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Abstract
Background: The Bach2 gene functions as a transcriptional repressor in B-cells, showing high
expression level only before the plasma cell stage. Several lines of evidence indicate that Bach2 is a
B-cell specific tumor suppressor. We here address patterns of insertional mutagenesis and
expression of Bach2 is a murine retroviral model of B-cell lymphoma induction.

Results: We report that the Bach2 gene is a target of proviral integrations in B-cell lymphomas
induced by murine leukemia virus. An alternative Bach2 promoter was identified within intron 2
and this promoter was activated in one of the tumors harboring proviral integration. The
alternative promoter was active in both normal and tumor tissue and the tissue specificity of the
two Bach2 promoters was similar. Three different alternatively used Bach2 terminal exons were
identified to be located in intron 4. The inclusion of these exons resulted in the generation of Bach2
mRNA with open reading frames lacking the bZIP DNA binding domain present in the normal
Bach2 protein, but retaining a partial BTB protein dimerization domain. Such Bach2 protein was
excluded from the cell nucleus.

Conclusion: We have identified an alternative promoter and new protein isoforms of Bach2. Our
data imply that activation of an alternative promoter by proviral integration serves as a possible
mechanism of up-regulation of the Bach2 gene with a potential role in B-cell lymphomagenesis. The
finding of novel Bach2 transcripts and protein isoforms will facilitate a better insight into the normal
and pathophysiological regulation of the Bach2 gene.

Background
The transcription factor Bach2 (BTB and CNC homolog 2)
is a member of the family of proteins harboring a basic

region leucine zipper (bZip) DNA binding domain [1]. In
addition, Bach2 possesses a BTB domain. Both of these
domains are involved in forming heterologous protein-
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protein interactions [2-4]. In mice abundant Bach2
expression is described in neuronal cells, monocytes, and
in the B-cell compartment only before the plasma cell
stage [1,5,6]. The sub-cellular localization of the Bach2
protein is controlled by the cytoplasmic localization sig-
nal present in the bZip domain and a C-terminal nuclear-
export signal. Bach2 is localized in the cytoplasm through
its C-terminal nuclear export signal [7]. In B-cells, phos-
phorylation of Bach2 by the PI3/S6 kinase pathway results
in the cytoplasmic accumulation of Bach2 [8]. Nuclear
accumulation of Bach2 is induced by anticancer drugs
with oxidative stress activities and is regulated by small
ubiquitin like modifier-1 or by SUMOylation [9,10].
Bach2 nuclear foci are observed to be associated with pro-
myelocytic leukemia nuclear bodies in apoptosis [11].

Bach2 proteins function as transcriptional repressors and
form heterodimers with small Maf oncoproteins (MafF,
MafG, MafK). Such heterodimers bind to the Maf recogni-
tion elements [1]. As an example, Bach2 negatively regu-
lates the immunoglobulin heavy chain gene by binding to
the Maf recognition element in the 3'-enhancer [6].
Besides, Bach2 is crucial for the programming of antibody
class switching and somatic hypermutation of immu-
noglobulin genes [12]. Several lines of evidence show that
Bach2 is a B-cell specific tumor suppressor. For example,
in non Hodgkin's Lymphoma, a relatively high frequency
of loss of heterozygosity was detected for Bach2 [13].
Moreover, the Bach2 expression level has proven to be a
useful marker to predict disease-free and overall survival
of patients with diffuse large B-cell lymphoma, where a
favorable prognosis is correlated with a high expression
level of Bach2 [14]. In consistence with its role as a puta-
tive tumor suppressor, Bach2 was found to induce apop-
tosis in response to oxidative stress [7]. Over-expression of
Bach2 increased cellular toxicity of anticancer drugs that
generate reactive oxygen species [9]. In the Burkitt lym-
phoma cell line Raji, loss of Bach2 expression at both the
mRNA and protein levels was attributed to Epstein-Barr
virus (EBV) genome integration into the host Bach2 gene
[15]. The enforced expression of Bach2 in the Raji cell line
led to a marked reduction of clonogenity [13]. Moreover,
Bach2 was seen down-regulated in proliferating lymphob-
lastoid cell lines, which were in vitro transformed by EBV
from resting B-cells [16]. These findings suggest that loss
or down-regulation of Bach2 expression may contribute
to B-cell lymphomagenesis.

Proviral insertional mutagenesis plays an important role
in lymphomagenesis by non-acutely transforming murine
leukemia viruses (MLVs). By insertion of proviral DNA
into the host genome, the retrovirus may activate cellular
proto-oncogenes, or more rarely repress tumour suppres-
sor genes [17-19]. Thus, loci or genes repeatedly found to
be targeted in retrovirus-induced tumors most likely play

important roles in the disease process. The specific genes
that are tagged by a provirus in a given retrovirus-induced
tumor depend on virus type as well as on mouse genetic
background [20,21].

In the present study we have examined tumors induced by
wild-type and mutants of Akv MLV in inbred NMRI mice.
In these models the tumors are of B-cell lineage with fre-
quent occurrence of plasmacytomas/plasma cell prolifer-
ation [22-24]. Recently, we proposed that polyclonal
immune stimulation and insertional mutagenesis exert
dual effects in the process of disease induction in this Akv/
inbred-NMRI model [23]. We here describe the Bach2
locus as a prominent target in MLV induced B-cell lym-
phogenesis. A cluster of integrations was detected in
intron 2 of the Bach2 gene. Interestingly, in the same
intron we have identified an alternative Bach2 promoter.
We also identified alternatively used Bach2 terminal exons
located within intron 4. Utilization of alternative pro-
moter sequences and terminal exons resulted in new
Bach2 mRNA subtypes, of which several have coding
potential for Bach2 protein isoforms containing a partial
BTB protein-protein interaction domain but lacking the
bZIP DNA binding domain. Altogether, the presented
data show a novel regulatory complexity resulting in the
generation of different Bach2 proteins.

Methods
Mouse tumors and tissues
Tumors used in this study were induced in NMRI inbred
mice by Akv MLV variants from previous and unpublished
work [22,24,25]. In brief, infectious viral particles of Akv
MLV and derivatives hereof were inoculated into newborn
inbred NMRI mice. Upon diagnosis of lymphomas, the
animals were sacrificed and lymphomas were dissected
and frozen (criteria for diagnosis were described previ-
ously [26]). Tissues from mock-injected or untreated mice
served as controls. All animal studies were in accordance
with the German Animal Welfare Act. They were approved
by the Institutional Animal Care and Use Committee
(IACUC) of the Helmholtz Center Munich and by the eth-
ical committee of the Government of Upper Bavaria, Ger-
many (211-2531-48/98 and 55.2-1-54-2531-98-03).

Genomic DNA and total RNA Isolation and Quantification
Genomic DNA and total RNA were isolated from frozen
tumors and tissues using DNeasy Tissue Kit (Qiagen) and
TRIzol® Reagent (Invitrogen™), respectively. Quantifica-
tion was performed by a spectrophotometer.

PCR identification and verification of provirus integration 
sites
Genomic DNA isolated from the induced tumors was ana-
lyzed for provirus integration sites by a splinkerette-based
PCR method [27] described in details elsewhere [28]. To
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confirm provirus integrations into the Bach2 gene, PCR
were done on genomic DNA from tumors with a gene spe-
cific primer and a viral primer. The gene specific primers
at different proviral integration sites were designed
according to integration site data. Viral primers 2620 or
6197 were both described previously [22,29]. The PCR
was run in a 25-μl volume containing 0.625 U of Taq DNA
polymerase (5 U/μl; Invitrogen), 1.5 mM MgCl2 (Invitro-
gen), 2.5 μl of 10× Taq buffer (Invitrogen), 0.2 mM of
each deoxynucleoside triphosphate (Invitrogen), and 10
pmol of each primer. The fragments were amplified in a
2720 thermal cycler (Applied Biosystems) with a touch-
down program as follows: 1 cycle of denaturation at 94°C
for 5 min and then 10 cycles of denaturation at 94°C for
30 s, annealing at 64–55°C for 30 s with 1 cycle decreas-
ing 1°C, and extension at 72°C for 3 min followed by 30
cycles of denaturation at 94°C for 30 s, annealing at 55°C
for 30 s, and extension at 72°C for 3 min, and finally 1
cycle of extension at 72°C for 10 min.

Southern blot analyses
Twenty micrograms of genomic DNA from each sample
was digested with HindIII or NcoI, separated on a 0.8%
agarose gel, transferred to a Zeta-Probe membrane (Bio-
Rad), and hybridized with 32P labelled Bach2 specific
DNA probes or an ecotropic MLV-specific envelope probe
(Eco-env). The Bach2 gene-specific DNA probes were PCR
products of 892 bp or 743 bp, amplified with the follow-
ing primer pairs: probe1; 5'-TCTAGGGTTCAGGT-
GGGATG-3' and 5'-GCACAAGTGCTGGCTAACAA-3';
probe2; 5'-ACTTCAGGCTACTGCCCAGA-3' and 5'-
CACATGGAGACGGTTGTGAC-3'. Probes were purified
from gel bands with GFX columns. The Eco-env probe and
detailed procedures for blotting and hybridization were
described previously [22,30].

RT-PCR, Q-PCR, and sequencing
For generation of RT-PCR templates first-strand cDNA was
synthesized from 200 ng total RNA with an oligo dT
primer kit (GE Healthcare) and for experiments compar-
ing oligo dT primed and random-primed cDNA synthesis
with the RevertAid H Minus First Strand cDNA Synthesis
Kit (Fermentas). RT-PCR reactions were performed with
the following program: 1 cycle of denaturation at 94°C
for 5 min and then 40 cycles of denaturation at 94°C for
30 s, annealing at 60°C for 30 s and extension at 72°C for
3 min, and finally 1 cycle of extension at 72°C for 10 min.
PCR products were separated by agarose gel electrophore-
sis and purified with GFX columns before subjected to
sequence determination by ABI 7300 Biosystems. Quanti-
tative real-time RT-PCR (Q-PCR) was performed on a
MX4000™ Multiplex Quantitative PCR system (Strata-
gene) or on a lightcycler (Roche). For each reaction, first-
strand cDNA from 20 ng of total RNA was used. All reac-
tions were done in triplicates. The amplification efficien-

cies of Bach2 amplicons were calculated by the use of
standard curve analysis where the Q-PCR templates were
serial dilutions of purified Bach2 cDNA derived from
spleen and tumor tissue. Bach2 mRNA expression levels
were normalized to the expression level for tbp (TATA-box
binding protein). Detailed information concerning
primer sequences is available upon request.

5'-Rapid amplification of cDNA end (RACE) analyses
The 5' sequences of Bach2 isoforms were determined by 5'
RACE analyses using SMART™ RACE cDNA Amplification
kit (Clontech) according to the manufacturer's instruc-
tions with slight alterations. Briefly, the 5' RACE-ready
cDNA was synthesized with 1 μg of total RNA from the
mouse tumor ID:99–1206. The 5' sequences were then
amplified with the forward universal primer mix (UPM,
Clontech) and two Bach2 isofom B specific reverse prim-
ers 1e and 1f, respectively. The primer sequences were as
follows: 1e, 5'GTGGCTATGATCCAGTCACCCCGATCT-
3'; and 1f, 5'-ATGAGTGTTGCACACCGTGAATCTCCTG-
3'. RACE PCR was performed with the following program:
1 cycle of denaturation at 94°C for 5 min and then 35
cycles of denaturation at 94°C for 30 s, annealing at 68°C
for 30 s, and extension at 72°C for 3 min, and finally 1
cycle of extension at 72°C for 10 min. RACE products
were sequenced by means of ABI 7300 Biosystems with
primers UPM, 1e, 1f and another two nested gene-specific
primers 1b, 5'-ACGCACACACACTCCACACCCTGAAAG-
3', and 1c, 5'-ACACGCACACACACTCCACACCCTGAAA-
3', respectively.

Cell culture, transfection and immunofluorescence 
staining
NIH 3T3 murine fibroblasts and HEK 293T human
embryonic kidney cell line were cultured at 37°C with 5%
CO2 in Dulbecco's modified Eagle's medium containing
Glutamax-I (Gibco) supplemented with 10% newborn
calf serum or foetal bovine serum, respectively, and with
100 U/ml penicillin and 100 μg/ml streptomycin. Trans-
fections of NIH 3T3 cells were performed using Lipo-
fectamine Reagent (Invitrogen) following the
manufacturer's protocol. HEK 293 T cells were transfected
by the calcium phosphate precipitation method [31]
using 0.5 μg/cm2 DNA. Forty-eight hours after transfec-
tion, cells were fixed by para-formaldehyde, immunos-
tained with anti-FLAG antibody and with TRITC-
conjugated secondary antibody, mounted with DAPI-
mounting solution (Invitrogen), and subjected to fluores-
cence monitoring by epi-fluorescence microscopy.

Protein extraction and Western Blot analyses
Protein samples were extracted from frozen tumors or cul-
tured cells 48 h post-transfection with lysis buffer (50 mM
Tris-HCl (pH 8.0), 150 mM NaCl, 1% NP-40, 0.5%
sodium deoxycholate, 0.1% SDS and 1 mM PMSF). Sam-
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ples containing 10 μg total protein (BCA™ Protein Assay
Kit, Pierce Biotechnology) were resolved on a 12.5% SDS-
PAGE gel and electro-transferred onto a polyvinylidene
fluoride (PVDF) membrane (Millipore Corporation). The
membrane was blocked in TBS (20 mM Tris-HCl, 200 mM
NaCl, pH7.6) containing 0.05% Tween-20 (TBS-T) and
5% (w/v) fat-free milk. The blot was hybridized for 1 h
with goat anti-mouse Bach2 polyclonal antibody against
the N-terminus of the Bach2 protein (sc-14702) (Santa
Cruz Biotechnology) in dilution of 1:1000 in TBS-T con-
taining 5% fat free milk. The blot was washed twice in
TBS-T and then incubated with secondary antibody of
horseradish peroxidase (HRP)-conjugated rabbit anti-
goat immunoglobulins/HRP (DAKO) with 1:5000 dilu-
tions in TBS-T containing 5% fat-free milk. The mem-
brane was washed twice in TBS and subjected to Bach2
protein detection by ECL Plus Western Blotting Detection
System (GE Healthcare) before being exposed to a medi-
cal film (Konica Minolta Medical and Graphic Inc.). The
membrane was stripped and re-hybridized with 1:5000
dilutions of goat polyclonal anti-human Beta-Actin anti-
body (sc-1616) (Santa Cruz Biotechnology) for protein
loading control. Protein samples extracted from trans-
fected cells were analyzed by Western blots using anti-
FLAG M2 peroxidase-conjugated monoclonal antibody
(Sigma) according to the recommended procedure but
using a 1:5000 dilution of antibody.

Results
Identification of 18 provirus integrations into the Bach2 
locus
In inbred NMRI mice, wild-type and mutants of Akv MLV
induce tumors of B-cell lineage with frequent occurrence
of plasmacytomas/plasma cell proliferation [22-24]. To
identify cellular genes involved in the disease process pro-
virus integration sites were mapped in dissected tumors.
Out of approximately 2000 identified integration sites 18
were by PCR confirmed to map to the Bach2 locus (Figure
1 and Table 1). Since proviral insertion into the host
genome is essentially a random event, such a frequent
observation of proviruses within the Bach2 locus strongly
supports a role in lymphomagenesis of the Bach2 gene. As
shown in Figure 1 and Table 1, the proviruses were inte-
grated in the non-coding region; two were located within
the promoter region; six within intron 1; seven within
intron 2; and three within intron 3. All but three inte-
grated proviruses were inserted in opposite orientation
relative to the transcriptional orientation of Bach2.

In order to clarify if the identified provirus integrations
were present in a large fraction of cells in their respective
tumors, we performed Southern Blot analyses on tumor
genomic DNA. We did not observe any rearrangement of
genomic DNA, corresponding to provirus integrations,
using Bach2 gene specific probes (data not shown). Rehy-
bridization with a provirus-specific ecotropic envelope
probe confirmed this observation, since no hybridizing
fragments were detected (data not shown). Tissues from
Balb/c mice containing a single endogenous ecotropic
provirus were used as positive controls (data not shown).

Table 1: Summary of proviral integration in NMRI-i mice into the Bach2 gene

No. Mouse ID Virus varianta Region Orientationb PCRc Southern blotsd

S1 03–655 Akv 1–99Runx 5' promoter - + -
S2 99–64 Akv PBS-Gln 5' promoter - + -
S3 99–148 Akv PBS-Gln Intron1 - + -
S4 01–1124 Akv 1–99mRunx+Egre Intron1 + + n.d.
S5 98–1286 Akv PBS-Gln Intron1 - + n.d.
S6 99-97 Akv PBS-Gln Intron1 - + -
S7 01–454 Akv 1–99wt Intron1 - + -
S8 98–1197 Akv PBS-Pro Intron1 - + -
S9 99–955 Akv 1–99wt Intron2 - + -
S10 99–1020 Akv 1–99wt Intron2 - + -
S11 99–1206 Akv 1–99wt Intron2 - + -
S12 03–858 Akv 1–99mGR Intron2 - + -
S13 99–128 Akv PBS-Lys Intron2 - + -
S14 99–128 Akv PBS-Lys Intron2 - + -
S15 03–653 Akv 1–99mEgre Intron2 - + -
S16 99-74 Akv PBS-Gln Intron3 + + -
S17 03–290 Akv/SL3-3 TM Intron3 + + n.d.
S18 99-95 Akv PBS-Arg Intron3 - + -

aThe virus variants originated from our published [22,24,25,30,56-60] or unpublished pathogenicity work. bThe virus was transcribed in the same 
(+) or opposite (-) orientation compared to that of the mouse Bach2 gene. cProvirus was detectable (+) or undetectable (-) by PCR. dSouthern blots 
showed the proviral integration to be present in a minor fraction of cells in tumor tissue (-). N.d., not determined.
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Together this indicated that only a minor proportion of
the cells contained the actual proviral integration in end-
stage tumor tissue.

Examination of the Bach2 mRNA expression level in 
tumors
To estimate Bach2 expression levels in tumors quantitative
real-time RT-PCR (Q-PCR) was carried out on cDNA from
tumors with provirus insertion in the Bach2 locus. As con-
trols, tumors with no Bach2 locus integration were
included together with normal spleen tissue. Using a
primer combination spanning Bach2 exons 2 to 3 we
observed no significant difference in the Bach2 expression
level between the two types of tumor cohorts (Figure 2A).
We notice a lower level of Bach2 mRNA expression in all

tumor samples compared to the normal spleen control
(Figure 2). Using a primer pair covering exons 7 to 8, we
noticed the same tendency, except for tumor 1206, which
displayed a marked increase in Bach2 mRNA expression,
compared to that of the other tumor samples and normal
spleen (Figure 2B). The discrepancy between the results
obtained for the different primer combinations for this
particular tumor sample led us to proceed with other
primer combinations. Also for primer combinations
spanning Bach2 exons 4 to 5 (Figure 2C) and exons 3 to 4
(Figure 2D) an up-regulation of Bach2 expression in
tumor 1206 was evident as compared to the other tumor
samples. Thus, in tumor 1206, a preferential up-regula-
tion of Bach2 transcripts including exon sequences span-
ning exon 3 to exon 8 was observed. Western blot analyses

The Bach2 locus and proviral integration sitesFigure 1
The Bach2 locus and proviral integration sites. Structures of genes, exons, and distances between insertion sites are not 
shown in scale. (A) Schematic description of the mouse chromosome 4 region around the Bach2 locus. The transcriptional ori-
entation of the genes is indicated by arrows. (B) Illustration of the Bach2 gene. The exons are shown with solid bars, with un-
translated regions in grey and the coding sequences in black. The dashed lines indicate the location of Bach2 protein domains, 
BTB and bZip. (C) Illustration of the localization of proviral insertions in the Bach2 gene. Position and transcriptional orienta-
tion of the proviruses are shown by triangles and were confirmed by gene-specific PCRs. The proviruses are named after the 
integration order from left to right at the locus, with s1 being the first integration site and s18 the last. For the proviruses 
located in intron 2, distances away from the nearest upstream proviral integration site are shown in brackets in base pairs.
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were carried out with a polyclonal antibody identifying
the N-terminus of the Bach2 protein encoded by exon 4.
We detected an even expression level of a 110-KDa pro-
tein, corresponding to the expected size of Bach2 protein
[1], in tumors from mouse 1206 and other tumors (data
not shown).

Identification of an alternative Bach2 promoter
The observation of an increased Bach2 mRNA expression
level specifically for exon sequences located downstream
of exon 2 in tumors from mouse 1206 let us hypothesize
that this was due to activation of alternative promoter
sequences present within intron 2 of the Bach2 gene. Such
promoter sequences would result in the generation of a

novel first exon if appropriate splice donor sequences
were present or alternatively in a continuous 5'-extension
to exon 3. It should be noted that the transcriptional ori-
entation of the provirus in tumor 1206 was opposite to
that of Bach2, thus minimizing the possibility that the
virus directly contributed such an alternative promoter.

In a first attempt to address the nature of a possible alter-
native Bach2 promoter we searched for indicative ESTs.
One spliced EST sequence, AK042574, was identified
which could have origin in the usage of a Bach2 intron 2
located promoter. By RT-PCR analysis we verified the
existence of the RNA corresponding to the EST (data not
shown). The first exon of the EST was denoted exon 2A. By

Expression analysis screened out a Bach2 integration site with high mRNA expression levelFigure 2
Expression analysis screened out a Bach2 integration site with high mRNA expression level. Q-PCR was per-
formed on total RNAs from tumors with (asterisked) or without proviral integration in Bach2. The used primer pairs and their 
schematic localization is shown in (A), (B), (C), (D), and (E) (for localization and origin of exon 2A, see figure 5 and text). M, N, 
and S (mesenteric, cervical (neck) lymph node, and spleen, respectively) refer to types of tumor tissues used for the analyses. 
Bach2 expression levels were normalized to the tbp expression level and the Bach2 expression level in spleen tissue from 
untreated NMRI mice (NMRI S) was given the value 20.
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usage of different primer combinations in various RT-PCR
analyses, splicing from exon 2A to exon 3 was identified.
However, no up-regulation of this transcript was observed
in material from tumor 1206 compared to other tumors
and normal spleen (Figure 2E). Thus, the promoter
sequence in front of exon 2A seems not to be the target for
the observed Bach2 deregulation in tumor 1206.

In a further search for alternative promoter sequences
within intron 2, the possibility of a continuous 5'-exten-

sion of exon 3 was examined. By RT-PCR analysis using
mesenteric lymphoma RNA from mouse 1206 we could
by the use of a reverse primer located within exon 4 and a
forward primer located immediately upstream of exon 3
(primer 2F) (see Figure 3A for primer localizations) detect
a band corresponding to a transcript including Bach2
intron2 sequences as a novel exon (Figure 3B, left). This
was further substantiated by using a forward primer, 10F,
located 667 bp upstream of exon 3 which also resulted in

Identification and characterization of an alternative Bach2 promoterFigure 3
Identification and characterization of an alternative Bach2 promoter. (A) Map of the 5' ends for the novel mRNAs 
determined by 5'RACE and primers employed in 5' RACE PCR and sequencing (1c, 1b, 1e, 1f), and in RT-PCR and Q-PCR (10F 
and 2R and/or 2F and 2R). Chromosomal locations refer to UCSC version 2006 February. (B) RT-PCR detection of transcripts 
including intron 2 sequences as a novel Bach2 exon. Tumor material from mouse 1206 was analyzed by RT-PCR using primers 
2F and 2R (left panel) or 10F and 2R (right panel) and by ethdium bromide staining. (C) 5'-RACE analysis to detect novel Bach2 
promoters. The products of the RACE PCR analysis were visualized by ethdium bromide staining. Arrows indicate the product 
bands. (D) Sequence around the alternative promoter. Exon sequences are in capital letters and position of mapped transcrip-
tional start sites indicated by arrows. (E) RT-expression analysis of transcripts derived from the alternative Bach2 promoter. 
Tumor material with (marked by asterisk) or without Bach2 gene proviral integration were analyzed by RT-PCR with primers 
10F and 2R and the products visualized by ethdium bromide staining. (F) Q-PCR analyses of transcripts with origin from the 
alternative Bach2 promoter. Analyses were done using primers 2F and 2R on tumors with (asterisked) or without proviral inte-
gration in Bach2 and spleen tissues from untreated NMRI mice (NMRI S). Expression levels were normalized to tbp and NMRI 
S with the expression level for NMRI S set to 20.
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a PCR product corresponding to a Bach2 mRNA species
including intron 2 sequences (Figure 3B, right).

In order to determine the 5' end of this novel mRNA sub-
type, we performed 5' RACE analysis on the mesenteric
lymphoma RNA from mouse 1206 using either reverse
primer 1e or 1f located upstream from exon 3 (see Figure
3A). Two distinct 5' ends of mRNAs were identified,
located 1185 bp and 1163 bp upstream of exon 3, respec-
tively (Figure 3C). We have found no evidence of the exist-
ence of splice donor sequences in the region between the
alternative promoter sequences and exon 3, suggesting
that the resulting transcripts indeed included a continu-
ous 5'-extension to exon 3. The corresponding novel alter-
native first Bach2 exon was denoted E3L. No consensus
TATA-box was present within the proximal promoter
sequence. As translation of Bach2 initiates in exon 4,
inclusion of E3L does not affect the Bach2 coding region.
Moreover, no additional open reading frames were
detected within the E3L sequences.

To examine if the alternative Bach2 promoter was active
only in tumor 1206 material, we screened RNA from sev-
eral tumors for the presence of such an alternative Bach2
transcript. By RT-PCR using forward primer 10F in combi-
nation with primer 2R we identified a 852 bp band in all
examined tumors and in normal spleen corresponding to
the Bach2 transcript including exon E3L (Figure 3E). Thus,
the alternative promoter appears active both in tumor tis-
sue and in normal spleen. Albeit semi-quantitative, the
assay also pointed at an up-regulation of alternative Bach2
promoter in tumor 1206 as compared to the other exam-
ined tissue samples.

To further analyze the expression level from the alterna-
tive Bach2 promoter, Q-PCR assay was done using primers
2F and 2R (Figure 3F). This assay showed a 134-fold
higher expression level of the Bach2 transcript resulting
from the alternative promoter within mesenteric lym-
phoma from mouse 1206, when compared to the average
expression level in the other examined tumors and in nor-
mal spleen (Figure 3F). Thus, the alternative Bach2 pro-
moter was highly activated in tumor 1206. The amount of
Bach2 transcripts derived from the alternative promoter
was similar in all types of tumor tissues examined from
mouse 1206 (Figure 3F).

Activity comparison between the alternative and normal 
Bach2 promoters
To examine the relative amount of Bach2 transcripts
derived from the alternative promoter compared to the
normal promoter we used a Q-PCR based assay. cDNA
representing the Bach2 transcript derived from the normal
promoter was amplified using primer pairs in exon 1
(primer P1F) and exon 3 (primer Q3R) and cDNA repre-

senting the Bach2 transcript from the alternative promoter
was amplified using a primer located in exon 3L immedi-
ately upstream of the beginning of exon 3 (primer 2F) and
an exon 4 primer (primer 2R). The amplification effi-
ciency for the two Bach2 amplicons was determined to be
equivalent (~95%) as estimated from Q-PCR reactions
performed on serial dilutions on purified cDNA repre-
senting the two Bach2 transcripts (data not shown). Q-
PCR analyses were performed on cDNA from tumor 1206
and from normal spleen and both random primed and
oligo dT primed cDNA was examined to account for bias
in cDNA synthesis reactions (Figure 4). In cDNA synthe-
sised from tumor 1206 mRNA the amount of the two
types of Bach2 cDNA was comparable (Figure 4). This sim-
ilarity in expression levels was observed both in random-
primed and oligo dT primed cDNA (Figure 4A and 4B). In
normal spleen the level of the Bach2 cDNA derived from
the normal promoter was comparable with the cDNA
level in tumor 1206 whereas the amount of the alternative
promoter derived Bach2 cDNA was present in a low
amount (Figure 4).

We next examined the tissue specificity of the alternative
Bach2 promoter relative to that of the normal promoter.
RNA representing ten types of organs from mice not
infected with retrovirus was examined by Q-PCR using
primer pairs amplifying sequences representing the two
Bach2 transcripts as described above. As seen in Figure 5,
transcripts originating from both the alternative and the
normal promoters were more abundant in hematopoietic
tissues, for example thymus, spleen, and bone marrow,
compared with that in other tissues such as kidney, heart,
lung, or skeleton muscles. Interestingly, in brain and tes-
tis, the alternative promoter tends to be utilized relatively
more than the normal promoter as compared to the
hematopoietic tissues (Figure 5). We note that in none of
the examined tissues the alternative Bach2 promoter
seemed to be the major source of Bach2 transcripts.

Alternative usage of Bach2 terminal exons
The identification of the alternative Bach2 mRNA iso-
forms described above points to a transcriptional com-
plexity of the Bach2 locus. To address this further we by in
silico analysis searched for EST sequences representing
other alternative Bach2 exons. Several such putative exons
were identified and illustrated in Figure 5. The ESTs
BC099420 and AK162095 are indicative of the presence
of two novel alternative Bach2 exons spliced to the exon 4.
These two exons are denoted exon 5A and exon 5B. Exon
5A (second exon in BC099420, the first being exon 4)
contains a consensus poly-A signal, and the correspond-
ing EST sequence includes a poly-A tail. Thus, the inclu-
sion of exon 5A in the Bach2 transcript appears to generate
a transcript in which exon 5 to exon 8 are skipped. The
existence of Bach2 mRNAs containing exon 5A was veri-
Page 8 of 16
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Expression level analysis of Bach2 mRNA derived from the normal or alternative promoterFigure 4
Expression level analysis of Bach2 mRNA derived from the normal or alternative promoter. Quantitative RT-PCR 
analyses were performed with primer pairs amplifying either cDNA representing transcripts derived from the normal Bach2 
promoter (primers P1F and Q3R) or cDNA representing transcripts derived from the alternative promoter (primers 2F and 
2R). RNA was extracted from NMRI mice spleen (Spl) or tumor 1206 material and cDNA generated using either random-
primed first strand synthesis (panel A) or oligo dT primed first strand synthesis (panel B). Expression levels were normalized to 
the tbp expression level and the expression levels for the normal Bach2 transcript in NMRI spl set to 20.
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Expression in mouse tissues of Bach2 mRNA derived from the normal or alternative promoterFigure 5
Expression in mouse tissues of Bach2 mRNA derived from the normal or alternative promoter. Q-PCR analyses 
were performed with primer pairs amplifying either transcripts derived specifically from the normal Bach2 promoter (panel A) 
or transcripts derived from the alternative promoter (panel B). cDNAs used for the assay were obtained from NMRI mice not 
infected with retrovirus. br, brain; thy, thymus; spl, spleen; bm, bone marrow; liv, liver; kid, kidney; hea, heart; lun, lung; tes, tes-
tis; ske, skeletal muscle. Expression levels were normalized to total RNA and spleen tissue; expression level for spleen by nor-
mal promoter was set to 20.
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fied by RT-PCR and sequencing of tumor material from
mouse 1206 (data not shown). Also the existence of a
spliced transcript including exon 3, exon 4, and exon 5A
was identified in tumor 1206 material (data not shown).
We have not been able to detect Bach2 mRNA containing
exon 5A in any tumor samples except 1206, or in normal
spleen tissue (data not shown). A stop codon is present in
exon 5A in frame with the Bach2 start codon located in
exon 4.

The existence of Bach2 mRNAs including exon 5B (the sec-
ond exon of EST AK162095) was verified by RT-PCR and
sequencing of tumor material from mouse 1206 (data not
shown). Again, we were not able to detect mRNA contain-
ing exon 5B in other tumor samples than tumor 1206, or
in normal spleen tissue (data not shown). The 3'-end of
the exon 5B sequence derived from EST AK162095
includes no poly-A signal, and therefore might be pro-
truded to the polyadenylation signal located for exon 4A.
We note a distance of 15 kb between the poly-A site of
exon 5A and the 3'-end of the EST sequence of exon 5B,
and accordingly we have not been able to determine if
exon 5B indeed is extended to the same polyadenylation
signal as exon 5A (data not shown). We also note that we
have been unable to detect splicing between exon 5B and
downstream Bach2 exons by RT-PCR. A stop codon is
present in exon 5B in frame with the Bach2 start codon
located in exon 4. According to the rules of non-sense
mediated decay splicing of exon 5B to exon 5 will generate
a substrate for degradation supporting that exon 5B in
itself contains a polyadenylation signal.

From the RT-PCR analyses, it was evident that still another
alternative exon sequence exists. This exon, denoted exon
4 L, results from the absence of splicing between exon 4
and exon 5B and accordingly have a termination similar
to exon 5B (data not shown). Bach2 transcripts including
this exon 4 L was detected in tumor 1206 material as well
as in other tumor samples, and also in normal mouse
spleen (data not shown). Splicing between exons 3 L and
4 L, as well as between exons 1, 2, 3, and 4 L was detected
by RT-PCR, and thus both the normal and the here iden-
tified alternative Bach2 promoter may generate Bach2
transcripts including exon 4 L.

Inclusion of alternative Bach2 terminal exons results in 
generation of novel Bach2 protein isoforms
The inclusion of exon 5A, 5B, or 4 L in the Bach2 tran-
script results in the generation of C-terminally truncated
Bach2 ORFs, which lack the b-ZIP DNA binding domain.
The coding regions in common share the N-terminal part
of the Bach2 BTB domain encoded by exon 4. This seg-
ment constitutes the major part of the BTB domain (see
Figures 1 and 6). Inclusion of exon 5A or exon 5B in the
Bach2 transcript results in the generation of 132 and 82

amino acids Bach2 ORFs, respectively, in which the first
81 amino acids are identical. Inclusion of exon 4 L results
in the generation of a 83 amino acids ORF in which the
first 81 amino acids are identical to the Bach2 isoform
encoded from exon 5B (Figure 7A).

The canonical Bach2 protein is localized in the cytoplasm
by its C-terminal cytoplasmic localization signal and
nuclear-export signal [7]. To determine the localization of
the alternative Bach2 protein isoforms, we cloned the
ORFs of the 132 and 83 amino acid variants in the mam-
malian pSG5FLAG expression vector, which accordingly
was used to express the Bach2 proteins in NIH 3T3 cells or
HEK 293 T cells as FLAG tagged fusion proteins. Immun-
ofluorescence analysis showed that both proteins were
nuclear-excluded (Figure 7B). Instead a peri-nuclear local-
ization was observed (Figure 7B). No difference in the
localization of the 132 amino acid and 83 amino acid
Bach2 protein isoforms was evident. Thus, the addition of
the C-terminal extension in the 132 aa Bach2 isoform had
no clear consequence on localization. The integrity of the
expressed Bach2 proteins was confirmed by Western blot-
ting (Figure 7C). In conclusion, transcription from the
Bach2 locus directs expression of alternative protein iso-
forms with the same subcellular localization but different
composition of functional domains.

Discussion
We here report proviral integration into the Bach2 gene in
18 independent B-cell lineage tumors induced by Akv or
Akv derived MLV in NMRI mice. Proviral integration was
identified and confirmed by PCR analysis and sequenc-
ing. All cases of proviral insertion were located in intron
sequences upstream of the translational start codon of the
canonical Bach2 mRNA or within the Bach2 promoter
region and most of the integrations were in the opposite
transcriptional orientation to that of the Bach2 gene. Thus,
our analyses support previous findings of Bach2 locus
being a common integration site (CIS). Fourteen Bach2
integrations are reported in the Retrovirus Tagged Cancer
Gene Database (RTCGD) [32,33], thirteen of which origi-
nate from Akv induced malignancies in mouse strains of
AKxD and NFS [34,35]. The distribution pattern of these
13 integrations shows remarkable similarity to what we
have demonstrated in the present study: they all are B-cell-
related, located in non-coding sequences from the pro-
moter region to intron 3, and predominantly having an
inverse orientation. The frequency of targeting specific
genes depends on both the mouse host strain and the type
of retrovirus. In one mouse strain different types of malig-
nancy can be induced by different retroviruses. For exam-
ple, in NMRI mice Akv and SL3-3 MLVs induce B- and T-
cell lymphomas, respectively [36-38]. The same retrovirus
may also behave diversely in various host strains. For
example, the Icsbp gene is an Akv-related target in NMRI
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mice, but not in other mouse strains such as AKR, AKxD,
and NFS [39-42]. Bach2 seems to be a target gene in a vari-
ety of host genetic backgrounds for Akv induced B-cell
malignancies. Besides the thirteen Akv MLV integration
sites, RTCGD contains one Moloney MLV integration site
within in the Bach2 gene, which is derived from a brain
tumor in the mutated C57BL/6 (Ink4a/Arf (-/-)) strain
[43]. This integration site is located at intron 4, and
accordingly disrupting the coding sequences. Notably, in
humans, BACH2 was also identified to be recurrently inte-
grated by HIV in human CD4+ T cells [44]. These integra-
tions were all in intron 5 and had all same transcriptional
orientation as the BACH2 gene.

By Southern blot analysis using an ecotropic envelope
probe and Bach2 gene specific probes, we analyzed clon-
ality of the B-lymphomagenic tumors induced by Akv and

Akv derived MLV in inbred NMRI mice. By this approach
we have not been able to detect the virus integration
within the tumor in accordance with only a small fraction
of the tumor cells having the actual integration. Such a
Southern blot pattern resembles what we have described
in a previous report for Akv MLV derivates in the NMRI
mouse strain [23,41]. A model for this observation could
be that B-cell lymphoma induction by Akv MLV in the
inbred NMRI mouse strain may involve immune stimula-
tion [24]. Such stimulation may cause an initial polyclo-
nal stimulation followed by multiple events of
mutagenesis by proviral insertion. Given that only a
minor fraction of the tumor cells harbours the proviral
integration, it may not be surprising that in most cases we
were unable to detect Bach2 transcriptional deregulation.
Still, in tumors from mouse 1206 transcriptional upregu-
lation of Bach2 was detected. This upregulation was how-

Genomic structure for Bach2 gene with positioning of alternative exon sequencesFigure 6
Genomic structure for Bach2 gene with positioning of alternative exon sequences. Top panel depicts primer sets 
used in the identification of Bach2 mRNA isoforms. Coding sequences were shown in dark boxes and non-coding sequences in 
grey. For exon 5B and 4 L the 3'-end of the exon was not mapped and the possible extension to the polyadenylation signal 
present in exon 5A was indicated by a dashed box.
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ever only observed for exon 3 to exon 8 sequences, and
accordingly pointed to activation of an alternative Bach2
promoter located in intron 2. Indeed, we were able to
identify such a novel Bach2 promoter and in accordance
with the expression data we observed increased expression
within tumor material from mouse 1206. Moreover, we
found that in tumor 1206 material the expression level of
the Bach2 transcript derived from the alternative promoter
was similar to the expression level the Bach2 transcript
driven from the normal promoter.

Interestingly, the alternative Bach2 promoter was also
identified to be active in normal mouse tissues and
accordingly could play a role in the normal regulation of
Bach2 expression. The tissue specificity of the two Bach2
promoters was overlapping, but we note that the alterna-
tive promoter in some non-hematopoietic tissues had an
increased relative expression indicating that the contribu-
tion to the overall Bach2 mRNA level could be of physio-
logical importance in such tissues. We did not observe
normal tissues in which the alternative promoter derived
Bach2 transcript was expressed at a higher level than the
normal Bach2 transcript, but the results point out that

Identification of novel Bach2 protein isoformsFigure 7
Identification of novel Bach2 protein isoforms. (A) Amino acid sequence of the Bach2 protein isoforms resulting from 
translation of Bach2 mRNA including exon 5A, 5B, or 4 L. BTB domain sequences are underlined and the sequences different 
from the canonical BTB domain are in bold letters. (B) Sub-cellular localization of the Bach2 132 aa (encoded by exon 5A 
including transcript) and 83 aa (encoded by exon 4 L including transcript) isoforms. NIH-3T3 cells were transfected with 
expression vectors encoding N-terminal FLAG-tagged open reading frames of the Bach2 isoforms. 48 hours after transfection 
cells were immunostained with anti-FLAG antibody and a TRITC-conjugated secondary antibody. Fluorescence was monitored 
by epi-fluorescence microscopy. DAPI staining was used to localize the nuclei. Non-transfected NIH3T3 cells served as nega-
tive control. (C) Western blot analysis of the Bach2 proteins. HEK-293 cells were transfected with the FLAG-tagged Bach2 
expression constructs described in (B) and cellular extracts analyzed by western blotting using an anti-FLAG antibody. Molecu-
lar weight markers are indicated to the left.
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transcription directed from this alternative Bach2 pro-
moter is important to include in future expression analy-
sis addressing Bach2. Usage of the intron 2 promoter will
if the transcript is spliced from exon 3 L to exons 4, 5, 6, 7
and 8 result in generation of the normal Bach2 protein, as
the start codon is located in exon 4. The identification of
proviral integrations also in the normal promoter region
of Bach2 and in intron 1 supports that upregulation of the
canonical Bach2 protein is involved in MLV-induced
tumorgenesis.

Our RT-PCR analysis showed that besides the usage of
alternative promoter sequences Bach2 gene regulation
also involves alternative usage of terminal exons. Such ter-
minal exons were identified in intron 4 of the Bach2 gene.
The inclusion of alternative terminal exons resulted in the
skipping of exons 5 to 8 from the Bach2 transcript. Tran-
scripts arising from both the normal Bach2 promoter and
from the novel Bach2 promoter were identified to include
such alternative terminal exons and the resulting tran-
scripts have coding potential for novel subtypes of Bach2
protein having C-terminal truncations and inclusion of
new amino acid compositions. The canonical Bach2 pro-
tein consists of both a BTB domain at the N-terminus and
a bZip domain near the C-terminus. All of the deduced
proteins for these isoforms possess a fragment of the BTB
domain but lack the bZip domain. The BTB domain, also
known as the POZ (poxvirus zinc finger) domain, was
originally identified as a conserved motif in the Dro-
sophila proteins bric à brac, tramtrack and Broad-Com-
plex [45,46]. The BTB domain is involved in a variety of
cellular functions, including transcription repression [47],
cytoskeleton regulation [48,49], and targeting protein for
ubiquitination/degradation [50-53]. The BTB domains
from the BTB-bZip proteins (Bach1 and Bach2) are of an
elongated form (around 120 residues in total), containing
an additional amino-terminal region to the highly con-
served BTB core region which consists of 95 residues [54].
As protein-protein interaction domains, the BTB domains
are involved in forming homo- and hetero-dimerization,
as well as protein oligomerization, with a specificity
depending on their amino-acid sequences and structure
(reviewed in [3]). Note the BTB domain was shown not to
be required for the interaction between Bach2 and B-cell
lymphoma 6 (BCL6) proteins in vitro [55]. Although the
BTB sequences included in the hereby identified novel
short Bach2 protein isoforms are truncated compared to
the BTB domain in normal Bach2, they share the amino-
terminal region which was predicted to confer stable
dimerization [54]. We propose that these alternative pro-
teins may play roles distinct to normal Bach2 either inde-
pendently or by forming competitive protein interactions
in for example the B-cell compartment with normal Bach2
protein. The involvement of such small Bach2 proteins in
tumorgenesis is also an interesting possibility as they

could have a dominant negative effect on normal Bach2
functions through formation of protein-protein interac-
tions but generating protein complexes that lack the DNA
binding domain normally contributed by Bach2. In light
of the fact that Bach2 is not expressed in the plasma cell
stage, Bach2 proteins most probably play their part in
upstream steps of the tumorgenesis. Functional analyses
of alternative Bach2 transcripts and proteins are in
progress to further elucidate this issue and clarify the
importance for normal cellular regulation as well as B-cell
lymphomagenesis.

Conclusion
The common insertion of proviruses at the Bach2 locus in
a murine model of B-lymphomagenesis provides strong
evidence that mutation at this locus plays a role in the dis-
ease. In this work we have identified an alternative pro-
moter and new protein isoforms of Bach2 and our data
imply that activation of an alternative promoter by provi-
ral integration serves as a possible mechanism of up-regu-
lation of the Bach2 gene with a potential role in B-cell
lymphomagenesis. Such differential expression of protein
isoforms with distinct functions may explain why the
Bach2 gene, previously suggested to be a tumor suppressor
may be up-regulated in B-cell lymphomas. The finding of
novel Bach2 transcripts and protein isoforms will facilitate
a better insight into the normal and pathophysiological
regulation of the Bach2 gene.
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