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Promoter prediction<p>A new method is presented which predicts promoter regions based on atomistic molecular dynamics simulations of small oligonucle-otides, without requiring information on sequence conservation or features.</p>

Abstract

A new method for the prediction of promoter regions based on atomic molecular dynamics
simulations of small oligonucleotides has been developed. The method works independently of
gene structure conservation and orthology and of the presence of detectable sequence features.
Results obtained with our method confirm the existence of a hidden physical code that modulates
genome expression.

Background
Sequencing projects have revealed the primary structure of
the genomes of many eukaryotes, including that of human as
well as other mammals. Unfortunately, limited experimental
data exist on the detailed mechanisms controlling gene
expression; this dearth of data has largely arisen from the dif-
ficulties found in the identification of regulatory regions. Tra-
ditionally, the immediate upstream region (200-500 bps) of a
transcribed sequence is considered the proximal promoter
area, where the binding of multiple transcription factor pro-
teins triggers expression [1]. Other regulatory signals are
found in distal regions (enhancers) that, despite being very
far away in terms of sequence base pairs, can interact with the
pre-initiation complex through the chromatin quaternary
structure [1].

From a naïve perspective, the identification of promoter
regions might be considered a trivial task, since they should
be located immediately upstream (5') of the annotated tran-

scribed regions. Unfortunately, the real situation is much
more complex: on the one hand, 5' untranslated regions
(UTRs) are very poorly described, and on the other, one gene
might have several transcription start sties (TSSs) controlled
by one or more proximal promoter regions (sometimes over-
lapping) scattered along gene loci, including introns, exons
and 3' UTRs [2-6]. As a consequence, inspection of gene
structure alone does not guarantee that the promoters will be
located, and then, other signals need to be used to do this.
Unfortunately such signals are very unspecific. Thus, tran-
scription factor proteins are promiscuous and, depending on
the genomic environment and the presence of alternative
binding proteins, a given sequence can be recognized or
ignored by the target protein. More general sequence signals
also give noisy, unspecific signals. For example, the TATA box
[7], which was originally believed to be associated with nearly
all promoters, has been found to be present in only a small
proportion of them [2,4]. A more powerful promoter signal
stems from the presence of CpG islands [8-19], but even when
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present their signal is rather diffuse and unspecific. In sum-
mary, promoter detection is one of the greatest experimental
and computational challenges in the post-genomic era.

Current methods for promoter location are based on two
approaches: the use of gene structure and conservation; and
the existence of sequence profiles that might signal promoter
region. In the first case, statistical algorithms are used to find
signals of genes that locate the 5'-end and conserved regions
upstream [20]. For the second case, many sequence/compo-
sitional rules haven been used. Thus, several algorithms have
been developed to detect signals like the TATA box, CpG
islands or regions with large populations of transcription fac-
tor binding sites (TFBSs) [1,12,13,16,21-28]. Compositional
rules (from trimer to n-mer) have also been considered to
enrich the differential signal at promoters [1,12,13,21-28].
Finally, some methods have used predicted gene structure
[1,12,21,22,27-29] and its conservation across species
[1,28,29] to help their sequence-trained models to locate pro-
moters. However, despite recent progress, the performance of
all these methods is not great, especially when used to predict
promoters that are not part of canonical 5' upstream regions
[5,11,15,23].

Clearly, diffuse factors other than the specific hydrogen-bond
interactions between nucleotides and binding proteins mod-
ulate the recognition of target DNA fragments in promoter
regions. As first suggested by Pedersen et al. [30], one of
these additional factors can be the physical properties of
DNA, which control the modulation of chromatin structure,
the transmission of information from enhancers or proximal
promoters, and the formation of protein aggregates in the
pre-initiation complex. Thus, Pedersen and others have
shown how some descriptors that are believed to be related to
physical characteristics of DNA (such as DNase I susceptibil-
ity, A-phylicity, nucleosome preference, DNA stability, and so
on, up to 15 strongly correlated descriptors [31]) can help to

locate promoters in prokaryotes and, perhaps, in eukaryotes
[14,30,32-35]. Recent versions of progams like mcpromoter
[33] or fprom [1] have incorporated these parameters into
their predictive algorithms [1,5,33].

In this paper, for the first time, we explore the possibility of
using a well-defined physically based description of DNA
deformability [36] derived from atomic simulations to deter-
mine promoter location. Parameters describing the stiffness
of DNA were rigorously derived from long atomistic molecu-
lar dynamics (MD) simulations in water using a recently
developed force-field fitted to high level ab initio quantum
mechanical calculations [37]. Using exclusively these simple
parameters, whose interpretation is clear and unambiguous,
we developed an extremely simple predictive algorithm which
performs remarkably well in predicting human promoters,
even those located in unexpected genomic positions.

Results and discussion
Derivation of stiffness parameters of DNA from 
molecular dynamics simulations
The use of a recently developed force-field [37] allowed us to
perform long MD simulations (50 ns) of different DNA
duplexes from which parameters describing dinucleotide
flexibility can be obtained. Trajectories are stable with the
DNA maintaining a B-type conformation with standard
hydrogen bond pairings (Figures S1 and S2 in Additional data
file 1), no backbone deformations [37,38], and normal distri-
butions on helical parameters (Figures S3 and S4 in Addi-
tional data file 1) centered on expected values.

In contrast to assumptions in ideal rod models, DNA deform-
ability is largely dependent on sequence. For example, it is
possible to unwind (with the same energy cost) a d(CG) step
twice than a d(AC) one (see Table 1). Our analysis shows also

Table 1

Stiffness constants associated to helical deformations

Step Twist Tilt Roll Shift Slide Rise

AA 0.026 0.038 0.020 1.69 2.26 7.65

AC 0.036 0.038 0.023 1.32 3.03 8.93

AG 0.031 0.037 0.019 1.46 2.03 7.08

AT 0.033 0.036 0.022 1.03 3.83 9.07

CA 0.016 0.025 0.017 1.07 1.78 6.38

CC 0.026 0.042 0.019 1.43 1.65 8.04

CG 0.014 0.026 0.016 1.08 2.00 6.23

GA 0.025 0.038 0.020 1.32 1.93 8.56

GC 0.025 0.036 0.026 1.20 2.61 9.53

TA 0.017 0.018 0.016 0.72 1.20 6.23

Constants related to rotational parameters are in kcal/mol degree2, while those related to translations are in kcal/mol Å2.
Genome Biology 2007, 8:R263
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that some steps are universally flexible (like d(TA)), while
others are, in general, rigid (like d(AC)). However, the con-
cept of 'stiffness' associated with a step is often meaningless,
since depending on the nature of the helical deformation, the
relative rigidity of two steps can change (Table 1). In sum-
mary, flexibility appears as a subtle-sequence dependent
process that is quite difficult to represent without the help of
powerful techniques like MD simulations.

Differential physical properties of human promoters
From the analysis of helical stiffness along the human
genome (see parameters in Table 1 and Materials and meth-
ods), we detected regions with distinctive structural proper-
ties that show a strong correlation with annotated TSSs
(located using the 5' end of the human Havana gene collection
[39] in the Encode region [40]). In particular, this signal was
significantly stronger in regions located from -250 bp to +900
bp of the TSSs (that is, covering the core and proximal pro-
moter regions; Figure 1), which agrees with the particular
structural needs attributed to the correct function of regula-
tory regions. Interestingly, the differential signal found at the
genome-scale does not appear to depend exclusively on the
presence of CpG islands since the same signature is also
present (even with less intensity) in promoters with standard
CpG content (Figure 1c,d). Compared to those regions that
are located far from annotated TSSs, the structural pattern
measured for regulatory regions is quite complex: high flexi-
bility near TSSs is required for some parameters, while rigid-
ity is needed for others (Figure 1). Thus, our results suggest
that the pattern of flexibility needed in promoter regions is
quite unique, and general concepts like 'curvature propensity'
or 'general flexibility' are too simplistic to capture the real
average physical properties of promoter regions. We can
speculate that the need for proper placement of nucleosomes,
combined with the specific structural requirements of multi-
protein complexes, favor the presence of sequences with
unique deformation properties in the promoter region (espe-
cially in the core and proximal regions), which can be meas-
ured computationally.

Using structural parameters for promoter prediction: 
ProStar
Taking advantage of the specific pattern of flexibility of pro-
moter regions described above, we developed a new predic-
tive algorithm called ProStar (for Promoter Structural
Parameters; see Materials and methods), which uses only
descriptors derived from physical first-principle type calcula-
tions (Table 1) to locate promoter regions (including strand
orientation). Our method is conceptually and computation-
ally simpler than any other general promoter prediction algo-
rithm as it does not require any additional information, such
as conservation of gene structure across species, presence of
CpG islands, TATA-boxes, Inr elements or any other
sequence specific signals. Due to its simplicity, ProStar can, in
principle, be applied even in cases where promoters are
located in unusual genomic positions.

In order to evaluate the performance of our methodology in
the context of other promoter predicting approaches (see
Materials and methods and Table S1 in Additional data file 2),
we compared our results with those derived from other
reported promoter predictors, following the Egasp workshop
procedures [5,41] and using the annotation of the Havana
team [39] for the Encode regions [40] as the reference set. In
order to cover the whole spectrum of prediction methodolo-
gies, we selected a few representative procedures mainly
based on the conservation of gene structure (fprom [1], firstef
[13], dpf [12] and nscan [29]), the identification of CpG
islands (eponine [22], cpgprod [16] and dgsf [21]), composi-
tional sequence biases (mcpromoter [26,33]) and other crite-
ria (nnpp [24] and promoter2.0 [25]). The results of these
comparisons show that despite its simplicity, ProStar per-
formed better than most of the other methods and was similar
to two algorithms that use gene structure for prediction (fpom
and firstef), and only nscan, which is based also on multi-spe-
cies homology, provided more accurate results for the refer-
ence set of genes (Figure 2, Table 2 and Figure S5 in
Additional data file 1). Global analysis of performance using
Bajic's metrics [42] (see Materials and methods) showed that
the predictive power of our method is only improved by nscan
(Table 2 and Table S2 in Additional data file 2). Furthermore,
when the calculations used to derive the results shown in Fig-
ure 2 are repeated using a more restrictive tolerance test
(window size D = 250; see Materials and methods), the supe-
riority of ProSart with respect to most of the other methods
was maintained (Figure S6 in Additional data file 1) in most
regions of a 'proportion of correct predictions (PPV)/sensitiv-
ity (SENS)' map, demonstrating the robustness of our
method. Finally, it is worth to comment the good perform-
ance of ProStar, that only uses simple dinucleotide parame-
ters, compared to complex methods based on n-mer
compositional rules (see Materials and methods). Clearly, the
richness of the six-dimensional descriptors obtained for each
dinucleotide by the MD simulation explains the success of our
simple approach.

Interestingly, when the analysis is performed for a subset of
TSSs of non-coding genes (Figure 2, Table 2 and Figure S6 in
Additional data file 1) the performance of all the methods
decreases, but ProStar seems more robust than the others. In
fact, the analysis of these data shows that, for this subset of
genes, ProStar performs better than any method that uses
sequence compositional bias, location of known TFBSs, or the
presence of TATA-box signals or CpG islands and similar or
better than those relying on the presence of orthologs as
shown in Bajic's metrics (Table 2).

Testing ProStar against non-trivially identified 
promoters
Our method works better when predicting promoters associ-
ated with CpG islands, but the decrease in performance for
promoters associated with non-CpG islands is similar to that
of other methods, including those that are based on the main-
Genome Biology 2007, 8:R263
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tenance of the gene structure (Figure S7a in Additional data
file 1). If a conservative definition of a non-CpG associated
promoter is used (no CpG island detectable at less than 5 Kb
from the promoter), the performance of ProStar decreases,
but is still better than that of most methods (Figure S7b in
Additional data file 1), although even in this case the method
is not competitive with algorithms based on gene structure
conservation. In any case the performance of ProStar for
genes not associated with CpG islands is quite reasonable,
confirming that the need for specific elastic properties at pro-
moter regions is a general requirement and not restricted to
the presence of CpG islands or diffuse TSSs. It is also worth
noting that ProStar performs better than methods specifically
tuned to capture promoters associated with CpG islands
when the analysis is restricted to Havana annotated genes
with CpG islands (data not shown). Finally, the performance
of ProStar does not decay for genes containing a TATA box

(Figure S8 in Additional data file 1), which are the easiest to
detect from simple sequence signals.

Once we tested the performance of ProStar to reproduce pro-
moters annotated by the Havana group, we explored the abil-
ity of the method to locate promoters reported in massive
Cage experiments [4], where promoters were often found in
unexpected locations. To increase the challenge, we analyzed
only Cage-detected promoters falling inside transcribed
regions (including exons and 3' UTR regions) of annotated
Havana genes that are not regulated by a CpG island. Our
results demonstrate that despite the method not being
trained with this type of promoter, it performed quite well
(Figure 2, Table 2, Figures S6 and S9 in Additional data file 1),
in fact improving the results obtained by other available
methods (Table 2).

Measurement of the six 'average' helical force-constantsFigure 1
Measurement of the six 'average' helical force-constants. (a,c) Rise, shift, and slide; (b,d) twist, tilt, and roll. Results are shown for the complete training 
set of promoter regions (a,b) (see Materials and methods) and for the subset with no CpG island (c,d). Sequences are aligned at point +1 by its annotated 
TSS. All values are centered at zero (the background values).
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ProStar calculations were repeated throughout the entire
human genome using TSS positions according to RefSeq
genes. The results are summarized in Figure S10 in Addi-
tional data file 1 and confirm the quality of our predictions at
the genome level. Please note that some caution is needed in
the interpretation of these results since the apparent better
performance of our method at the genome level compared
with that obtained using Encode regions can be simply due to
the noise in the first dataset.

The final extreme challenge for ProStar was to find promoters
that are not detectable by methods based on sequence conser-
vation along orthologs or on the maintenance of gene struc-
ture. For this purpose, we selected a subset of 1,203 annotated
promoters of non-coding genes that are found as false nega-
tive by nscan, fprom and firstef. We should clarify that this
comparison will give no information on ProStar with respect
to 'state of the art' methods based on conservation of gene
structure and orthology, but does give some indication of the
ability of other methods (including ProStar) to capture pro-
moters located in anomalous positions. The results shown in
Figure 3 demonstrate that ProStar can recover a significant
fraction of these promoters with a signal to noise ratio supe-
rior to all methods based on the differential genomic content
of promoters and on the use of powerful discriminant algo-
rithms. This suggests that ProStar is a powerful tool for pro-
moter determination and that it could be a good alternative
for the location of promoters of fast evolving genes or those
appearing in anomalous positions that violate the traditional
concept of gene structure.

Conclusion
Atomic MD simulations, based on physical potentials derived
from quantum chemical calculations, yield helical stiffness
parameters that reveal the complexity of the deformation pat-
tern of DNA. The use of these intuitive parameters at the
genomic level allowed us to define promoters as regions of
unique deformation properties, particularly near TSSs. Tak-
ing advantage of this differential pattern, we trained a very
simple method, based on Mahalanobis metrics, that is able to
locate human promoters with remarkable accuracy. Our
results are better than the ones of methods based on the use
of large batteries of descriptors, such as sequence signals,
empirical physical descriptors, and complex statistical pre-
dictors (neural networks, hidden Markov models, and so on).
The overall performance of ProStar is similar and in some
cases even better than that of methods based on the conserva-
tion of gene structure, methods that might not be so accurate
in the location of promoters of fast evolving genes, or those
located in unusual positions. Taken together, our work
reveals that even in complex organisms like human, there is a
hidden physical code that contributes to the modulation of
gene expression.

Materials and methods
Molecular dynamics simulations
In order to have enough equilibrium samplings for all the ten
unique steps of DNA, we performed MD simulations of four
duplexes containing several replicas of every type of base step
dimer (d(GG), d(GA), d(GC), d(GT), d(AA), d(AG), d(AT),
d(TA), d(TG) and d(CG)): d(GCCTATAAACGCCTATAA),
d(CTAGGTGGATGACTCATT), d(CACGGAACCGGTTC-
CGTG) and d(GGCGCGCACCACGCGCGG). All duplexes were

Table 2

Global ASM performance index obtained by considering Bajic's muti-metric analysis for different sets of genes

CDS_gene no_CDS_gene noCpG no_CpG_CAGE

ProStar 2.78 2.00 6.56 2.56

cpgprod 8.22 7.89 7.22 7.11

dgsf 9.56 9.11 9.11 7.00

dpf 6.78 7.00 4.89 5.67

eponine 5.56 6.11 8.33 3.78

firstef 4.00 4.00 5.56 3.78

fprom 3.56 3.22 2.78 9.78

mcpromoter 5.56 5.33 4.89 4.89

nnpp 10.44 10.33 9.44 8.89

nscan 1.56 2.89 1.22 6.89

promoter2.0 10.67 10.56 8.89 9.33

proscan 9.33 9.56 9.11 8.33

Global ASM performance index obtained following Bajic's muti-metric analysis (see Materials and methods) for different sets of genes: the 2,641 TSSs 
from the Havana set (column CDS_gene), the 1,764 TSSs of non-coding genes from the Havana set (column no_CDS_gene), the 1,751 TSSs of the 
Havana set that do not overlap any CpG island (column noCpG), and the collection of 1,086 Cage TSSs not associated with CpG islands 
(no_CpG_CAGE). In each case the method providing the best results is shown in bold. Note that ProStar is the best in the two most difficult 
categories and the second best over the entire set of genes.
Genome Biology 2007, 8:R263
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created in the standard B-type conformation, hydrated with
around 10,600 water molecules, and neutralized by adding a
suitable number of Na+ ions. Neutral hydrated systems were
then optimized, thermalized and pre-equilibrated using our
standard protocol [43,44]. The structures obtained at the end
of this procedure were then re-equilibrated for an additional
2 ns. The snapshots obtained at the end of this equilibration
were used as starting points for 50 ns trajectories performed
at constant temperature (298 K) and pressure (1 atm) using
periodic boundary conditions and Ewald summations [45].
Simulations were carried out using SHAKE [46] on all bonds
connecting hydrogens and 2 fts time steps for integration of
Newton equations of motions. TIP3P [47] was used to repre-
sent water, while PARMBSC0 [37,48,49] was used to repre-
sent DNA.

Trajectories were manipulated to obtain the stiffness matrix
(Ξ; equation 1) representing the deformability of a given step
along rotations (twist, roll and tilt) and translations (rise,
slide and shift) from equilibrium values. For this purpose we
determined the oscillations of all these parameters, building
a covariance matrix whose inversion led to the stiffness
matrix (equation 1) [36,50-53], which is simplified for each
dinucleotide step as a six-dimensional vector κ = (ktwist, kroll,
ktilt, krise, kshift, kslide) by neglecting the out-of-diagonal terms
in the stiffness matrix (equation 1). Note that each of these
elements (ki) is the force-constant associated with the distor-
tion along a given helical coordinate:

Results of performance comparison for the Encode region between ProStar and other programs (Table S1 in Additional data file 2) using a window size D equal to 1,000 (see Materials and methods)Figure 2
Results of performance comparison for the Encode region between ProStar and other programs (Table S1 in Additional data file 2) using a window size D 
equal to 1,000 (see Materials and methods). Results obtained compare the predictive power with (a) a subset of 885 Havana protein coding genes, (b) a 
set of 1,764 non-coding genes, and (c) a set of 1,086 annotated TSSs from a Cage data set that falls inside non-CpG island coding genes (see Materials and 
methods). Squares indicate methods based on gene prediction (exons, intronic signals, and so on), and other methods are represented with circles.
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where kB is Boltzman's constant, T is the absolute tempera-
ture and Ch is the covariance matrix in helicoidal space (for a
given base step pair) obtained from the MD samplings.

Datasets
ProStar was trained using 5' ends of protein coding genes
annotated by the Havana group [39] in the human Encode
[40] region as a TSS set. According to Egasp workshop rules
[5], the training procedure was restricted to 13 of the 44
Encode regions (see performance test section). TSS and
strand recognition are trained and processed independently.
ProStar requires a sequence with a minimum length of 500
nucleotides for TSS identification (see TSS prediction sec-
tion). This size is extended to 1,800 nucleotides for strand
prediction (see Strand prediction section).

Encode regions and annotated data and predictions were
downloaded from the Egasp ftp directory [54]. We used
version00.3_20may [55] of the Havana annotation and
'submitted_predictions' of the
egasp_submissions_20050503 directory [56] as predicted
TSSs (Table S1 in Additional data file 2). The number of
Havana TSSs that fall inside the Encode region is 2,641, but
only 885 (34%) are coding genes. Coding genes are those with
annotated start and stop codon signals; the others are taken
as non-coding.

In addition to Egasp test sets, we analyzed the performance of
our methodology using the selected sets of TSSs more difficult
to predict (as TSSs on unexpected positions or TSSs belong-
ing to genes with special particularities). These sets are a par-

ticular subset of 1,764 TSSs of Havana annotated non-coding
genes (67% of Havana TSSs), 1,751 TSSs of coding and non-
conding genes without upstream CpG islands (66% of the
Havana set), 2,255 TTSs missing a TATA-box (85%), and the
1,086 unexpected TSSs positioned inside introns or exons of
coding genes without CpG islands, as found in Cage predic-
tions. CpG islands were mapped according to the UCSC
database [57,58]. Since CpG islands are supposed to be the
strongest promoter signals, this set represents an important
challenge for our method. TATA-boxes were scanned in the
proximal 50 nucleotide upstream region relative to the TSS,
using the TATA position weight matrix [59] and the standard
cut-off (-8.16). Cage predictions [60] were downloaded from
Egasp [54] database. Those overlapping any Havana coding
and non-coding genes (without a CpG island in the upstream
region) were selected. Standard Egasp rules were used also
for these challenging sets.

Training
We trained our method for promoter recognition with a col-
lection of 500-nucleotide sequences that comprised intervals
of 250 nucleotides upstream and downstream of the training
TSS set. As negative set, we collected 500-nucleotide
sequences from transcribed regions of Havana coding genes.
We made sure that positive and negative sequences did not
overlap. For the recognition of the strand, we trained our
method with a collection of DNA sequences that comprised
(for every TSS in the positive training set) the 1,800 nucle-
otide DNA sequence ranging from 900 bp upstream to 900 bp
downstream of the same TSS. The reverse complementary
sequences of the positive set were taken as a negative set.

Computation of DNA physical properties
Using our MD derived parameters (see Molecular dynamics
simulations section and Table 1), we can describe any DNA
sequence of size n as a six-dimensional deformation vector v
= (twist, tilt, roll, shift, slide, rise). For a given deformation
we sum the values associated with every dinuecleotide step in
the sequence and divide the total by n - 1. For example, the
twist deformation score for the sequence ACGC would be
(0.036 [AC] + 0.014 [CG] + 0.025 [GC])/3 = 0.025. The six-
dimensional vector of the same sequence would then be
v(ACGT) = (0.025, 0.033, 0.022, 1.200, 2.547, 8.230).

Transcription start site prediction
We used Mahalanobis distance [61] to classify 500-nucleotide
DNA sequences as belonging to the promoter class (kx) or
non-promoter class (ky). Every class is defined by a specific
dataset of sequences (see Training set section). Computing
the physical properties of every sequence of the dataset, we
conclude with a set of vectors for every class (X for class kx and
Y for ky). The Mahalanobis distance DM between the set of
vectors X and Y is defined as:

DM(X, Y) = (μx - μy)t C-1(μx - μy) (2)

CC measurement (see Materials and methods) for the subset of Havana TSSs (1,203) of non-coding protein genes in the Encode region, unrecalled by nscan, fprom and firstefFigure 3
CC measurement (see Materials and methods) for the subset of Havana 
TSSs (1,203) of non-coding protein genes in the Encode region, unrecalled 
by nscan, fprom and firstef.
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where μx and μy are the average vectors of the sets X and Y and
C-1 is the covariance matrix of XUY. The decision function g of
a specific 500-nucleotide DNA sequence with a descriptor
vector s to a class ki (with i = <x, y>) is defined as:

where . When g(s, kx) >

g(s, ky) we should classify our sequence as a promoter. Even

so, we can modulate the confidence of our decision according
to a normalized score defined in equation 4. If the score is
greater than a specific threshold (set to +1 by default), then
the sequence is flagged as a promoter.

Strand prediction
ProStar has been trained to recognize upstream/downstream
signal asymmetry of predicted TSSs using a statistical dis-
criminator based on Mahalanobis metrics (see last section)
and on the differences in physical properties between the 0→-
900 nucleotide and the 0→+900 nucleotide regions. The
ProStar strand recognition module was trained using 1,800-
nucleotide sequences with a TSS in the +900 position as the
positive set. The reverse complement of the positive set
sequences was used as the negative set.

Prediction clustering
As observed using experimental approaches [4], TSSs have a
dominant position, but many closely related alternative sites
may be found around them. In consequence, every TSS may
produce multiple close predictions. To clarify the annotation,
our algorithm allows the user to define a window size (set as
1,000 nucleotides by default) where all predictions will be
unified in a single annotation. Accordingly, for a given win-
dow W of a specific strand q, we define P(W, q), the set of
positions p falling inside W with score(p, q) ≥ c (where c is the
user-defined minimal cutoff). Predicted dominant position p'
of the window W is computed as:

Performance test
The training and performance of ProStar followed the proto-
col described [5] for the Egasp workshop [54,56]. Thus, pro-
tein coding genes annotated by the Havana group from 13 of
the Encode regions were used for training, while the entire set
was used in tests (tests performed using only regions that
were not considered in the training give very close results;
Table S2 in Additional data file 2). Also following the Egasp
rules, true positives (TPs) are considered when the predicted

TSS is in the same strand and at a maximum distance of D
nucleotides from the annotated TSS (as in Egasp, D = 1,000
or D = 250 is used here). If the annotated TSS is missed using
this criteria, we label the prediction as a false negative (FN).
Every other prediction falling on the annotated part of the
gene loci in the segment [+D+1, EndOfTheGene] counts as a
false positive (FP). A true negative (TN) is the sum of posi-
tions falling on the gene loci segment [+D+1, EndOfTheGene]
that do not overlap accepted true positive positions or any
false positive prediction.

Sensitivity (SENS), proportion of correct predictions (PPV)
and correlation coefficient (CC) are computed as:

In addition to the standard performance measures noted
above, we also consider the average mismatch of predictions
(AE) [5] and other extended metrics suggested by Bajic [42],
including specificity (SPEC), Yule's association coefficient
(Q), second prediction quality coefficient (K2), and general-
ized distances from ideal predictors (GDIP1, GDIP2, GDIP3).
We also include in our analysis the averaged score measure
(ASM), which combines many 'independent' descriptors to
provide an overall relative measure of the quality of a predic-
tive method with respect to others (Table S2 in Additional
data file 2; Additional data file 3).

In addition to the methods checked in the Egasp experiment,
we performed predictions using programs that were not con-
sidered in the Egasp experiment, but which are publicly avail-
able. In these cases we used the corresponding web-based
tool or downloadable script with default parameters (Table S1
in Additional data file 2). When possible, we modified these
default parameters in the input to obtain PPV/SENS curves
(see Results and Figure S6 in Additional data file 1) instead of
a single prediction. All methods were evaluated following the
same thresholds for annotation of positive and negative pre-
dictions (see above).

Web server
ProStar is developed in C and compiled on a Linux machine.
An unrestricted user-friendly version of the program is pub-
licly available through our web server [62]. Strand prediction
of recognized TSSs is an optional feature. Goodness of predic-
tions may be tuned using a threshold (set to 1.0 by default)
that may be increased to improve the proportion of correct
predictions or decreased for sensitivity. Finally, the user may
choice cluster size (see Prediction clustering section), which is
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set to 1,000 by default. Clustering may be avoided by setting
this size to small values (for example, 1).

Abbreviations
ASM, averaged score measure; CC, correlation coefficient;
FN, false negative; FP, false positive; MD, molecular dynam-
ics; PPV, proportion of correct predictions; SENS, sensitivity;
SPEC, specificity; TFBS, transcription factor binding sites;
TN, true negative; TP, true positive; TSS, transcription start
sties; UTR, untranslated regions.
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data file 2 contains a list of promoter prediction methods
described in this paper and a detailed evaluation of their per-
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performance test and explains the averaged score measure
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