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Abstract: The prevalence and severity of natural hazards pose a serious risk to food systems, under-
mining their function to provide food security and improved nutrition. The impact of such events is
extensive, and the level of damage and recovery significantly depend on ecosystem services, includ-
ing their own resilience capacity. This paper provides evidence that the role, value, and utilization
of local ecosystem services are essential for food system resilience and for food security in parts
of the world where high vulnerability and lack of coping capacity exist to combat climate change.
Patterns of ecosystem services-based strategies were revealed that can be introduced to cope and
adapt to climate-related natural hazards at the smallholder food system level. The study suggests that
food system diversification, technological innovations and nature-based practices, and traditional
and indigenous knowledge operationalized across the food system components have a potential for
sustaining smallholder resilience in the face of natural hazards.

Keywords: ecosystem services; resilience; natural hazards; food system; smallholder farming

1. Introduction

There is a paucity of research that describes the linkages between ecosystem services,
food systems, and food security for small-land owners and fisheries. Furthermore, how
food systems can be more resilient has become more important on the list research agenda
items in the time of amplitudinous natural hazards. The imminent loss or damage to
agriculture, livestock, fishery, and forestry originating from nature is compounded by
global and local market distortions, political and social upheavals that constrains the
resiliency of food systems, and their ability to deliver safe and sufficient food. At the
same time, enhancing food systems can decrease poverty by creating jobs and sustainable
livelihoods [1–3].

Natural hazards significantly impact the agri-food sector, leading to decreased crop
yields and livestock productivity, as well as declines in fisheries and agroforestry in areas
already vulnerable to food insecurity. Subsequently, these hazards affect food diversity, the
nutrient density of foods, food safety, and food prices [4,5].

The Food and Agricultural Organization (FAO) determined that the cost of natural
disasters, between 2008 and 2018, on the agricultural sector of low and lower-middle income
countries was greater than USD 108 billion due to damaged or lost crop and livestock
production. This cost was particularly detrimental to the livelihoods of smallholder and
subsistence farmers, pastoralists, and fishers [6].

The literature on food systems resilience has generally concentrated on the responses
of food systems to climate change [7–10]; natural hazards [11,12]; socioeconomic crises,
e.g., due to the COVID-19 pandemic [13–18]; and implications for interventions to build
resilience [19–22]. There is a growing number of studies on food system resilience in rural
and marginalized communities and neglected territories that focus on the role of natural
resources [23–25]. Most of the studies on food systems resilience have focused on the
measurement or assessment of livelihood, community resilience [26–31], determinants of
livelihood resilience [20,32,33], and the linkages between sustainable agricultural practices
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and resilience [33–35]. However, less attention has been given to the functional properties
of ecosystem services and their contribution in offsetting the effects of climate-related
natural hazards at the smallholder food system level.

There is a growing interest in promoting ecosystem services-based responses to climate-
related natural disasters that benefit smallholder farmers [36–38]. As an example, forests
contribute to resilience through the structural defense against wind and soil erosion, water
regulation, and provision of timber and non-timber forest products [39]. Coastal plants,
such as mangrove, and salt marshes reduce tidal bore and erosion from storms and in-
flowing tides, while diminishing the saltwater intrusion and sediment deposition with
organic matter [40]. Leading-edge review papers provide comprehensive scientific-based
evidence on the potential of ecosystems and their services to contribute globally to disaster
risk reduction and climate change adaptation [40–43].

At the local level, smallholder farmers’ ability to utilize ecosystem services in and
around farms helps them balance ecological and socioeconomic trade-offs, and thus support
local food systems to cope with adversities [39,44]. Many smallholders are already imple-
menting practices that maintain the food system while ensuring the continued provision
of ecosystem services on which their household’s food security, income, and well-being
depend [45–49]. The implementation of these practices results in a higher capacity of their
food system to resist, cope with, and/or recover from extreme events [50,51]. However,
syntheses of these experiences are still lacking.

In response, we provide an analysis and descriptive details of case studies as examples
of ways in which provisioning, regulation and maintenance, and cultural ecosystem services
are being embedded in coping strategies across selected smallholder food systems located
mainly in the tropical and subtropical regions. These regions have a significant number of
small farms that contribute substantially to the production of most food commodities and
experience the highest frequency of natural hazards related to climate change [6,52]. These
selected case studies are used to illustrate promising approaches, lessons learned, and
remaining challenges on how to increase the resilience of agri-food systems abetting the
benefits provided by nature. Thus, the aim of this article is to demonstrate how ecosystem
services can affect the food security of smallholder farmers when exposed to climate-related
natural hazards by increasing the resiliency of food systems.

2. Materials and Methods

This narrative review is based on published studies in English between 2005 and 2021
given the relatively recent emergence and consolidation of ‘ecosystem services’ and ‘food
system resilience’ as a defined research area. The timeframe was determined based on
the landmark Millennium Ecosystem Assessment (MEA), being a milestone in ecosystem
services research, summarizing past ecosystem change and assessing the future of human
well-being [53]. The inclusion of this period captures the most recent literature in the
research field, reflects current trends in resilience knowledge, and provides useful and
applicable sources of some important case studies of food system resilience in the context
of natural hazards. All titles and abstracts were screened by one author (Y.V.) against the
study PI(E)COS (population, intervention/exposure, comparison, outcome, and study
design) criteria to ensure eligibility for inclusion (see Table S1). If it was unclear from the
abstract alone whether an article was eligible for inclusion, the full text was reviewed. The
bibliographies of the included studies were also screened for additional articles.

The ScienceDirect, Semantic Scholar, and SAGE databases were used as the primary
sources to identify publications (see Figure S1). The following syntax was used for this
search: TITLE-ABS-KEY ‘food system(s) resilience’ AND TITLE ‘ecosystem services’ AND
‘natural hazards’ or ‘shocks’. Two researchers (Y.V. and D.T.) independently reviewed titles.
Abstracts identified from the literature searches and reference list checking were imported
to EndNote, and duplicates were removed. The titles and abstracts of all articles retrieved
were independently screened for inclusion. In case of disagreement, consensus on which
articles to screen full-text was reached by discussion. Next, Y.V. and D.T. independently
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screened full-text articles for inclusion. Disagreements or uncertainty about eligibility were
resolved through discussion based on the study design and analysis methods.

Accordingly, we reviewed the scientific literature on the relationship between ecosys-
tem services and food systems, and identified case studies as examples for how ecosystem
services support small-scale subsistence farmers, pastoralist, and fishers with low produc-
tivity. Cases include factors related to shocks and stresses triggered by flooding, landslides,
windstorms, droughts, extreme temperatures, and wildfires. The selected case studies
allow tracking ecosystem services-based initiatives that are deemed to improve the ca-
pacity of smallholders to cope with extreme events, thus revealing both the interventions
implemented and the outcomes generated.

3. Results and Discussion
3.1. Ecosystem Services Implications for Food System Resilience

Resilience thinking has its origins in ecology [54]. However, resilience thinking has
been increasingly adopted as a generic approach to the behavioral understanding of social-
ecological systems, which comprise a nexus of food production, processing, distribution,
consumption systems, and ecosystem services [55,56].

Ecosystem services are the ecological characteristics, functions or processes that di-
rectly or indirectly contribute to human wellbeing: that is, the benefits that people derive
from functioning ecosystems [53,57]. According to Common International Classification
of Ecosystem Services (CICES) [57] provisioning services are the material and energetic
outputs from ecosystems from which goods and products are derived. The regulation and
maintenance category includes all the ways in which ecosystems can mediate the environ-
ment in which people live or depend on in some way, and benefit from them in terms of
their health or security, for example. Finally, the cultural services category identified all
the non-material characteristics of ecosystems that contribute to mental and intellectual
well-being. In the context of ecosystem services, resilience is defined as the capacity of
socio-ecological systems to continue providing a desired set of ecosystem service flows in
the face of unexpected shocks and ongoing changes [58].

According to Tendall et al. [59], food system resilience is the capacity over time
of a food system and its units at multiple levels to provide sufficient, appropriate, and
accessible food to all in the face of various and unforeseen disturbances. In this context,
“sufficient” means having enough food of nutritional quality; “appropriate” addresses food
that is culturally, technically, and nutritionally appropriate; and “accessible” means that
the food is physically and economically available to the population. These components
represent the FAO dimensions of food security: availability, access, and utilization [60].
Whereas sustainability can be seen as an overall goal and has implications for food security
for future generations, resilience is a means to achieve sustainability during change and
disturbances [59]. Yet, the concept of food system resilience is less well-studied than food
systems sustainability [34,55,61].

Food system resilience is closely related to ecosystem services. As climate distur-
bances increasingly lead to crop failures from floods, droughts, and disease, they are often
exacerbated by an insufficient support for regulating ecosystem services. For example,
vegetation cover is one of the factors that determines the risk and intensity of flash floods
as it influences the water runoff as a natural process. The ecosystem function in this case
is water flow regulation (slowing the passage of surface water). If people derive a benefit
from this function, then that ecosystem function is regarded as a service (flash flood pre-
vention and control). The main beneficiaries of this ecosystem service are different lowland
communities that profit from a mitigation of flood peaks. The resilience value of this service
can be described as the protection of livelihoods and can be defined, for example, by the
calculation of post-flood biomass yield increment in terms of crop production.

The general consensus on the characteristics of the resilient social-ecological system
include [62–64]: good ecological health, heterogeneity in ecological composition, and social
livelihoods (diversity of properties, and activities, pathways, and flexibility to nimbly move
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between these [65]; resource use efficiency [66]; the existence of opportunities, resources,
and information for learning; the acquisition of skills and knowledge by society [67]; effec-
tive institutions [68]; and social cohesion and the capacity and autonomy for democratic
self-organization [69]).

Although all food systems have the same essential attributes, they vary significantly in
different regions of the world and hence have different interactions with natural resources.
How natural resources underpin all ecosystem activities and how these activities impact
natural resources vary considerably from case to case [70,71]. This implies that the avail-
ability and variability of ecosystem services can be determinants of food systems resilience.
We summarized these key factors into a framework that distinguishes the different aspects
of resilience (see Table S2).

Five capacities of resilient food systems to manage climate changes and shocks to
the ecosystem are considered essential [72,73]. These include the capacity to (i) anticipate
the need for new approaches, (ii) prevent the impact of shocks, (iii) absorb the shocks for
maintaining a functioning food system, (iv) adapt to an evolving risk, and (v) transform the
current food system to make it sustainable [11]. These capacities for resilience require many
of the same qualities of social and natural systems [74]. The definitions of these capacities
with examples of delivered ecosystem services are given in Table 1.

Table 1. Ecosystem services contribution to food systems resilience.

Capacity Definition Ecosystem Services
Implications

Examples of
Contributions to Food

System Resilience

Related Indicators for ES
Delivered

Anticipate

The capacity in creating
systems that can
maintain its state in
response to the
unexpected crises.

Lifecycle maintenance,
habitat, and gene pool
protection; pest and disease
control; regulation of soil
quality; water conditions;
atmospheric composition
and conditions.

Pollination and seed
dispersal; weathering
processes and their effect
on soil quality; regulation
of the chemical condition
of water by living
processes; micro and
regional climate regulation.

Pollinators’ species richness;
host-species (trees);
abundance number of
beehives, areal coverage of
vegetation (hedgerows,
flower strips, high nature
farmland); soil organic
matter content; carbon
sequestered; humidity index.

Prevent

The capacity of a
system and its
properties to cushion
against stresses
and shocks.

Regulation of baseline
flows and extreme events.

Buffering and attenuation
of mass movement; control
of erosion; hydrological
cycle and water flow
regulation—flood control
and coastal protection;
wind protection,
fire protection.

Density of hedgerows;
percentage of soil cover; soil
erosion risk; retention
capacity of water in
agricultural soils;
share of agroforestry
within floodplains.

Absorb

The capacity of change
that a system can
undergo while still
retaining its function
and structure.

Mediation of wastes or
toxic substances of
anthropogenic origin
by living and
non-living processes).

Bioremediation,
filtration/sequestration/
storage/accumulation by
micro-organisms, algae,
plants, and animals;
dilution by atmosphere,
freshwater and marine
ecosystems; smell
reduction; visual screening.

Concentration of pollutants
in soil in agricultural areas;
hedgerow length.
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Table 1. Cont.

Adapt

The capacity of
learning, combining
experience and
knowledge, and
adjustments to
external drivers.

Cultivated terrestrial and
aquatic plants for nutrition,
materials, or energy; reared
animals for nutrition,
materials or energy e.g.,
aquatic; wild plants and
animals; genetic material
from plants, algae, fungi,
animals; water used for
nutrition, materials
or energy.

Increased food and
nutrition security and
profits; use of
agro-ecologically suitable
high yielding varieties;
greater food diversity of
diets and micronutrient.

Yields of food and feed crops;
livestock data; wild game
population estimates; energy
from manure treatment
systems; volume of
water bodies.

Capacity Definition Ecosystem Services
Implications

Examples of
Contributions to Food

System Resilience

Related Indicators for ES
Delivered

Transform

The creation of a new
system through making
a fundamental change
of its characteristics
and actions when the
initial state is not
bearable anymore.

Mineral/non-mineral
substances or ecosystem
properties used for
nutrition, energy (wind,
solar, geothermal); physical,
experiential, intellectual,
and representative
interactions with
natural environment.

Diversified income sources
buffer against climate
fluctuations; switch to
renewable energies,
curbing demand for high
energy use technologies.

Number of hunting licenses;
number of scientific studies
on agro-ecosystems;
cropland or grassland in
protected agricultural
areas; alternative
energy production.

Based on [21,75,76].

The capacity of ecosystem services to contribute to food system resilience under
external disturbances [77,78], such as extreme weather conditions, has been previously
described and presented in Supplementary Materials (see Table S3).

Determining the valuation of ecosystem services (by amount, type, source, etc.) is
essential to scale food system resilience and inform resilience policy. Mafongoya et al.
developed indicators to identify and quantify ecosystem services in relation to food system
sustainability and resilience, focusing on the group and classes of ecosystem services. [79].
In addition, several multiservice assessment models have been developed to provide
accessible, quantitative assessments of ecosystem services (e.g., InVEST [80], LUCI [81],
and ARIES [82]). However, while promising, due to limited available data, these models do
not comprehensively characterize cultural ecosystem services that support the health and
well-being of people having access to them nor reduce their susceptibility to experience
harm [83]. It is an evidence-based concept that direct contact with nature supports the
mental and physical health of people, including the spiritual experience and sense of place
within societies [84,85]. This service provided by ecosystems is particularly important
considering the social and health impacts of natural hazards.

The above analyses show that all categories of ecosystem services and their functional
properties are relevant for resilience through advancing coping and adaptive capacities.
The provisioning services mainly reduce the vulnerability of smallholder farmers by ensur-
ing food and access to safe drinking water, raw materials, and medicinal resources [86,87].
A global study on the economic contribution of wild foods to rural livelihood revealed
that 77 percent of households harvest wild food, which represents an important source of
income generation and food security [88]. The regulation and maintenance of ecosystem
services help to buffer the disaster-related impacts using mechanisms of water purifica-
tion and waste treatment, air quality maintenance, soil erosion control, flood protection,
climate regulation, pest and disease regulation, pollination, and regulation of the fre-
quency and intensity of natural hazards’ flow while enabling the richness of provisioning
services [89,90]. Cultural ecosystem services are considered to support the health and
well-being of people having access to them and, with this, reduce their susceptibility to
experience harm [40,91,92]. As an example, an Indigenous Fijian community revealed
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a strong sense of belonging and social identity with the land, river, and ocean. The use
of ecosystem services is not only vital for maintaining livelihood security but is equally
important to the existence of their cultural identity, helping villagers adapt to the adverse
impacts of climate change [93].

Despite the comprehensive studies on ecosystem services and their functions in recent
years, there remains a lack of practical understanding about the variety of stakeholders,
their food system vulnerabilities, and perceptions and preferences over different types of
ecosystem services against climate change-induced natural hazards, especially in natural
and semi-natural rural areas [94–96]. The following section illustrates examples of how
resilience interventions are prioritized based on existing agri-food activities and available
ecosystem services.

3.2. Empirical Illustrations of Integrating Ecosystem Services to Advance the Smallholder Farmer
Food Systems' Resilience

Having a resilient food system enhances the capacity to respond to adverse
events [15,97,98]. One of the major strategies to improve the resilience of food systems is
to transform current input-intensive, monoculture-dominated cropping systems into tem-
porally, spatially, and functionally diversified agroecosystems [78,98–100]. However, this
transition must be context dependent [29,101] and may not be transferrable across sectors,
since most analysis and assessments have compared resilience in the same country or re-
gion with similar natural, institutional, and socioeconomic contexts [102,103]. A screening
between different types of food systems, ecosystems, and climate-related natural hazards
would help in the understanding of the resilience prerequisites and reveal patterns of
ecosystem services-based strategies that can be introduced to cope and adapt to climate
change. Thus, we explored the influence of the socioeconomic and natural context on the
smallholder food system resilience to distinguish types of interventions. To maintain the
level of detail of information contained in several case studies and allow for generalizability,
the empirical data were analyzed and structured according to several predefined themes
within the resilience framework: study location, principal food systems, and related ecosys-
tems services; natural hazards; and the choice of resilience interventions and its subsequent
or anticipated effect on the food system/farm/region (see Table S4).

Whereas the case studies outlined in Table S3 differ in their research focus and method-
ological approaches, there were patterns about the impacts of nature-related shocks and
stresses on food systems and implemented resilience strategies. Nature-related extremes
considered in these examples ranged from major drought and flood events to devastat-
ing storms across the word. These studies identified that the most resilience strategies
were formed and applied using local knowledge and experience in addition to formal and
informal extension networks [104,105].

The resilience strategies have been classified by authors into three main categories
based on patterns that often include similar and overlapping components and have re-
silience outcomes: (i) promoting food system diversification, (ii) increasing cohesion be-
tween technological innovations and nature-based solutions, (iii) utilizing traditional and
local/indigenous knowledge. Each category is presented below, along with the interlink-
ages between available ecosystem services and their implications to resilience strategies.

3.2.1. Promoting Food System Diversification

Relying on a ‘mono’, e.g., monocropping, mono diet, or mono production, is consid-
ered risky for many farmers. Any change in the environment—be it drought, erratic rainfall,
or a temporary frost—can undermine food system sustainability. Thus, farmers who value
resilience often minimize their risks by expanding and diversifying their chains in the food
system: adding new crops and products; making use of their farms for non-agricultural
activities; making integrations, including integrated aquaculture with polyculture farming
of multiple species such as shrimp, mud crab, milkfish, seaweed, and bivalves [106]; and
using crop/aquaculture and crop-livestock integration [107,108].
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Through an integrated relationship between crop and livestock components, farmers
can increase agricultural productivity per unit of land and water beyond the productiv-
ity of the individual components [109]. For instance, the precarious nature of rubber is
experienced by smallholders around the world, as the interval time of approximately
7 years between planting and harvest can be difficult for smallholders to recover, and cli-
mate change is likely to exacerbate the environmental marginalization of these plantations.
Therefore, the choice of agricultural enterprise will influence household resilience [110].
Similarly, Davis et al. [111] found that the food security challenges facing coffee farmers can
be alleviated by the improved marketing of fruit tree products under shade coffee farming
systems to provide multiple co-benefits, including watershed management. These studies
support the diversification of management strategies to keep highly managed food systems
stable and productive, and to maintain biodiversity.

3.2.2. Increasing Cohesion between Technological Innovations and Nature-Based Solutions

Modern challenges entice farmers to replace their traditional methods of production
with more advanced technologies and integrate agricultural practices into ecosystem
services. This strategy often requires an adjustment of the farming system at the farm and
regional levels. For instance, integrating suitable cereal and legume varieties and livestock
breeds with a combination of locally sourced and supplementary inputs can increase overall
farm profitability and resilience [109]. Adjusting the seasonal calendar for crop production
to avoid heavy rains and floods, using short-duration and tolerant crop varieties, and
practicing mixed cropping to reduce the risk of total crop failure with climate-tolerant seeds
is another example of how farmers can reduce risk by adapting farm practices.

Nature-based practices (e.g., making different types of terraces, planting nitrogen-
fixing crops, planting trees, applying organic fertilizers, etc.) are a method to prevent net
losses in crop yield and can be enhanced by the additional biomass produced from wild
plants and animals. In Africa, the links between tree cover, access to food, and improved
dietary diversity are also becoming increasingly evident [111,112]. Pandey et al. concluded
that rainwater harvesting systems also functioned as a climate change adaptation strategy,
contributing to resilience [113,114].

Examples are provided below to illustrate the capacity of ecosystem services for
enhancing food systems’ resilience, reflecting real-life situations and trends.

Coffee is one of the most important commercial tropical crops in terms of its gross
production value and role in livelihoods. Coffee production and quality are expected to be
negatively affected by increases in temperature and changes in rainfall patterns. Although
reduced coffee production may not threaten food security per se, local food systems depend
on this crop. Nature-based solutions can improve coffee’s climate resilience, benefiting
coffee farmers whose livelihoods depend on this crop. For example, diverse shade canopies
provide nesting and foraging habitats for both bees and birds, increasing richness and
abundance. Increasing crop and overall plant diversity within fields and field margins,
edges, pathways, and live fences can benefit both bees and birds, since allowing non-crop
plant and weed species to grow and flower on farms can provide forage resources to
complement the brief and intense flushes of coffee flowers themselves. As an example,
birds lowered infestation rates as much as 50% in simplified and intensively managed
agroforestry coffee farms, and as much as 58% in sun coffee farms [115]. De Marco and
Coelho (2004) estimated that, in Brazil, coffee close to native forests increased production
value by USD 1860 ha/year [116]. Managing coffee farms based on wide ecosystem services
application could improve the climate resilience of coffee cropping and communities
of birds and bees, and therefore help farming families adapt their food systems to the
changing environment.

Conservation and restoration are two additional pathways that smallholder farmers
can support ecosystem services, hence supporting the resilience of food systems [38].
Conservation involves adopting practices that maintain ecosystem service and restoration
for their recovery. Recent evidence has shown that pastoral householders in Northeast
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Ethiopia are more resilient to drought events than others due to the application of soil and
water conservation techniques and access to appropriate irrigation [117]. Farmers in Papua
New Guinea employ mulching as a soil management practice to support agri-food system
resilience [62]. Similarly, potato farmers in Kenya change seed regimes, rotate crops, and
engage in minimum tillage as knowledge-intensive conservation practices [33,118].

The establishment of protected areas can also affect local food systems, and can change
how terrestrial and marine natural resources are used and managed with consequences to
food system resilience. A case in Aventureiro Brazil (see Table S4) highlighted resilience ac-
tivities due to tradeoffs among the community geographical location, conservation drivers,
and development drivers. Livelihood diversification contributes to food system resilience
by promoting lower dependence on natural resources for households and improves fi-
nancial capital [119]. Even in situations when access to resources is very constrained,
small-scale actors with an ability to improvise and hustle natural resources effectively in
the short term [120], for instance, the conversion of the tidal flat to cropland, reforestation,
and soil conservation practices, planting in shaded areas, etc., can cope with shocks or
persistent stresses [121].

A study by Chowdhury et al. [122] on eco-engineered reefs focused on of the devel-
opment of resilience in coastal regions that are home to nearly 2.5 billion people living
within 62 mi of coastlines. These regions are especially vulnerable to habitat loss, sea-level
rise, and other climate change effects. Oyster-dominated eco-engineered reefs have been
promoted as integral components of engineered habitats, enhancing coastal resilience
through the provision of numerous ecological, morphological, and socioeconomic services.
Oysters not only serve as a highly valued food source but they also provide many critical
ecosystem services, such as a habitat for many recreationally and commercially important
fisheries, and water quality enhancement by filtering suspended material (or seston) from
the overlying water column. Oysters also support the socioeconomic resilience of coastal
communities through the provision of food, physical and mental health, and cultural values.
Ecosystems services-based technological solutions have the potential to provide unique and
invaluable tools for reducing vulnerability to natural hazards through added complexity,
which generates a web of self-supporting and self-regulating interactions.

3.2.3. Utilizing Traditional and Local/Indigenous Knowledge

A growing body of research illustrates that local people have significant resilience
and actively observe and adapt to change in a diversity of ways [123–125]. An indigenous
perspective helps to strengthen resilience capacities by placing greater emphasis on the
value of broad local knowledge of the climate, ecology, and hazards, leading to a series
of historical adaptations. For example, according to Campbell (2021), coffee farmers have
utilized indigenous knowledge systems built on local ontology and cosmovision to sharpen
their sensitivity to environmental conditions. They often monitor early warning signals for
episodic events especially regarding changes in temperature and rainfall. In many cases,
local knowledge is the only tool farmers have to negotiate multiple livelihood stressors [32].

Strong emotional reactions leading to ecological grief have been documented among
Inuit because changing ice and weather regimes reduce access to traditional hunting and
fishing locations [126], whereas some Inuit communities are transforming from land-based
(e.g., caribou) to aquatic-based livelihoods to build resilience [117,124]. Peruvian Quechua-
speaking people have confronted the impacts of colonization by creating the Potato Park to
protect over 900 varieties of potato, reinvigorating cultural values of reciprocity, kinship,
and solidarity that underpin community resilience [127]. The Bedamuni tribe of Papua New
Guinea retain traditional knowledge regarding coping strategies to hazards, e.g., El Nino
(droughts and fires), earthquakes, floods, pest and disease outbreaks, and strong winds.
Tribe representatives cope with food system susceptibility by transplanting rhizomes from
existing gardens to creeks, rivers, swamps, or caves during drought, or through the use
of famine foods (e.g., bush yams, black palm shoots, insects, “poisonous nuts” and “soft
rocks”) and the temporary migration of some villagers to dense forests less affected by
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drought to collect bush food [128]. Indigenous knowledge serves as guidance and entry
points for increasing the resilience of local food systems, particularly of marginalized
communities. Adhikari, Hussain, and Rasul (2017) noted the preference of farmers in the
Rasuwa district, in the mid-hills of Nepal, for local bean, barley, millet, and maize, rather
than commodity crops, because they are more tolerant to water stress and extremely cold
conditions [129].

According to an FAO report, the way Indigenous people consider their relationship
with the environment and human needs is unique [125]. Their food systems can exceed
250 wild, semi-domesticated, and domesticated plants, fish, and animals used for food and
non-food purposes (medicinal remedies, construction materials, fuel, fodder, etc.) [130,131].
Territorial management practices incorporate a broad scope of livelihood activities, such as
gathering, hunting, fishing, and farming adjusted to seasonal cycles and natural patterns
observed in ecosystems [112,132]. Wind, water, and solar energy stored in firewood or other
biomass meets the basic needs for food processing, heating, and cooking. The synergy of
traditional practices increases the level of food self-sufficiency in the food systems oscillated
from about 55 percent to about 80 percent [125], allowing Indigenous people to adapt and
better cope with the impacts of natural hazards.

The preservation of indigenous knowledge of traditional farming is advantageous in
maintaining biodiversity [133], enhancing food security [134,135], and protecting natural
resources [136].

The examined case studies support the concept that empowering smallholder farmers
to understand their local situation, and to identify appropriate adaptive strategies and
needs based on ecosystem services, are essential to improving food systems resilience [93].
Food system diversification, technological innovations and nature-based practices, and tra-
ditional knowledge are essential prerequisites for increasing the smallholder food systems’
resilience to natural hazards.

4. Conclusions

The results of the narrative review offer a deeper understanding of the functional
properties of ecosystem services and their contribution in coping with the effects of climate-
related natural hazards at the smallholder food system level.

This paper extends the previous work by Carpenter et al., [137], Dipierri and Zikos [138],
and Ostrom [139,140] by explicitly linking the role of ecosystem services to food security
and ultimately the nutritional status of individuals and communities. Historically, the
MEA and other works have focused on the how they relate to well-being without specific
reference to food security [137]. We have extended their work to provide examples of how
natural resources can also support smallholders without human interference, which allows
ecosystem services support the adaptation and mitigation to climate change-induced
natural hazards. This does not negate the fact that policies and the design principles
articulated by Ostrom [140] do not ultimately impact the relationship between ecosystem
services, food systems, and food security [138]. Other researchers have long investigated
how and why managing ecosystem services may significantly contribute to resilient and
sustainable food systems to the impacts of natural hazards. This paper contributes to the
existing literature in two ways. First, we synthesized the functional properties of ecosystem
services and their contribution in offsetting the effects of climate-related natural hazards
from the smallholder food system perspective. Second, the study reveals ecosystem services-
based strategies that can be utilized across different types of traditional smallholder food
systems to cope and adapt with natural hazards. By combining the theoretical approaches
with case examples, this paper contributes to a better understanding of what functional
properties of ecosystems have the capacity to make food systems more resilient.

Empirical illustrations have revealed the significant barriers that smallholders with-
stand to maintain their livelihoods and food systems under natural hazards. The deterio-
rating quality of the natural resource base, reliance on rain-fed farming, abandonment of
traditional varieties of crops for non-nutritive cash crops, nature conservation initiatives
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restricting access to wild food sources, declining productivity, low value-added activities,
lack of infrastructure, and service provision are some of the most acute.

In these conditions, people put into action their shared knowledge about local nature
and activated ecosystem services. The empirical illustrations suggest that smallholder
farmers have a higher resilience capacity and maintain their food systems by ecosystem
services utilization.

The proposed ecosystem services-based interventions provide advancement for small-
holder farmers who use traditional and local/indigenous knowledge to promote food
system diversification to increase cohesion between technological innovations and nature-
based solutions. These activities are frequently used to increase food security and improve
livelihood opportunities irrespective of the external shocks and stresses.

These findings highlight the importance that ecosystem services have on supporting
and regulating food system resilience in relation to environmental and socioeconomic condi-
tions. In the long term, additional studies must be conducted to expand ‘win-win’ ‘mutually
beneficial’ solutions that support the resilience of both food systems and ecosystem ser-
vices. More importantly, we emphasize that no single set of ecosystem services-based
interventions can be followed in the design of food system resilience management across
the world. Rather, there is a need to consider homegrown and unique characteristics of
nature in conjunction with food system patterns to co-design resilient frameworks suited
for local communities. An ecosystem services approach can be used for the ex-post analysis
of food system dynamics and responses to challenges, and for the ex-ante assessment and
creation of resilience-enhancing strategies and attributes of food systems [141].

These results underscore the potential that ecosystem services must enhance the
resilience capacity of the smallholder food systems to natural hazards. To reap benefits from
ecosystem services, future resilience stewardship must increase structural heterogeneity
and diversity across multiple dimensions, including landscapes, food provision, and
consumption activity.
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