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Abstract: Chronic infections with either hepatitis B or C virus (HBV or HCV) are among the most
common risk factors for developing hepatocellular carcinoma (HCC). The hepatocarcinogenic poten-
tial of these viruses is mediated through a wide range of mechanisms, including the induction of
chronic inflammation and oxidative stress and the deregulation of cellular pathways by viral proteins.
Over the last decade, effective anti-viral agents have made sustained viral suppression or cure a
feasible treatment objective for most chronic HBV/HCV patients. Given the tumorigenic potential of
HBV/HCV, it is no surprise that obtaining sustained viral suppression or eradication proves to be
effective in preventing HCC. This review summarizes the mechanisms by which HCV and HBV exert
their hepatocarcinogenic activity and describes in detail the efficacy of anti-HBV and anti-HCV thera-
pies in terms of HCC prevention. Although these treatments significantly reduce the risk for HCC
in patients with chronic viral hepatitis, this risk is not eliminated. Therefore, we evaluate potential
strategies to improve these outcomes further and address some of the remaining controversies.
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1. Introduction

Primary liver cancer ranks as the sixth most common cancer globally and the third
leading cause of cancer-related death [1]. Hepatocellular carcinoma (HCC) is by far the
most dominant histological subtype of liver cancer, accounting for about four-fifths of all
cases [2]. Globally, the incidence of HCC is increasing, with GLOBOCAN predicting an
increase from 841,000 cases in 2018 to 1.4 million cases in 2040. In parallel, it also predicts
increased mortality, from 780,000 deaths in 2018 to 1.3 million in 2040 [3]. Infections with
hepatitis B (HBV) or C virus (HCV) represent the most significant risk factors for the
development of HCC, followed by heavy alcohol consumption. Epidemiological data
from 50 countries indicate that at least 60% of all HCC cases are attributable to either
HBV or HCV [4]. Although virus-related HCC is prevalent worldwide, there are notable
geographical variations in the proportion of patients with HCC associated with HCV
versus those with HBV. Reflecting the incidence and distribution of these two hepatitis
viruses, HBV-induced HCC is more common in countries with a low to middle human
development index. In contrast, HCV is responsible for most virus-related HCC cases in
regions with a higher developmental index [5].

2. HBV

HBV is a small, partially double-stranded DNA virus belonging to the hepadnaviridae
family. In 2015, 257 million persons, 3.5% of the global population, were living with a
chronic HBV infection, making it the most common blood-borne infection in the world [6].
Patients with chronic hepatitis B (CHB) may develop cirrhosis, and the 5-year cumulative
incidence ranges between 8% and 20%. About 2% to 5% of patients who develop cirrhosis
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may then face an HCC risk annually [7]. During early 1980s, a hepatitis B vaccine was
developed, successfully reducing the disease burden. By 2015, the global coverage of
persons with three doses of this HBV vaccine was 84%. Consequently, the global proportion
of HBV-infected children younger than five years old dropped from 4.7% in the pre-
vaccination era to 1.3% in 2015 [8]. Evidence continues to accumulate, showing that
this mass vaccination substantially reduces the disease burden associated with HBV. For
example, mass vaccination campaigns in China reduced the prevalence of new HBV
infections by 90%. Models estimate that this prevented around 2.8 million to 3.5 million
deaths associated with HBV in the future. Most were predicted to be associated with
HCC [9]. For chronic HBV carriers, the current therapeutic options do not provide a
virological cure, but treatments with nucleos(t)ide analogs (NAs) can effectively reduce the
risk of HCC [10,11].

3. HCV

HCV is a single-stranded RNA virus belonging to the Flaviviridae family. Every year,
approximately 1.75 million persons are infected with HCV, and HCV-related liver cirrhosis
or HCC results in the death of over 350,000 patients. In 2020, 58 million people were
estimated to have chronic HCV infection [8]. In patients with a chronic HCV infection, the
risk of HCC gradually increases with the progression of liver fibrosis. Once cirrhosis is
established, the annual incidence of HCC is high at 2 to 8% per year [12]. In contrast to
HBV, there is currently no preventive vaccine for HCV. However, over the last decade, very
effective direct-acting anti-viral agents (DAAs) have been developed that can cure the vast
majority (>90%) of HCV patients. Studies with these agents have convincingly demon-
strated that obtaining a sustained virological response (SVR) with DAAs significantly
reduces the risk of HCC [13].

To underscore the importance of viral clearance in the prevention of HBV- or HCV-
related HCC, this review provides firstly a brief overview of the molecular mechanisms
that form the basis of the oncogenic potential of these viruses. Subsequently, we provide
evidence supporting the efficacy of the current HBV and HCV treatment strategies in
averting the development of HCC. With these treatment modalities, the risk for HCC in
patients with chronic viral hepatitis is significantly reduced but not abolished. Therefore,
we address potential strategies to improve these outcomes further and discuss some of the
remaining controversies.

4. Molecular Mechanisms by Which HBV and HCV Induce HCC

Chronic infections with HBV or HCV significantly increase the risk of developing
HCC [7,14,15]. However, not all persistently infected individuals develop liver cancer,
indicating that chronic infection with these viruses by themselves is generally not enough
to develop cancer. As with many cancers, multiple factors contribute to oncogenesis. HBV
and HCV only provide a portion of the oncogenic pressure (Figure 1) and combine with
other factors (such as environmental, lifestyle, or genetic factors) to develop HCC [16].
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Figure 1. Mechanisms of oncogenesis by HCV and HBV. Percentages indicate the frequency with which the effect is
observed in patients with infection-associated HCC. Viral proteins implicated in the oncogenic mechanism are noted.

5. Chronic Inflammation

A crucial mechanism by which chronic HCV and HBV drive the development of
HCC involves chronic liver inflammation. HCV-related HCC often develops exclusively
in the context of liver cirrhosis [17]. Although most HCC cases develop in patients with
chronic HBV infection and cirrhosis, there are still 10–20% of HBV-related HCC cases that
occur in the absence of cirrhosis [18]. The persistence of inflammatory stimuli resulting
from a chronic HCV or HBV infection combined with dysregulated immune regulatory
mechanisms causes a state of constant inflammation, leading to fibrosis, cirrhosis, and
neoplastic transformation in the liver parenchyma. This immune-mediated liver damage
is mainly caused by the release of reactive oxygen species (ROS) and pro-inflammatory
cytokines by hepatocytes and immune cells (in particular, natural killer cells and T cells).
The resulting necroinflammation stimulates hepatocyte regeneration and wound healing.
When a patient fails to clear HBV or HCV completely, this constant process of necroin-
flammation and subsequent wound healing responses gradually increases the oxidative
stress in the liver, leading to the induction of epigenetic and oncogenic alterations, telomere
shortening, and genomic instability [19]. Specifically for HCV, researchers have found that
the incomplete eradication of HCV results in the selection of escape mutants that evade the
immune system and establish a chronic infection [20]. In addition to fueling the persistent
inflammatory state, the release of ROS and specific cytokines results in the activation of
stellate cells and fibroblasts in the liver. In turn, these cells enhance the synthesis of collagen
and alter the extracellular matrix, ultimately leading to fibrotic remodeling of the liver
microenvironment [21].

6. Viral Proteins Deregulate Cellular Pathways and Induce Oxidative Stress

In addition to the inflammation-mediated, indirect oncogenic effect, both HCV and
HBV also directly influence hepatocarcinogenesis. This direct oncogenic effect involves
specific viral proteins.

The HBV protein HBx exhibits carcinogenic activity. HBx modulates several inflam-
mation pathways such as signal transduction and, consequently, the progression of liver
disease, including the MAPK, NF-κB, IL-6/STAT3, and PI3K pathways, as well as signaling
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by Src [22]. HBx also activates the Wnt/β-catenin pathway, leading to an accumulation
of β-catenin and the subsequent induction of pro-angiogenic factors [23]. Interestingly,
HBx binds to the tumor suppressor p53 in the cytoplasm, preventing the translocation of
p53 into the nucleus, where p53 is involved in responding to DNA damage by activating
cell cycle checkpoints, apoptosis, and DNA repair [24]. Ultimately, this hampered p53
activity leads to genomic instability, which drives neoplastic transformation. A second
mechanism by which HBx promotes the development of HCC consists of epigenetic regu-
lation. HBx encourages the expression of several DNA methyltransferases, which in turn
regulate the face of a broad range of proto-oncogenes and tumor suppressors via hypo-
and hypermethylation. HBx also exhibits epigenetic activity through the promotion of
histone (de)acetylation of cancer-related genes, microRNAs (e.g., miR-122), and non-coding
RNAs [25].

In HCV-infected hepatocytes, the HCV core protein and NS5A are essential for altering
signaling through pathways involved in cancer [26]. The HCV core protein impacts cell
growth, differentiation, apoptosis, transcription, and angiogenesis. Its mechanism of action
is to activate MAPK, Wnt/β-catenin, TGF-β, PI3K/Akt/mTOR, NF-κB, IL-6/STAT3, and
androgen receptor signaling and suppress apoptotic signaling. Similarly, NS5A engages
with several pro-oncogenic pathways, such as β-catenin, PI3K/AKT/MTOR, NF-κB, and
p53 [27].

Both viruses influence chromatin structure and gene expression by altering epigenetic
regulation and the production of microRNAs. Through these mechanisms, viral proteins
from each virus also impact pathways implicated in oncogenesis and contribute to HCC
development. HBx of HBV and HCV core protein alter epigenetic events by increasing
DNA methyltransferase activity and histone deacetylation [28,29]. HBx also increases
miR-122 and other non-coding RNAs [25]. HCV core protein increases miR-155, which is
markedly increased in patients infected with HCV and stimulates hepatocyte proliferation
and tumorigenesis by activating Wnt signaling [30,31].

Both HBV and HCV replication involves the endoplasmic reticulum, the site where
viral proteins are produced, and the source of the lipids surrounding the virus. Along with
HBx, the HBV proteins HBsAg and HBcAg are associated with the induction of oxidative
stress as a result of impaired protein folding in the endoplasmic reticulum. The HCV core,
E1, E2, NS4A, and NS4B proteins also cause this endoplasmic reticulum stress [19]. During
infection, the production of these viral proteins leads to the accumulation of misfolded
proteins in the endoplasmic reticulum, which activates the unfolded protein response. As
part of this response, calcium ions are released from the endoplasmic reticulum into the
cytoplasm, which stimulates ROS production that can induce inflammation, tissue damage,
and fibrosis and contribute to the development of HCC [19].

7. HCV-Induced Hepatic Steatosis

A specific oncogenic effect of HCV relates to hepatic steatosis, which is defined as
an excessive triglyceride presence in hepatocytes. Hepatic steatosis is independently
associated with HCC development in patients with HCV-related cirrhosis [32]. HCV core
protein alters lipid metabolism. In a transgenic mouse model, overexpression of HCV core
protein reduces triglyceride transfer protein activity, which results in the accumulation of
triglycerides in hepatocytes and causes oxidative stress that contributes to an oncogenic
liver environment [33].

8. HBV Integration in Host DNA

A carcinogenic mechanism specific to HBV is the genomic integration of HBV DNA
into the hepatocyte genome, a feature that is observed in 80–90% of HBV-related HCC
cases [34]. HBV DNA integration appears to occur early in the infection. Viral DNA
integration fuels hepatocarcinogenesis through three mechanisms. First, HBV DNA in-
tegration causes genomic instability, a known hallmark of cancer. Although integration
occurs in most infected individuals, those without HCC have HBV sequences randomly
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integrated throughout the genome. In contrast, HBV DNA integration in patients with
HCC is enriched in regions known to cause chromosomal instability [35]. Secondly, more
comprehensive sequencing studies show recurrent HBV DNA integration sites at genetic
loci that encode for proteins with significant involvement in initiating HCC carcinogene-
sis [34]. A prime example is HBx-LINE1 gene fusions, a genomic aberration that can be
found in about a quarter of HBV-associated HCCs [36]. Finally, the integration of HBV
DNA can also lead to the production of mutant HBV proteins, leading to an overload of
the endoplasmic reticulum, resulting in oxidative stress [37].

9. Predictors of HCC and Screening Strategies

The neoplastic transformation of chronic hepatitis B is driven by an interplay between
direct and indirect mechanisms of carcinogenesis in the context of chronic inflammation
and the regeneration of liver cells [26]. Understanding factors that at the individual level
promote liver carcinogenesis is of paramount importance for the configuration of cost-
effective screening programs and linkage to patient care. Not surprisingly, several viral
covariates have been associated with HBV transition to HCC, the most robust predictor of
HCC being a high viral load, independent of the patient’s cirrhosis status or high HBsAg
levels [38–40]. Thus, this finding sets the stage for anti-viral therapy to become the only
realistic approach to temper the risk of the neoplastic transformation of chronic HBV
infection progression.

The follow-up reanalysis of 48,149 patient years from the REVEAL study in Taiwan
offered essential insights into the association between the lifetime risk of HCC and the
HBV infection phase. HCC risk was strikingly high in males and HBeAg seroconverters
who had remained HBV DNA-seropositive compared to those who cleared both HBsAg
and HBV DNA (80.1% vs. 4.0%) [41]. However, HBsAg seroclearance occurs in less
than 10% of patients treated with NAs and interferon (IFN) and is associated with HBV
DNA detectability in the liver [42,43]. The HCC risk is higher in older HBV patients,
implying the pathogenic relevance of the infection length and the age-dependent loss of
protective mechanisms against cancer. In a multiethnic milieu such as the US, the HCC
risk was higher in HBV carriers of African American origin than in Whites, Latinos, and
Asians [44]. Together with genetic studies, these findings highlighted the importance
of genetics as an outcome modifier of HBV infection and opened the way to studies of
single-nucleotide polymorphisms that have been identified to confer susceptibility to
HCC. In contrast, evidence started to accumulate that an interaction between a genetic
predisposition to HCC and the lifestyle choices of HBV carriers have a severe impact
on the risk of HCC development. One study demonstrated the lethal consequences of
alcohol abuse that have long been recognized in both hemispheres, since drinking alcohol
accelerates the development and progression of liver cirrhosis and HCC in HBV patients in
a dose-response pattern, and some studies also exhibit a positive interaction with tobacco
smoking [45]. In the seminal studies performed decades ago, tobacco was found to boost the
risk of HCC development in HBV patients independently of other confounders, including
alcohol. This association was later confirmed by a large meta-analysis, in which the
hazard (random effect) of HCC development was 1.87, 15.8, and 21.6 for HBV-seronegative
smokers, HBV-seropositive non-smokers, and HBV-seropositive smokers, respectively [46].
In HBV-infected patients, steatosis is related to an increased risk of liver fibrosis, followed
by HCC progression, independently of anti-viral therapy [47,48]. In a meta-analysis
including almost 22,000 patients, the presence of diabetes, a dominant culprit in liver
steatosis, was associated with significantly increased overall mortality (pooled RR: 1.93
(1.64–2.27)) compared to HBV carriers without diabetes [49].

10. Prediction Models and Scoring Systems for HCC Development

Ultimately, the essential variables concerning the HCC risk in hepatitis B carriers
are linked to the liver disease stage and hepatic fibrosis. The stage of liver fibrosis can
be assessed with non-invasive methods that have been validated in patients with other
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chronic liver diseases. The most popular method includes transient elastography, which
measures liver stiffness. Scores based on a combination of serum markers [50–52], which
incorporate host, viral, and liver disease variables, accurately predict the HCC risk in
patients with a chronic HBV infection. (Table 1) [40,47,53–55]. Following the selection of an
appropriate cut-off value, all these scores for HCC exhibit a substantial negative predictive
value in the range of 5 to 10 years. The European Association for the Study of the Liver
(EASL) endorses the PAGE-B score for HCC risk stratification, recommending biannual
screening with abdominal ultrasound for HBV carriers with a score of 10 or more [56]. Full
descriptions of each scoring system are beyond the scope of this review but are summarized
in Table 1.

Table 1. Models that could predict HCC development in patients with HBV.

Chinese University
Model [40]

Guide with Age,
Gender, HBV DNA,

Core Promoter
Mutations, and
Cirrhosis (GAG

Model) [53]

Risk Estimation for
HCC in CHB

(REACH-B Model)
[54]

Modified
REACH-B Model

[57]

Liver Stiffness
Measurement

Model [47]

Score Based on
Age, Gender, and
Platelet Count for
HCC in CHB [55]

Items

Age
Albumin
Bilirubin
Cirrhosis

HBV DNA level

Age
Gender

BCP mutation
Cirrhosis

HBV DNA level

Age
Gender

ALT level
HBeAg status

HBV DNA level

Age
Gender

ALT level
HBeAg status

Liver stiffness value

Age
Albumin

HBV DNA level
Liver stiffness value

Age
Gender

Platelet level

Negative
Predictive Value 97% at 10 years 99% at 10 years 98% at 10 years 96.8% at 5 years 99.4% at 10 years 100% at 5 years

BCP: basal core promoter; ALT, alanine aminotransferase.

11. Anti-HBV Therapy as Secondary HCC Prevention

An initiative to increase HBV awareness and treatment was commenced by the WHO
and other health agencies in 2016, with the aim of eliminating viral hepatitis by 2030 [58].
High-impact interventions were planned, followed by studies that modeled the hepatitis
epidemiology and covered aspects such as increasing sanitation, newborn mass vaccination
against HBV, screening, and linkage to care of the infected populations. In patients with
an untreated HBV infection, the incidence of HCC increases with the increase in the
serum HBV DNA level. The advised first-line regimen for chronic hepatitis B is INF-α
and tenofovir (TDF) and entecavir (ETV), which reduces hepatic inflammation via viral
suppression [56]. Randomized controlled trials and meta-analyses have demonstrated that
administering IFN for a finite duration reduces the risk of HCC in treated compared to
untreated patients [59–62]. In most patients, the continued administration of either NA has
caused attenuation, but unfortunately not the eradication, of the HCC risk. The persistence
of the HCC risk results from NA failing to eradicate cccDNA and the integrated sequences
of the HBV DNA. This leads to the limited rates of serum HBsAg clearance in NA-treated
patients, whereas the persistence of residual HCC risk has been recognized even in patients
who do not show serum HBsAg following anti-viral therapy, specifically in those patients
with HBsAg seroclearance occurring after 50 years of age [56]. As per a joint report of
the American and European Societies of the Study of the Liver, the pragmatic goal of NA
therapy is to achieve a functional HBV cure, defined as permanent HBsAg clearance with
or without HBsAg seroconversion after treatment completion [63]. In real-world practice,
however, durable suppression of serum HBV DNA coexisting with detectable HBsAg is
the expected outcome of most patients treated with NA [11,55,64].

Several large-scale epidemiological studies identify high levels of HBV DNA in the serum
as a critical risk factor for HCC development in chronic HBV cases [65,66]. The REVEAL-HBV
study, which followed more than 3600 HBsAg carriers for an average of 11 years, revealed an
independent dose-dependent relationship between a serum HBV DNA level above 2000 IU/mL
and HCC development [39]. Other HBV-related factors associated with an increased risk for
HCC include specific variations in the HBV DNA sequence, the HBV genotype, mutations in
the basal core promoter, and levels of quantitative HBsAg [67–69]. Given the close relationship
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between these viral characteristics and the risk for HCC, HBV replication is a logical target for
preventing HCC in this setting.

The first evidence for preventing HCC with anti-viral therapy in patients with chronic
HBV comes from studies with older NAs, such as lamivudine and adefovir. Liaw et al.
reported that lamivudine (with a mean treatment duration of 3 years) significantly reduced
the HCC risk compared to a placebo (HCC incidence 3.9% vs. 7.4%; hazard ratio (HR):
0.49; p = 0.047) [70]. A meta-analysis, including more than 6800 patients, reported sim-
ilar 4-year HCC rates in lamivudine-treated and control patients [71]. However, these
first-generation NAs are no longer used, mainly due to suboptimal virological responses
associated with HBV resistance, which is referred to as a low genetic resistance barrier.
Currently, the treatment guidelines for HBV unanimously recommend the use of ETV or
TDF [56,72]. These agents are well-tolerated and have a much higher genetic resistance
barrier. Their long-term use induces sustained virological suppression in the vast majority
of patients (>95%), along with histological improvements and regression of fibrosis and cir-
rhosis [73,74]. Furthermore, cohort and population studies carried out all across the world
demonstrate that long-term use (>5 years) of either ETV or TDF prevents the development
of HCC in the majority of patients [11,75–77]. A cohort study from Hong Kong including
1225 chronic HBV patients who were treated with ETV between 2002 and 2015 compared
the HCC incidence among ETV-treated patients to the expected HCC incidence calculated
with well-established HCC risk scores for a patient with chronic HBV [76]. The reduction
in HCC risk achieved with ETV was significant starting from year six of treatment with a
standardized incidence ratio of 0.68 (95% CI: 0.535–0.866). Notably, the HCC-preventing
effect of ETV was seen in both cirrhotic and non-cirrhotic patients [76].

12. Tenofovir or Entecavir: One Better Than the Other?

Current international treatment guidelines recommend ETV or TDF as equal first-line
treatment options for chronic HBV [56,72]. However, several non-randomized studies
suggest a lower HCC incidence with TDF than with ETV, which has fueled a discussion of
whether one NA is superior to the other. This discussion was kicked off by the results of a
large Korean population study indicating a significantly lower risk for HCC in chronic HBV
patients treated with TDF compared to those treated with ETV (HR: 0.68) [78]. However, a
second Korean cohort study with a largely overlapping patient cohort failed to confirm
this and did not show any difference in HCC risk between ETV and TDF (HR: 1.02) [79].
Subsequently, several other observational studies and meta-analyses did not conclude
and support the superiority of a single regimen compared to the other [80–84]. The
systematic review and meta-analysis by Tseng et al. may resolve this controversy [85].
This analysis corrected some important limitations of earlier attempts to address this
point. Confounding factors that were appropriately resolved included addressing the
heterogeneous populations, including only a few comparative studies, the pooling of
unadjusted data with adjusted data, the presence of overlapping cohorts, and the analysis
of HCC data as a dichotomous outcome instead of through time-to-event data. Tseng et al.
included 31 studies representing 119,053 patients. When considering the eight studies
with matched populations using propensity score matching, there was no difference in
the pooled 5-year cumulative HCC incidence between the two NAs (p = 0.87). However,
elastographic cirrhosis reversion (liver stiffness <12 kPa) after five years of treatment was
seen in 71% of patients with pretreatment liver cirrhosis, and it was more common in TDF-
than in ETV-treated cases (74% vs. 62%, p = 0.04) [86]. Another meta-analysis analyzing
13 studies with multivariable or propensity-score-matched risk assessments, involving
around 4000 HCC cases and 80,000 HBV HCC-free patients, showed no difference in HCC
incidence between the TDF and ETV treatment groups (HR 0.86, 95% CI 0.72–1.04) [87].
This outcome was consistent with the propensity-score-matched meta-analysis (HR 0.83,
95% CI interval 0.66–1.03) and the subgroup analysis, revealing the marked resemblance
of TDF to ETV for HCC prevention, continued in studies with a longer follow-up of
more than four years. However, the finding that the similarity between TDF and ETV for
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HCC prevention was lost among patients with a follow-up time shorter than four years
(p interaction < 0.01) led the authors to speculate that the heterogeneous effects of included
reports might emerge from the variation in the follow-up time. As all the above-discussed
meta-analyses were draining data from the same pool of studies, it is worth noting that
more robust scrutiny through single-data patient meta-analysis or a large-scale randomized
comparative trial might help to solve the controversy as to which regimen dominates the
chemoprevention of HBV-related HCC.

13. Can We Prevent More Cases of HCC by Treating HBV Patients Earlier?

The most recent guidelines for HBV treatment (EASL/AASLD) recommend that
anti-HBV treatment in people aged ≥30/40 years with a viral load of >2000 IU/mL is
indicated even in the absence of significant fibrosis or increased alanine aminotransferase
(ALT) [56,72].

However, abiding by these recommendations does not completely eradicate the risk of
HCC (Figure 2). Long-term follow-up data demonstrate a low but persistent risk for HCC in
patients treated with long-term NA therapy (annual risk 0.5–1.4% in non-cirrhotic patients
and 0.7–5.0% in cirrhotic patients) [10]. In addition, studies indicate that the incidence
of HCC only starts to drop after five years of NA therapy [10,11,88]. Thus, an extended
treatment duration might be necessary to maximize the preventive HCC effect and fuel
a discussion of whether starting treatment earlier than currently recommended might
improve clinical outcomes and decrease the HCC risk [11]. Retrospective data reported by
Kim et al. showed that chronic HBV patients who remained untreated had a 2- to 3-fold
increased risk of HCC development, requiring liver transplantation, or dying than patients
who initiated NA therapy [89].

Figure 2. Mechanisms of HCC prevention and risk persistence following DAA or NA therapy.

Initiating anti-viral therapy at an earlier HBV disease stage also has a mechanistic ratio-
nale. Studies indicate that genomic integration of HBV DNA, which is a critical oncogenic
driver of HBV-related HCC, is frequently detected in young patients with immune-tolerant
disease [90]. Additionally, other pro-oncogenic features of HBV, including HBV-specific
T cell responses and hepatic necroinflammatory activity, are often detectable in young
immune-tolerant patients [91]. Based on these findings, it is tempting to assume that hepa-
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tocarcinogenesis starts in the immune-tolerant phase of chronic HBV and that oncogenic
events accumulate throughout the disease. Thus, the current treatment paradigms would
enable decades of unhindered oncogenic events, which a “treatment-for-all” approach
would prevent.

Apart from potentially preventing additional cases of HCC, adopting a treatment-
for-all approach in which younger chronic HBV patients are treated with NAs would
yield other advantages. It would prevent further patient transmission of HBV and would
simplify the management of chronic HBV patients. It would shift the paradigm from a
model necessitating multiple tests to assess treatment eligibility (serology, assessment of
HBV DNA level, evaluation of liver fibrosis, etc.) to a simple “test-and-treat” approach.
Moreover, in the current era of generic NAs, the costs of NA treatment have become
lower than the costs of disease monitoring. Cost-efficacy analysis shows that initiating
anti-viral therapy in the immune-tolerant phase is cost-effective compared to delaying
therapy until patients have progressed to the active hepatitis phase [92]. However, hurdles
are still in place preventing the implementation of such a treatment-for-all approach. First,
models estimate that nine out of ten chronic HBV patients are not aware that they had the
infection, and even when detected, subsequent linkage to care with NA therapy remains
suboptimal [93]. A second hurdle relates to the need for lifelong (or prolonged) treatment
to prevent a flare-up of the infection, but such a prolonged treatment regimen comes with
treatment compliance issues.

14. Is There a Role for Statins and Aspirin?

Both aspirin and statins can affect liver cell metabolism and the inflammation as-
sociated with hepatocarcinogenesis. A large-cohort study, including over 7700 patients
with chronic HBV followed for a median of 7.2 years, showed that statin use (defined as
28 cumulative daily doses) was associated with a 64% reduced risk for HCC compared
to no statin use (adjusted HR (95% CI): 0.36 (0.19–0.68)). This HCC prevention effect of
statins was dose-dependent and observed in all investigated subgroups [94]. The proposed
mechanisms of this anticancer effect, which is not limited to HCC but has been reported
for other cancers, are believed to be mediated by inhibiting the mevalonate pathway and
its downstream products. These products are critical for malignant cell proliferation and
the inhibition of hepatic fibrogenesis [95–97]. In addition to this, statins may slow down
the synthetic process of cholesterol and the replication of HBV, thus possessing anti-HBV
activity [98].

A similar preventive HCC effect for aspirin was described in a cohort study conducted
across Taiwan, including over 10,000 patients with chronic HBV. The cumulative incidence
of HCC was significantly lower among chronic HBV patients who received daily aspirin
for ≥90 days (n = 2123) compared to patients who did not (n = 8492) (5.2% vs. 7.87%; HR
(95%C): 0.71 (0.58–0.86); p < 0.001) [99].

Recently, Simon and colleagues analyzed the effect of aspirin on HCC development in
14,205 chronic HBV or HCV patients, with low-dose aspirin intake and found after 7.9 years
of follow-up, aspirin significantly lowered the rate of HCC compared to 50,275 chronic
HBV or HCV patients with no aspirin intake (4.0% vs. 8.3%; HR (95%C): 0.69 (0.62–0.76);
p < 0.001) [100].

15. Novel Treatments

Hepatic neoplastic transformation in patients who carry HBV involves the clearing
process of nuclei (present in infected hepatocytes) from HBV DNA sequences that are
integrated into chromosomes and also from free viral cccDNA. Unfortunately, NAs fail
to clear those. This may partly explain the residual risk for HCC seen in chronic HBV
patients treated with these agents. NA adequately controls HBV replication, but a cure
is rare. Therefore, therapy has to be given indefinitely, raising the prospect of selecting
drug-resistant virus variants. Pegylated-IFN-α-based therapies may in some cases cure the
HBV infection but suffer from a moderate response rate and severe side effects. Advances
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in understanding the HBV life cycle are being exploited to develop novel anti-viral agents
that suppress HBV replication and inhibit the formation of cccDNA. As the persistence of
cccDNA characterizes chronic hepatitis B, this could be a potential target, which is currently
not targeted by approved drugs. Agents under investigation include those that block HBV
entry into hepatocytes, target cccDNA using CRISPR technology or epigenetic silencing,
promote the degradation of viral RNA with RNA interference molecules, or disrupt the
production and secretion of viral proteins. Strategies are also used to restore or enhance
the anti-HBV immune response.

Moreover, targeting host factors contributing to the life cycle of HBV may present
new possibilities for developing innovative therapeutic strategies aiming at an HBV cure.
Recent advances in understanding HBV–host interactions highlight how exploiting host-
targeting may lead to a viral cure strategy. Although some of these agents have yielded
promising results in early clinical studies, the holy grail of a functional cure for HBV
remains elusive [101,102].

16. Anti-HCV Therapy for the Prevention of HCC

Like HBV, active HCV infection is central to the hepatocarcinogenic process. Thus,
viral elimination is the goal for the secondary prevention of HCC. In this respect, studies
from the IFN era convincingly demonstrated that an SVR following IFN-based therapy
reduced the risk for HCC to 0.5–1% per year (vs. 2–8% per year in untreated chronic
HCV patients with cirrhosis) [12,103]. Unfortunately, an SVR to IFN-based therapy was
only achieved in half of the patients. Furthermore, IFN toxicity limits its use in patients
with cirrhosis.

During the last decade, IFN-free DAA drugs have revolutionized the HCV treatment
landscape. An SVR is obtained with these agents in >95% of patients, and most show im-
provements in liver fibrosis and liver function and a reduction in portal hypertension [104].
Moreover, these agents have an excellent safety profile and minimum adverse effects and
can be used in patients with decompensated liver disease. Achieving SVR is proven to
be beneficial at all stages of fibrosis, including in patients with decompensated cirrhosis;
however, the elimination of risk in HCC in patients with decompensated cirrhosis cannot
be achieved; therefore, surveillance for HCC is extremely important for patients with ad-
vanced fibrosis or cirrhosis after achieving SVR. [105]. Bruno et al. discuss the ‘point of no
return’, since disturbances to the liver architecture in decompensated cirrhosis tend to have
a poor prognosis that leads to the development of HCC [106]. Box 1 provides the summary
of treatment options for viral hepatitis that are under consideration or development aimed
towards HCC prevention.

Box 1. Summary of viral hepatitis treatment options under current consideration or development
aimed towards HCC prevention.

• Current international treatment guidelines recommend ETV or TDF as equal first-line treatment
options for chronic HBV.
• Pegylated-IFN-α-based therapies in selected patients may cure HBV infection; however, it can
be associated with significant severe side effects.
• Novel agents under investigation include those that block HBV entry into hepatocytes, target
cccDNA using CRISPR technology or epigenetic silencing, promote the degradation of viral RNA
with RNA interference molecules, or disrupt the production and secretion of viral proteins.
• Recent advances in understanding HBV–host interactions highlight how exploiting host-
targeting may lead to a viral cure strategy.

17. HCC Occurrence after DAA Therapy

Given the high rate of SVR obtained with DAA, it decreases the risk of HCC and
thus reduces the HCV-related morbidity and mortality rates. However, two early reports
suggested an unexpectedly high incidence of HCC in HCV patients who achieved SVR
after DAA therapy (a 1-year cumulative HCC rate of 3.6% in one study, a 6-month HCC
rate of 4% in the other) [107,108]. Cardoso et al. subsequently reported a 1-year HCC rate
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of 7.4% and a short median time to HCC development of 7 months [109]. In a study by Ravi
et al., an even higher 6-month HCC incidence of 9% was reported in a cohort of 66 chronic
HCV patients with cirrhosis [110]. These controversial results sparked a heated debate on
the risk of HCC following an SVR on DAA therapy and fueled hypotheses on the potential
involvement of DAAs in hepatocarcinogenesis. However, these initial studies had some
crucial drawbacks. They were all characterized by a small sample size, a short follow-up
period, and the absence of a control arm. As such, it is no surprise to see that a stream of
subsequent studies, both retrospective and prospective, counteracted these findings and
firmly established the HCC chemopreventive potential of DAA therapy (Table 2).

A retrospective study by Singer et al. compared the HCC incidence between untreated
chronic HCV patients (n = 137,502) and patients treated with DAA (n = 30,183) or IFN-based
therapy (n = 12,948). After adjusting for age and cirrhosis status at baseline, DAA-treated
patients had a significantly lower risk of HCC than untreated patients (HR (95% CI): 0.84
(0.73–0.96)) and then patients treated with IFN (HR (95% CI): 0.69 (059–0.81)) [111]. A
similar 70% HCC risk reduction with DAA therapy vs. no treatment was reported by
Janjua et al. [112].

The importance of adjusting for confounding factors is illustrated by a final retrospec-
tive study by Nahon et al., which showed a higher 3-year HCC incidence in patients treated
with DAAs compared to those obtaining an SVR with IFN (5.9% vs. 3.1%; unadjusted HR
(95% CI): 2.03 (1.07–3.84); p = 0.030) [113]. However, it is essential to underscore that this
study did not adjust for differences in patients and disease characteristics between the DAA
and IFN cohorts. This is particularly important because IFN-based therapy was mainly
used in younger chronic HCV patients with mild to severe fibrosis. In contrast, the patients
who received DAA therapy were predominantly those with cirrhosis and with advanced
age. When an analysis does not correct for these differences, a higher HCC incidence in the
DAA cohort is not surprising.

Several prospective studies further undercut the initial reports of a higher risk of early
HCC with DAA therapy. A French study that included 7344 chronic HCV patients treated
with DAAs and 2552 untreated patients confirmed that DAA treatment was associated with
a significant decrease in HCC (adjusted HR (95% CI): 0.66 (0.46–0.91)) [114]. A prospec-
tive multicenter cohort study including 1400 Latin American patients with chronic HCV
(median follow-up: 16 months) showed that an SVR with DAA regimens was associated
with a 73% relative risk reduction for de novo HCC with a cumulative HCC incidence in
cirrhotic patients of 0.02 and 0.04 at 12 and 24 months, respectively [115].

Table 2. Selection of retrospective and prospective studies evaluating the incidence of de novo HCC in DAA-treated HCV
patients (adapted from Muzica et al.) [116].

Reference Patient Population Follow-Up De Novo HCC Incidence in
DAA-Treated Patients

Retrospective Studies

Conti et al. [108] n = 285; cirrhotic,
DAA-treated Mean 5.6 months 3.26%

Ravi et al. [110] n = 66; cirrhotic, DAA-treated 6 months 6-month rate: 9.1%

Cardoso et al. [109] n = 240; cirrhotic DAA-treated Median 12 months 1-year rate: 7.4%

Singer et al. [111]

Chronic HCV, DAA-treated
(n = 30,183), IFN-treated (n =

12,948), or untreated (n =
13,7502)

Mean 1.05 years 1.18 per 100 person-years

Nahon et al. [113]

Compensated cirrhotic;
DAA-treated (n = 336),

IFN-treated with SVR (n =
495), or IFN-treated without

SVR (n = 439)

Median 21.2 months 2.6 per 100 person-years
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Table 2. Cont.

Reference Patient Population Follow-Up De Novo HCC Incidence in
DAA-Treated Patients

Ioannou et al. [117]
DAA-treated (n = 21948),

IFN-treated (n = 35871), DAA
+ IFN treated (n = 4535)

Mean 6.1 years 1.32 per 100 person-years

Kanwal et al. [13] n = 22,500; DAA-treated Mean 1.02 years 1.18 per 100 person-years

Kanwal et al. [118] n = 18,076; DAA-treated, SVR Mean 2.9 years 3-year rate: 3%

Janjua et al. [112] IFN-treated (n = 8871),
DAA-treated (n = 3905), SVR Median 1.0 year 6.9 per 1000 person-years

Tani et al. [119] DAA-treated (n = 1088) Median 13.8 months 3-year rate: 3.71%

Watanabe et al. [120] DAA-treated (n = 1438) Median 803 days 3.82%

Prospective Studies

Cheung et al. [121]

DAA-treated (n = 406),
untreated

(n = 261); decompensated
cirrhosis

Median 18 months 4%

Mettke et al. [122]
DAA-treated (n = 158),

untreated
(n = 184)

Median 440 days 2.9 per 100 person-years

Carrat et al. [114] DAA-treated (n = 7344),
untreated (n = 2552) Median 33.4 months 1.4 per 100 person-years

Poordad et al. [123] DAA-treated (n = 2211) 156 weeks from end of
treatment 1.4%

Piñero et al. [115] DAA-treated (n = 1.017) Median 16 months Cumulative incidence 0.04 at
24 months

Sangiovanni et al. [124] DAA-treated (n = 1285) Mean 17 months 3.1 per 100 person-years

Romano et al. [125] DAA-treated (n = 3917) Median 523 days 0.97 per 100 person-years

In conclusion, DAA therapy has a preventive effect on the development of HCC in
patients with chronic HCV. The initial observation of an increased incidence of HCC in
patients who achieved SVR after treatment with DAA therapy could be explained by the
theory of early HCC development may have occurred in those with liver nodules undefined
by magnetic resonance imaging while commencing DAA treatment. This may be promoted
by the imbalance in field immunity caused by the swift eradication of HCV [126].

18. HCC Recurrence in DAA-Treated Patients

In the early DAA years, concerns were raised about a higher HCC recurrence risk
in HCV patients who had HCC. The studies that formed the basis for the de novo HCC
debate also reported an unexpectedly high rate of recurrent HCC, with an HCC recurrence
in over a quarter of patients during the first six months following the start of the DAA
treatment [107,108]. However, as for the de novo HCC risk, subsequent studies have
tackled these initial observations and confirmed that DAA therapy reduces the risk of
recurrent HCC compared to no treatment. A retrospective study by Lin et al. showed
that DAA therapy improved the survival outcomes of HCC patients and did not increase
recurrent HCC after curative therapy [127]. This conclusion was further reinforced by
a large retrospective study from the United States and Canada, including 793 patients
with HCV-related HCC, of whom 304 (38.3%) received DAA therapy and 489 (61.7%)
remained untreated. Tumor recurrence was 42.1% in DAA-treated patients and 58.9% in
untreated patients. As such, these findings underscore that DAA exposure is not associated
with an increased risk of HCC recurrence (HR (95% CI): 0.90 (0.70–1.16)) [128]. Meta-
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analyses support this conclusion. A meta-analysis, including six studies with a follow-up of
1.35–4 years indicated a 64% lower risk for HCC recurrence in patients treated with DAA
compared to controls (OR (95% CI): 0.36 (0.27–0.47); p < 0.001) [129]. Another meta-analysis,
including a total of 2957 patients from 31 studies, found that DAA therapy reduces the
risk of HCC recurrence compared to an IFN regimen (RR (95% CI): 0.64 (0.51–0.81)) and no
intervention (RR (95% CI): 0.68 (0.49–0.94)) [130].

19. Residual HCC Risk Post-SVR and the Need for Surveillance

DAA therapy for HCV significantly reduces the risk for HCC but does not eliminate
it (Figure 2). Although DAA therapy can improve advanced fibrosis and cirrhosis, this
process takes time, during which patients still have an increased risk of HCC [131]. In some
patients, SVR-induced regression of fibrosis or cirrhosis is counteracted by the acquisition of
concomitant liver damage due to alcohol abuse or non-alcoholic steatohepatitis. Addition-
ally, specific HCV-related genetic or epigenetic changes may persist in small pre-cancerous
nodules even after achieving an SVR and predispose patients to HCC development. Indeed,
Hamdane et al. found that epigenetic changes in histone H3K27ac in the liver tissue of
untreated chronic HCV patients were present after HCV clearance by either DAAs or
IFN [132]. Similarly, Perez et al. demonstrated persistent epigenetic alterations in liver
biopsy samples from patients post-SVR and showed that this epigenetic signature could be
reverted in vitro by drugs targeting a chromatin-modifying enzyme [133]. These epigenetic
scars could not only act as potential early plasma biomarkers to identify patients at risk for
HCC but might also represent therapeutic targets.

The ever-increasing number of patients with HCV clearance with DAAs, combined
with the persistent risk of hepatocarcinogenesis even after SVR, emphasizes the need for
tools that facilitate the identification of patients with the highest HCC risk. Such tools
would enable the development of tailored surveillance programs. Several risk factors
for HCC have been identified in patients with chronic HCV who obtained an SVR after
anti-viral therapy. In most studies, older age and a fibrosis stage ≥F3/F4 were consistent
significant risk factors for HCC [134]. In addition, a history of HCC, male sex, diabetes
mellitus, heavy alcohol intake, and high gamma-glutamyl transferase and alpha-fetoprotein
were found to be associated with a higher HCC risk post-SVR [116,135]. Basal liver stiffness
has emerged as a potential predictive factor for HCC in this setting. Rinaldi et al. showed a
significantly higher risk for patients with a liver stiffness of >30 kPa on FibroScan® (HR
(95% CI): 0.329 (0.131–0.830)). Degasperi et al. identified a baseline liver stiffness above
30 kPa as an independent predictor of de novo HCC (3-year HCC rate of 20% and 5% for
patients with a liver stiffness >30 kPa and ≤30 kPa, respectively) [136].

This long list of risk factors underscores that liver histology is not the only predictor
of HCC post-SVR and questions the current surveillance strategies that almost entirely
depend on the stage of fibrosis [137,138]. It would be more accurate to estimate the HCC
risk directly rather than indirectly by extrapolating from the fibrosis stage and use this
HCC risk to decide the need for HCC surveillance. A simple tool to estimate the HCC risk
in post-SVR HCV patients consists of the fibrosis-4 score (FIB-4), which is calculated using
the circulating concentrations of aspartate aminotransferase (AST) and ALT, the age of the
patient, and his/her platelet count. In post-SVR patients with HCV, a FIB-4 score of ≥3.25
identifies high-risk patients, and a score of <3.25 identifies low-risk patients [139]. Even
non-cirrhotic patients with a FIB-4 score ≥3.25 maintain a considerable 1.22% annual HCC
risk, warranting continued HCC surveillance. In contrast, the HCC risk in non-cirrhotic
patients with an FIB-4 score below this threshold was very low at only 0.24%, indicating
that these patients could potentially forego surveillance. Finally, a change in the FIB- 4 score
before and after SVR also seems to hold predictive information. Patients with an FIB-4
score ≥3.25 before and after SVR had an exceptionally high HCC risk of approximately 2%
per year. This was much lower in patients in whom the FIB-4 score dropped below 3.25
post-SVR [139]. Given the association between liver stiffness and HCC risk, FibroScan®-
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related liver stiffness could also be used to assess the HCC risk. Although easy to use,
FIB-4 and liver stiffness assessments are not the most accurate tools to assess the HCC risk.

As a more precise alternative, several multivariable regression models have been
developed. For example, data from the Veterans Affairs healthcare system was used to
establish an HCC risk score that combines SVR, age, sex, body mass index, race or ethnicity,
HCV genotype, platelet count, and the level of AST, ALT, albumin, INR, and hemoglobin
to determine a patient’s HCC risk [140]. This model predicts that the presence of several
HCC risk factors can result in an annual HCC risk of >1% in a proportion of non-cirrhotic
post-SVR patients, indicating that such patients warrant more active surveillance. Another
more straightforward risk score was recently developed (aMAP) that only relies on age,
sex, albumin-bilirubin level, and platelet count to calculate the HCC risk. The aMAP
score satisfactorily predicted the HCC risk in a cohort of 17,000 patients with viral and
non-viral hepatitis from 11 global prospective studies and was excellent in discriminating
and calibrating the 5-year HCC risk irrespective of the hepatitis etiology [141].

International society guidelines frequently quote an annual HCC risk threshold of ≥1.5%
above which HCC screening is “recommended” and considered cost-effective [137,138]. How-
ever, the treatment success of anti-HCV therapy has improved since these cost-effectiveness
analyses were performed. Newer cost-effectiveness analyses with a specific focus on post-SVR
HCV patients indicates that surveillance could be cost-effective in patients with an annual risk
of >1% [142,143].

20. Conclusions

Chronic infections with HBV or HCV are the dominant causes of HCC globally. The
growing body of evidence on the direct and indirect hepatocarcinogenic effects of these
viruses underscores the importance of viral eradication as a secondary prevention mea-
sure for HCC. Over the last years, a long list of retrospective and prospective studies has
convincingly demonstrated the HCC-preventive effects of anti-viral therapy. As far as
HBV-related carcinogenesis is concerned, there is overwhelming evidence for the positive
impact of the pharmacological suppression of HBV on the risk of HCC. However, even
patients who achieve cure following anti-HBV or anti-HCV therapy can still have a persis-
tent residual HCC risk. In this respect, the implementation of dedicated HCC surveillance
programs for those patients with the highest HCC risk remains essential. Research contin-
ues to be invested in developing novel anti-HBV or anti-HCV therapeutic modalities that
could eliminate the HCC risk and develop a predictive model of HCC risk and the best
surveillance strategies.
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