupt the collateral vessels.

This approach, as a salvage manoeuvre after PVE is a modification of the originally 
described ALPPS technique[427] that combined single stage portal vein embolization 
and parenchymal transection. Whilst undoubtedly producing significant additional 
growth, the technique remains debated owing to questions regarding the functionality 
of the rapidly expanded liver, and high post-operative mortality in some series[428].

Liver disease limitations to liver resection
The continuum of steatosis, steatohepatitis, fibrosis, and cirrhosis presents a major 
challenge to liver resection. In terms of steatosis, the observed experimental and 
clinical compromise to liver regeneration as a result of steatosis translates to a 
diminished tolerance to liver resection[429]. Thus, studies examining the outcome of 
hepatic resection in patients with steatotic livers suggest more marked abnormalities 
in postoperative liver dysfunction, more morbidity and increased complication rates
[143,430], with steatosis identified as an independent predictor of complications[431]. 
Increased mortality is identified in some studies[430], and although this has not been a 
universal finding, the presumption is that this relates to careful patient selection.

The tolerance of the liver to resection progressively decreases with more severe 
underlying liver disease. Thus, cirrhosis is associated with increased mortality rates for 
all abdominal surgery including[432] liver resection[433].

Interventions to mitigate the risk of liver surgery in the context of underlying liver 
disease are limited, and practice has focused on patient selection to avoid prohibitively 
hazardous resections. In the context of steatosis, the response of the steatotic liver to 
ischaemic insult[434] has motivated research in the concept of ischaemic precondi-
tioning, whereby a short period of ischaemia prior to liver resection is applied with a 
view to improving subsequent perfusion[435]. Although benefits have been shown in 
rodent models and in the clinical setting[436], results have not been universal[437], 
and the practice not widely accepted.

The role of the gut 
One of the key biochemical triggers which initiates liver regeneration is LPS from the 
gut, which translocates into portal blood following liver resection in part as a result of 
the rise in portal pressure[204] (see “Priming of hepatocytes”). The evidence supporting 
the importance of LPS is that germ free mice show impaired liver regeneration, which 
can be rescued by exogenous LPS administration[205].

Though the presence of LPS in the blood is important, there appears to be a delicate 
balance as excessive translocation of LPS into portal blood is detrimental to liver 
regeneration. Thus, in the rat model after 90% PH, gut mucosal permeability is 
disrupted with loss of tight junctions, resulting in high levels of portal blood LPS, 
severe inflammatory changes in the liver with necrosis, associated with high mortality. 
By decontaminating the gut with gentamycin, gut permeability, portal blood LPS, and 
liver necrosis is much improved, and associated with a significant improvement in 
survival from 24% to 56%[27].

No clinical trials have been carried out to test the potential benefit of this animal 
experimental result in humans, where its applicability could be investigated in 
patients undergoing major liver resection. Additional considerations would come into 
play, including the risk of clostridium difficile sepsis associated with alteration of bowel 
flora. Another potential approach, also uninvestigated, could be the use of bowel 
preparation similar to that used prior to colorectal surgery.

Multivisceral resections
The data from early experimental result suggested that liver regeneration was 
significantly dependent on portal blood growth factors derived from the upper 
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gastrointestinal tract (stomach, duodenum, pancreas) as portal flow separation 
experiments comparing isolated portal flow of distal stomach, duodenum, pancreas 
and spleen to portal flow of small intestine showed that the grafts supplied with 
intestinal portal flow atrophied, in contrast to those supplied with portal blood from 
the upper gastrointestinal tract[9,10].

On this basis, there might be a similar risk in humans in cases where liver resection 
is combined with a significant resection of the upper gastro-intestinal tract, such as 
Whipples resection (resection of distal stomach, duodenum and head of pancreas) or 
total pancreatectomy (resection of distal stomach, duodenum, pancreas, and spleen). 
However, existing case series describing such multivisceral resections do not report 
problems relating to liver regeneration[438-440].

Thus it may be that the situation in the original animal experiments cannot be 
extrapolated to humans owing to different physiology, although interpretation of the 
human literature has to be taken with the caveats of selective reporting (bias against 
reporting poor outcomes with liver failure), case selection of surgical candidates (likely 
good performance status individuals for such major resections), and likely small liver 
resections which might not manifest with post-operative liver failure.

Bile metabolism considerations
Bile salts are important auxiliary mitogens, with rodent models showing impaired 
liver regeneration with bile acid sequestering agents[243], bile-salt-deficient transgenic 
mice[244], and in rats with external biliary fistula[245].

This observation in rodent models is mirrored in clinical practice, with a 
randomised trial comparing patients undergoing major liver resection with and 
without cystic duct biliary drainage showing significantly lower bile salt concen-
trations in the drained group as well as lesser liver regeneration assessed by 
volumetric CT[441]. Moreover, in the context of portal vein embolisation, increased 
systemic bile salt levels predicted hypertrophy of the non-embolised lobe[442].

Thus, the presence of bile in the intestine following liver resection appears to be 
important and would argue against the use of external biliary drains after liver 
resection, or in circumstances requiring such drains, to consider enteric bile recycling 
via nasogastric or nasoenteric tube.

Management of post-hepatectomy portal hypertension
The rise in portal venous pressure following liver resection appears to contribute to 
providing important triggers to liver regeneration in the form of induction of 
cytokines, hepatic mitogens and angiogenic growth factors, as described in “Vascular 
events”section. However, an excessive increase in portal pressure is thought to be 
detrimental in eliciting a reduced arterial inflow as a result of the arterial buffer 
response, and a subsequent hypoxia[171], which is hyptothesised to contribute to post 
liver resection liver failure[443], in combination with direct mechanical injury occurs to 
the liver sinusoids[444].

Thus, a number of investigators have examined a variety of interventions to 
decrease portal venous pressure by surgical (splenectomy, splenic artery ligation, 
porto-systemic shunt), interventional radiological (pre-operative splenic artery 
ligation), and pharmacological means (non-selective beta-blockers, terlipressin), with 
successful reductions in portal pressure and improvement in small-for-size syndrome
[444].

Hypoxia
Intrahepatic hypoxia is one of the stimuli which may contribute to the early triggers of 
liver regeneration[175], via a number of mechanisms including the hypoxia induced 
secretion of complex regeneration promoting molecules from stem cells[176]. Given 
the critical necessity of maintaining normoxia in other tissues, manipulating pO2 for 
hepatic regeneration benefits seems an unlikely strategy, however, pharmacological 
manipulation of HIF has been used to treat renal anaemia[445], and in vitro studies 
suggest that such agents could produce angiogenesis in the liver, as well as a 
hepatocyte cytoprotective effect[174].

Adrenergic stimulation
The finding that surgical denervation of the liver or pharmacological alpha adrenergic 
blockade significantly impairs liver regeneration, is consistent with known mod-
ulatory effects of catecholamines on secretion of hepatic mitogens (including EGF), as 
well as the finding that catecholamines increase hepatocyte sensitivity to EGF[251]. 
Moreover, hepatic stellate cells and hepatic progenitor cells are innervated by the 
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sympathetic and parasympathetic nervous system[446].
Hepatic sympathectomy is effectively carried out in humans in the context of hilar 

cholangiocarcinoma resections (when the entire hepatic hilum is skeletonized) and in 
liver transplantation, when the implanted graft is totally denervated, however there is 
no obvious clinical evidence that this has a detrimental effect on liver regeneration.

The absence of reported clinical compromise to liver regeneration following 
sympathectomy in humans may reflect differences in autonomic supply[447], 
compensatory effects from adrenal catecholamine secretion, or perhaps relatively 
rapid re-innervation, as seen in some animal models[448]. Finally, the effect of 
catecholamine stimulation is complicated by the fact that inhibition of alpha 
adrenergic signals may have a beneficial effect in minimising hepatic stellate cell 
activation and therefore reduce detrimental excessive fibrosis[446].

The role of platelets and fibrinogen
Platelets clearly have an important role in promoting liver regeneration with animals 
and humans studies showing impaired liver regeneration in individuals thrombocyt-
openia[178,179], and the association between thrombocytopenia and post-operative 
mortality after major liver resection[449]. Moreover, fibrinogen deposition in the liver 
appears key in driving platelet accumulation in the liver, with post hepatectomy 
hypofibrinogenaemia being associated with liver dysfunction and mortality. 
Moreover, studies in rodents suggest platelets are the key source of the auxiliary 
hepatic mitogen serotonin in liver regeneration, and that serotonin infusion rescues 
impaired liver regeneration observed in thrombocytopenic mice[256].

Correction of platelet count and fibrinogen levels in patients post hepatectomy has 
not been investigated in humans, but could potentially have beneficial effects, 
although thromboembolic risks would have to be taken into account. Serotonin 
infusion has also not been investigated in humans in the context of liver regeneration, 
but has been carried out in other clinical contexts to stimulate prolactin[450], and as a 
desired effect in amitriptyline treatment of depression[451].

Non parenchymal cell modulation
In the setting of liver regeneration with significant hepatic necrosis, the role of non-
parenchymal cells may be particularly important. Macrophages clear toxic cellular 
debris, and mice deficient in macrophage colony stimulating factor 1 (CSF1) which 
promotes the maturation of macrophages have impaired liver regeneration[372]. 
Moreover, CSF1 correlates with recovery from paracetamol liver injury in patients 
with liver failure[373]. In addition to clearing metabolic debris, macrophages may in 
part act by stimulating the hepatic ductular reaction[452] and limiting fibrosis[453].

Although macrophage colony-stimulating factor-1 has not been used in humans in 
the context of liver failure and regeneration, it does have a multitude of other clinical 
applications[454].

Similarly, in rodent models at least, the bone marrow is a significant source of LSEC 
progenitor cells, which emigrate from the marrow into the bloodstream from which 
they engraft into regenerating liver, where they produce a significant quantities of the 
complete hepatic mitogen HGF, in a VEGF driven process[314,315]. Specific LSEC 
progenitor stimulation therefore offers a theoretical therapeutic opportunity but has 
not been investigated.

Modifying the proliferative response.
The characterization of the multiple cytokines, hormones and growth factors involved 
in liver regeneration has motivated investigation of means to modulate the hepatic 
proliferative response. Such approaches have involved the infusion of specific 
mitogens, or the use growth enhancing progenitor cells or their secretome and are to 
date at experimental animal model stage.

These wide-ranging experimental approaches are beyond the scope of this review, 
but a few examples provide an insight into potential avenues for the future. In a 
murine model of 85% PH, Cataldegirmen et al[455] investigated the potential 
therapeutic opportunity of blocking the Receptor for advanced glycation end-products 
(RAGE), which is upregulated in massive hepatectomy and associated with cell stress 
when binding its ligands. Blockage of RAGE pharmacologically or by transgenic 
means resulted in significant improvement in survival post massive PH[455]. In a 
mouse model of partial biliary ligation, Mangieri et al[456] report improved liver 
regeneration produced by infusion of the complete mitogen HGF. Similarly, but 
targeting the other complete mitogen pathway of the EGFR ligands, Zimmers et al[377] 
demonstrated improved liver regeneration after plasmid delivery of EGF receptor.
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In addition to the focus on individual hepatic mitogens, investigation has also been 
carried out in the infusion of whole cells[457], ranging from primary human 
hepatocytes[458], pluripotent stem cell derived hepatocyte-like cells[459], and 
mesenchymal stem cells[460]. Cell based therapies have met several obstacles 
including sourcing, immuno-compatibility, and potential malignant transformation, 
thus motivating research into potential for using the secretome of stem cells, thus 
obviating the difficulties presented by the whole cell therapies[176,461-463].

CONCLUSION
Liver regeneration is highly complex, and current understanding is based largely on 
animal and in vitro models. The likelihood that not all hepatic mitogens have been 
identified, the multitude of known ones, the complexity and incomplete 
understanding of their associated biochemical pathways, the equally complex and 
poorly understood cross talk between cell types, and our even poorer understanding 
of the factors that cease liver regeneration all suggest that a comprehensive working 
understanding of the process is improbable in the foreseeable future. Consequently, 
specific interventions to influence liver regeneration in the clinical setting are commen-
surately limited, though allow clinicians to at least optimise conditions for liver 
regeneration to occur. The implications of this in relation to the treatment of liver 
tumours are most notably applicable in the context of liver resection for malignancy, 
where assessment and optimisation of remnant liver function not only increases the 
proportion of patients eligible for treatment, but also improves patient safety. The 
increasingly sophisticated in vitro organoid models, and potential opportunities 
presented by repopulation of decellularised scaffolds may allow the creation of 
constructs that allow not only deeper understanding, but also novel therapeutic 
options.
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