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ABSTRACT

Researchers generating new genome-wide data in
an exploratory sequencing study can gain biological
insights by comparing their data with well-
annotated data sets possessing similar genomic
patterns. Data compression techniques are needed
for efficient comparisons of a new genomic experi-
ment with large repositories of publicly available
profiles. Furthermore, data representations that
allow comparisons of genomic signals from differ-
ent platforms and across species enhance our
ability to leverage these large repositories. Here,
we present a signal processing approach that char-
acterizes protein-chromatin interaction patterns at
length scales of several kilobases. This allows us to
efficiently compare numerous chromatin-immuno-
precipitation sequencing (ChIP-seq) data sets con-
sisting of many types of DNA-binding proteins
collected from a variety of cells, conditions and or-
ganisms. Importantly, these interaction patterns
broadly reflect the biological properties of the
binding events. To generate these profiles, termed
Arpeggio profiles, we applied harmonic deconvolu-
tion techniques to the autocorrelation profiles of the
ChlIP-seq signals. We used 806 publicly available
ChlIP-seq experiments and showed that Arpeggio
profiles with similar spectral densities shared biolo-
gical properties. Arpeggio profiles of ChiP-seq data
sets revealed characteristics that are not easily de-
tected by standard peak finders. They also allowed
us to relate sequencing data sets from different
genomes, experimental platforms and protocols.

Arpeggio is freely available at http://sourceforge.
net/p/arpeggio/wiki/Home/.

INTRODUCTION

The advent of automation and use of high-throughput
sequencing techniques has brought a remarkable
increase in the rate at which biological data sets are
accumulated. Public repositories, such as the Sequence
Read Archive (SRA, http://www.ncbi.nlm.nih.gov/sra),
and The Cancer Genome Atlas (http://cancergenome.
nih.gov/) already store thousands of genome-wide data
sets from a variety of cells and biological conditions. It
is plausible that similarities of genomic profiles from dif-
ferent experiments (e.g. binding profiles of transcription
factors or transcriptomes of unique samples) are due to
similar biological mechanisms, and theoretically it is there-
fore possible to use existing repositories to explore un-
charted relationships between a variety of genomic
signals in various biological systems and conditions.

For instance, it would be possible to gain biological
insights relevant to a new genome-wide study by using
exploratory unsupervised learning approaches that
link newly generated data with well-annotated data sets
possessing similar genomic patterns. Integration of
new data with existing repositories in standard pipelines
for sequence analysis is computationally challenging
owing to the high dimensionality of each genomic profile
and the massive storage size of these databases. Data com-
pression techniques are needed for addressing these issues
and can be incorporated into these pipelines to provide
efficient comparisons of new genomic profiles to the
large volume of publicly available profiles. Furthermore,
data compression techniques that allow comparison of
genomic signals from different platforms and across

*To whom correspondence should be addressed. Tel: +1 203 737 6262; Fax: +1 203 785 6486; Email: yuval.kluger@yale.edu

The authors wish it to be known that, in their opinion, the first three authors should be regarded as joint First Authors.

© The Author(s) 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.


http://sourceforge.net/p/arpeggio/wiki/Home/
http://sourceforge.net/p/arpeggio/wiki/Home/
http://www.ncbi.nlm.nih.gov/sra
TCGA, 
http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
tiliz
due 

el61 Nucleic Acids Research, 2013, Vol. 41, No. 16

species would enhance our ability to use large existing
repositories.

Compressing and organizing large sequencing archives
involves characterization of each experiment in terms of
its genomic features, such as a list of peaks representing
events along the genome, application of dissimilarity
measures to determine pairwise affinities between the
feature vectors of each pair of experiments (e.g. overlap
between two lists of peaks), clustering, dimensional reduc-
tion, annotation and visualization of the collection of
these feature vectors. We usually assume that the
underlying cellular mechanisms captured by a pair of dis-
similar feature vectors, such as lists of binding sites of two
different DNA-binding proteins, are different. However,
data analysis of each type of sequencing experiment can be
done in numerous ways that affect the affinity between
pairs of unique data sets. The most obvious factors that
influence affinity include the preferred choice of feature
space and dissimilarity measures used. In most sequencing
analyses, practitioners tend to use standard feature spaces
and common dissimilarity measures. Specifically, in RNA-
seq analysis, the feature space of an experiment comprises
counts of reads or sequenced fragments (e.g. RPKMs or
FPKMs) of all genes, and the similarity between two tran-
scriptomes is characterized by standard correlation
measures (1,2); in DNA-seq analysis of cancer samples,
the standard feature space includes point mutations,
indels, copy number alterations and translocations, and
similarities are evaluated using basic association
measures to determine prevalence (3); in chromatin-
immunoprecipitation sequencing (ChIP-seq) experiments,
binding events are determined by peak detectors, and
similarities between two experiments are typically
evaluated simply by the number or fraction of overlapping
peaks (4-6).

ChIP-seq in particular has been widely used to unravel
transcriptional and epigenetic regulatory programs that
ultimately determine the biological phenotype. Thousands
of ChIP-seq experiments have already been collected by
large community-wide efforts such as the ENCODE
project (7,8), pilot initiatives (4-6,9), and smaller projects
(1045). Application of computational approaches
for interrogating the genome-wide interactions between
chromatin and proteins by high-throughput short
read sequencing of genomic DNA from ChIP-seq experi-
ments can reveal certain aspects of the underlying biology
(46-483).

In the present study, we use deconvolution to extract
the biological component that is indicative of distinctive
protein—chromatin interaction configurations from the
autocorrelation profiles of ChIP-seq signals. We
explored the space of the Fourier transform of the auto-
correlation profiles (spectral densities of the read coverage
distributions) using machine-learning approaches to char-
acterize protein—chromatin interaction patterns at inter-
mediate length scales of several kilobases and showed its
utility in the organization of large repositories of ChIP-seq
data. These characteristic spectral density profiles allowed
us to efficiently compare a large number of ChIP-seq data
sets consisting of transcription factors, epigenetic marks
and other types of chromatin interacting proteins collected
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from a variety of cell types, conditions and organisms.
Moreover, the deconvolved autocorrelation functions,
which we term Arpeggio profiles, reflect the biological
nature of protein—chromatin interactions, such as events
that are locally isolated, coordinated events or dynamic-
ally flexible events.

We used 806 publicly available ChIP-seq experiments
from several unrelated studies (4,5,8-45) and showed
that Arpeggio profiles with similar spectral densities
shared biological properties. Arpeggio profiles can be
modeled using a small number of parameters and thus
are mappable to a low-dimensional space that captures
biological aspects of the interaction between proteins
and chromatin. This representation facilitates efficient
indexing of databases and application of supervised, un-
supervised and inference methods to large repositories of
sequencing data comprising different genomes, experimen-
tal platforms and protocols. We also show that our
approach can be used to derive experimental and biologic-
ally meaningful quantities, such as fragment length distri-
butions, as well as the expected nucleosome spacing. Our
results suggest that harmonic analysis of ChIP-seq data
unravels signatures that are not easily captured by
standard computational means. Analogously to catalog-
ing cerebral activity with Electroencephalography (EEG),
Arpeggio analysis efficiently locates a new sample in the
map of differing protein—chromatin interaction states.

MATERIALS AND METHODS
Data sets and preprocessing

Data

We analyzed 806 public ChIP-seq experiments from data
sets obtained from the SRA (http://www.ncbi.nlm.nih.
gov/sra, Supplementary Table S1). The analyzed
proteins included transcription factors or histone modifi-
cations from human, mouse or fruit fly (Supplementary
Figure S1). In all experiments, chromatin was cross-linked
and fragmented using either sonication or MNase diges-
tion followed by immunoprecipitation using specific
antibodies (Supplementary Table S2). The ChIP-seq proto-
cols used in all these studies are transcribed verbatim
and provided in Supplementary Table S3. Controls
consist of high-throughput sequencing of immunoglobulin
G immunoprecipitation (IP) or total DNA input.

Preprocessing

With the exception of sequenced reads from the study by
Barski et al. (5), whose genome-wide alignment is provided
by the authors, all sequenced reads were mapped to their
corresponding reference genomes using the Bowtie aligner
(49) with parameters ‘-n2 -k1 -m1 -best —strata’, corres-
ponding to reporting unique alignments for each read with
at most two mismatches.

Autocorrelation and cross-correlation of ChIP-seq profiles

Autocorrelation

Given a short read sequencing sample consisting of a set R
of N aligned reads on the same strand r € R, where r in-
dicates the 5’ end of an aligned read, we defined the count
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of all pairs of reads separated by a fixed distance of t
nucleotides as:

N N .
1, ifri—r=rt
Pr(®) = ; ; { 0, otherwise M
® (1) is equivalent to the autocorrelation of the empirical

read coverage depth D(f) at each position ¢ along the
genome,

bp(r) = Y. D()D(r+7)

= [D(1) * D(=0)](7),

where * is the convolution operator.

We note that proper normalization of the read count
data is ambiguous (50,51); therefore, rather than the stat-
istical definition of autocorrelation, which is mean
centered and normalized by variance, we use the digital
signal processing (DSP) definition of autocorrelation. The
latter does not require prior knowledge of the distribution
shape. To minimize the impact of PCR artifacts,
duplicated reads were only considered once.

2

Cross-correlation

Given a short read sequencing sample consisting of a set R
of aligned reads r € R, where r* indicates the starting
position of an aligned read on the positive strand, and
r~ indicates the starting position of an aligned read on
the negative strand, we defined the aggregated cross
distance between reads on opposing strands as:

N+ N_ 1
0= {¢

i=1 j=1

ifr, —r; =1
otherwige ®)
where 1 is the offset in nucleotides and N, and N_ are the
number of reads on the positive and negative strand, re-
spectively. This is equivalent to the cross-correlation of the
empirical read coverage depth on the positive strand D (¢)
with the empirical read coverage depth on the negative
strand D_(¢) at each position ¢ along the genome,

@30 = 3 DADD-(1+D) @

= [D+(1) * D_(=0)](7).

As in the case of autocorrelation, duplicated reads were
only considered once.

Principal component analysis

Principal Component Analysis (PCA) was applied to the
collection of Fourier transforms of the Arpeggio profiles.
Only the real part of the transform should exist, and to
avoid numerical errors, the negligible imaginary part was
discarded. To avoid bias due to noise affecting length-
scales below 40bp, we applied a low-pass filter to the
Fourier transform.

Davies—Bouldin index

The data in our data set were annotated by several class
variables (e.g. Antibody target, cell line, cellular mechan-
ism, organism, study ID), each consisting of multiple class
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labels (e.g. for Antibody target: histone 3 Lysine 27 tri-
methylation (H3K27me3), H3K27me2, E2F4, etc.). For
each class variable, a sample was assigned one and only
one class label. We assigned samples to clusters based
on class label and computed the Davies—Bouldin index
(52) as:

1< oto:
DB=-) max(——~L—|), 5
,,Z i <||Ci - Cj||z> ®

i=1 "

where |C; — Cjll, was the Euclidean distance between
the two centroids C; and C;, computed using the six
leading principal components, n was the number of
clusters, and o; and o; were the mean distances of the
points in the i-th and j-th clusters from the cluster cen-
troids C; and C; P-values were computed via
bootstrapping (n = 1000).

Class label aggregation for different data representations
For each sample, we tested whether proximity in a given
data representation is indicative of similar class label as-
signments. We selected a class variable (e.g. Antibody
target, orgnanism, cellular mechanism) and for a given
sample, we constructed a binary class that designates as
positives other samples with the same class label and des-
ignates all other samples as negatives. Using this binary
class label, we computed the Area Under the Receiver
Operator Characteristic Curve (AUC) for the pairwise dis-
tances of the given sample with all other samples (53). As
the fraction of positive samples in close proximity to the
given sample increases, so does the AUC.

To avoid sampling bias, we considered only one repli-
cate at random for each group of replicated samples. Once
a sample that determines the positive class label is chosen,
its replicates are excluded. This AUC calculation was
repeated 100 times (different replicate combinations
chosen at random) for each sample, and we computed
the sample-specific expected value for the AUC as well
as its standard deviation. For all samples with the same
class label, we computed the average over these expected
AUCs and the average standard deviation for each class
label, similarly to standard approaches (54). Finally, for
each class variable, we reported the medians across all
class labels (e.g. human, mouse and fly for the organism
class variable) for both the average expected AUC and its
average standard deviation. We report the median rather
than the mean because it is more robust to outliers and is a
better estimator of expected value for arbitrary
distributions.

Supervised analyses

K-nearest neighbors classifiers (k = 1) were trained to
identify the class labels in the class variables of interest.
To avoid sampling bias, we considered only one replicate
at random for each group of replicated samples. For each
class variable, we kept one sample for testing, and per-
formance was computed using the balanced accuracy
(accuracy for each class label, averaged over all labels)
(55). This procedure was repeated for all samples, and
P-values were computed via bootstrapping (z = 100).


[
]
,
employ 
In order 
2.2.2 
C
Analysis
-
as
c&hellip;
-
[
]
,
[
]
In order t
i
[
]
In order 
[
]

el61 Nucleic Acids Research, 2013, Vol. 41, No. 16

Statistical analyses and software

All analyses were performed using our Java-based software
package and the R statistical software (56). Our Arpeggio
software can be used to download data from the SRA,
map reads to reference genomes, compute autocorrelation
and Arpeggio profiles. An R script is also available to
generate and plot Arpeggio profiles. The Arpeggio
software suite is freely available at http://sourceforge.
net/p/arpeggio/wiki/Home/ together with a detailed
tutorial.

RESULTS
Spectral density of ChIP-seq signals

To enhance our understanding of a new ChIP-seq sample,
it is often beneficial to relate it to relevant ChIP-seq ex-
periments in public repositories. Here, we relate experi-
ments based on their signal proximity, and therefore an
appropriate distance metric is needed.

A naive comparison of ChIP-seq experiments can be
done by measuring the distance between their coverage
depth graphs. The genome consists of a large number of
genomic positions (~3 billion for the human genome)
from which one can theoretically sample reads. This
pairwise comparison is not efficient for large data sets,
and the dimension may be too large to identify neighbors
(57). In addition, at single nucleotide resolution, meaning-
ful patterns can be obscured by noise. Standard compari-
sons between pairs of ChIP-seq experiments are
commonly done by evaluating the overlap between
peaks detected in these experiments (4,5,8). Intuitively,
the union of peaks from a large data sets, which is
needed to generate pairwise distances, produces many
genomic intervals and is thus high dimensional. To
quickly relate a given ChIP-seq sample to relevant experi-
ments, we sought to design a data representation that
captures the underlying biology, is easy to compute, can
be expressed by a relatively small number of dimensions
and finally is robust to suboptimal read coverage.

We leveraged two important characteristics of ChIP-seq
data to create this low-dimensional representation. First,
reads are localized in islands surrounding the interacting
proteins (e.g. factors, histones or polymerases) that were
targeted by the antibody (58). We therefore examined the
system at intermediate genomic length scales. Specifically,
we consider the autocorrelation function of the read
coverage depth. This function captures recurrent events
along the genome and aggregates this information to sig-
natures of read co-occurrence at specific length scales or
lags (Supplementary Figures S2-S4). As a consequence of
the localized nature of ChIP-seq, the autocorrelation
function exhibits regular non-random interactions within
a relatively small offset —4095bp < v <4096bp after
which it is uninformative. Second, read count data are
stochastic, and typically undersampled, resulting in
spikey noise that obscures signals occurring at nucleotide
resolution (Supplementary Figure S5). At long length
scales far beyond the length of protein—chromatin inter-
action islands and also at short length scales on the order
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of nucleotides, the signal is dominated by noise, and there-
fore we set out to capture the signal at intermediate length
scales where the signal-to-noise ratio is the highest. To this
aim, we applied a Fast Fourier Transform to the autocor-
relation function for all lags —4095bp < t < 4096 bp (see
‘Materials and Methods’ section) resulting in the spectral
density of the empirical read coverage distribution, 4(w),
as a function of the resolution .

The autocorrelation is restricted to a fixed range
(—4095bp < v <4096bp), and thus the associated
spectral density, is fast and easy to compute, and it is
constructed as the histogram of pairwise distances
between all N reads (see ‘Materials and Methods’
section). This approach enables a large coverage for
each lag (1) in the autocorrelation function.

Extraction of the IP signal using deconvolution

The observed autocorrelation signal consists of a biolo-
gical component relevant to the ChIP-seq experiment
modulated on a component capturing irrelevant pro-
perties such as DNA accessibility and experimental bias.
We therefore designed an approach to deconvolve the
component of the signal that captures the biological
aspects of the experiment.

We formulated the problem using a DSP approach. The
ChIP-independent properties of the signal are denoted
technical variability, X(7), and arise from technical biases
and the stochastic nature of read count data. We denote
by Z(#) the true IP signal, which reflects effects associated
with experiment-specific components, e.g. antibody pre-
cipitation, cross-linking of chromatin to other proteins
in the same complex. We therefore model the measured
ChIP signal Y(7) as the convolution of the true IP signal
with the technical variability, [Z(¢) * X(¢)](t). For brevity,
we will omit (r) in the equations when clear from the
context.

In the DSP framework X(7) is the input, Z(¢) is the finite
impulse response function associated with the specific bio-
logical signal, and Y(¢) is the observed output. To recover
the specific finite impulse response and remove ChIP-
independent components, we used harmonic analysis tech-
niques that are commonly used in engineering disciplines
(59). In harmonic analysis, signals are represented as the
sum of characteristic harmonic components (i.e. sinus-
oidal functions, each with a specific period and phase).
In this formulation, if the technical variability X(7) is
known, then applying the convolution theorem, it is
possible to recover the true IP signal Z(f) from the
measured signal Y(¢); consequently, if the autocorrelation
X(t) * X(—1) is known, then it is possible to recover the
autocorrelation of the true IP signal Z(¢) x Z(—1),

(20« 2(=0)0) = 7~ (F303E0)

_ 1 (F@y) ’
=7 (f@x(r)))

(6)

where F is the Fourier transform operator, F~' is its
inverse, Y(f) = X(¢) % Z(f), and ®y(t) = Y(¢) * Y(—¢) and
®y(t) = X(¢) * X(—t) are the autocorrelations of the
ChIP-seq signal Y and of the control X, respectively.


[
]
Short Read Archive
http://sourceforge.net/p/arpeggio/wiki/Home/
http://sourceforge.net/p/arpeggio/wiki/Home/
very 
approximately 
[
]
is 
[
,4]
very 
In order 
[
]
-
-
,
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt627/-/DC1
is 
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt627/-/DC1
-
-
-
so 
-
(FFT) 
Methods
very 
digital signal processing (
)
below 
(FIR) 
In order 
FIR
employ
[
]
,

PAGE 50F 12

We named the recovered autocorrelation of the true IP
signal Z(t) x Z(—1t) the Arpeggio profile (Figure 1).

In studies where multiple controls are available or no
controls are available, we matched to each ChIP-seq ex-
periment the control that is closest in terms of its spectral
properties. We applied the same control matching proced-
ure to the rest of the samples and found that most samples
matched controls done in the same study or cell line. This
control matching procedure is a conservative approach in
which we try to identify the parts of the Y spectra that are
significantly distinct from the X spectra and thus increases
specificity. In the extreme case, where the autocorrelation
of the measured ChIP signal ®y(7) and of the technical
variability ®y(t) have proportional spectral densities, i.c.
they are linearly correlated, their ratio will be constant and
their deconvolution is an impulse, indicating that there is
no true IP signal (Figure 2).

We matched controls to experiments from the pool of
controls in our data set by first matching the organism and
DNA-shearing technique and selected the control with the
highest correlation (Pearson’s p) to the ChIP experiment
in the base resolution domain (frequency domain, i.e.
after applying the Fourier transform). We also require
that p > 0.85. We note that this leads to the highest speci-
ficity in the context of our spectral analysis. We recall that
correlation in the resolution domain does not imply cor-
relation in the genomic co-ordinates domain. The value of
the Arpeggio profile at = 0 reflects differences in read
count between experiment and control. From the values of
7 =0 recorded in our data set, we concluded that no
experiment control pair had a perfectly matching read
count. In general, this did not significantly affect our
ability to recover the autocorrelation of the true IP signal.
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Figure 1. Examples of the deconvolved Arpeggio profiles for histone
marks H3K27me3, Histone 3 lysine 36 tri-methylation (H3K36me3),
Histone 3 lysine 27 acetylation (H3K27Ac) and for retinoblastoma
(pRB). The H3K27me3 and H3K36me3 profiles show periodicity of
~190bp consistent with previous reports of nucleosome frequency
(60). The value representing the total read count difference between
ChIP and control at r =0 was removed, and smoothing was applied
to aid in visualization.
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However, for 31 samples of 806 in our data set, we
could not identify any matching control. Of the remaining
775, there was also a small fraction of experiments for
which the resulting Arpeggio profile exhibited several arti-
facts, suggesting poorly matched controls. In particular,
when the autocorrelation of the control had a different
decay rate than that of the experiment, we observed dips
around 7 =0 or gradual rises or falls as opposed to
leveling out at greater values of |r] (Supplementary
Figure S6). This difference in decay rate is likely due to
technical variability dependent on read counts. However,
there may be biological components to it as well, e.g. if a
polymerase binds and then moves along the genome, it is
reasonable to believe that the reads will be more spread
than a transcription factor that binds to a single location.

It would have been desirable to extract the true IP signal
Z(1t) from Z(¢) * Z(—1t) directly by square root in the reso-
lution domain. However, in general, F(Z(t)) is not entirely
positive or real; thus, there is no unique solution for Z(¢)
because the phase information is lost in the autocorrel-
ation operation. In practice, the Arpeggio profiles
Z(t) x Z(—t) are sufficient for the purpose of comparing
ChIP-seq experiments and can also be used to examine the
spectral density as a function of base resolution.

Recovering the length distribution of ChIP-seq fragments

The fragment length distribution is an important param-
eter for algorithms that seeks to identify binding event
locations from short read experiments such as ChIP-seq

0.0|020

B HNF4A
O Polll
O DNA Input

)2

Reads Control
Total Reads Control
0.0?1 5

)2/ (

0.0P‘IO

Reads ChIP
Total Reads ChIP
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1P signal (

e s N

O.OIOOO

T T T T
—2000 -1000 1000 2000

0
Offset(bp)
Figure 2. Examples of the deconvolved Arpeggio profiles for a tran-
scription factor, Polll and a total DNA input sample. The transcription
factor HNF4A shows a strong spike followed by a steep decay
indicating isolated binding, and Polll shows an isolated pulse
followed by gradual decay. The isolated pulse for total DNA input
indicates that sequenced reads provide no additional information
beyond technical variability (X(z)). The DNA input Arpeggio was con-
structed using the sample’s best matched control. As in the previous
figure, the read count difference between the sample and the matched
control at t =0 was removed, and smoothing was applied to aid in
visualization.
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peak callers (61). If paired-end reads are available, they
can be used to recover the fragment length distribution
empirically; however, many experiments in current
repositories were not done using paired-end reads. We
note that for a given number of nucleotides sequenced,
the single end approach represents twice as many frag-
ments and thus is more sensitive than the paired-end
approach. The latter, however, has an advantage in
mapability in repetitive regions.

Previous studies have used cross-correlation to infer the
average fragment length of singled-end short read ChIP-
seq data (62—64). As known, when considering reads from
opposing strands, some of the measured distances reflect
fragment lengths (62—66).

We modeled the probability associated with sampling a
fragment starting at any given position on the positive
strand of the genome as Pr[W =1]. If the sequenced
read from this fragment happens to map to the positive
strand, it will start at the same genomic position ¢, giving
the same probability distribution for the reads
Pr[R] = Pr[W]. If, however, the sequenced read maps to
the negative strand, then its starting position is F = f, the
fragment length, nucleotides downstream from the
starting position of the fragment W = ¢. Thus, given the
probability of sampling a read on the positive strand
Pr[R], there is an equivalent probability of sampling a
read on the negative strand Pr[R+F], where F is a
random variable representing the fragment length.

We show that harmonic deconvolution can be used to
determine not only the average fragment length but also
the full empirical fragment length distribution. This is
done by deconvolving the cross-correlation (see
‘Materials and Methods’ section) between the start of
reads aligning to opposite strands, which we denoted as
®*(7), from the autocorrelation of reads aligning to the
same strand for the same experiment, ®(7). We recall that
the probability distribution of the sum of two random
variables is equivalent to the convolution of their individ-
ual probability distributions, and thus

¢- ®*= Pr[R+F] * Pr[—R]

b (7
= Pr[R] * Pr[—R] * Pr[F],

where ¢ is a normalization constant such that
¢+ D(t) = Pr[R]. Similarly to Equation (6), we deconvolve
the fragment length distribution:

_ —1 { F(Pt{R]+Pt{— R}+Pt[F])
Pr[F] = F ( F(PHRI¥PI—R)) )

1 [ F(c®% (7)) ’
=7 (f(acb’y(r)))

We found that the reported fragment size from the differ-
ent studies included in our data set matched the fragment
size inferred using our deconvolution approach
(Supplementary Figure S7 and Supplementary Table S2).
Moreover, our deconvolution approach, using only one
read from each read pair of a paired end experiment,
produced an estimate of the fragment length distribution
that closely matched to the length distribution of the

paired-end fragments. (Figure 3, see Supplementary
Note A).
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Figure 3. Comparison between paired-end fragment length distribution
and Arpeggio fragment length distribution. The Arpeggio fragment
length distribution was estimated from only one read of each read
pair. The reported fragment length from the experimental protocol,
together with the sequenced read length, is shown as dashed lines.
The arpeggio fragment length distribution shows an additional spike
at the read length, which has been previously observed in opposing
strand cross-correlation (63).

Arpeggio captures the biology of protein—chromatin
interaction

The space of Arpeggio spectral densities is low
dimensional
To facilitate organization of large sequencing archives, in
particular, during search operations for complex queries,
or computationally intensive machine-learning tasks, it is
desirable to represent the samples using a small number of
features. Compared with the size of the genome, spectral
densities of Arpeggio profiles, described by only 8192
elements, are already relatively small. We investigated
whether the space comprising all spectral densities in our
database could be further reduced using Multi-
Dimensional Scaling (MDS), such as PCA. We found
that six principal components were sufficient to capture
85% of the variability present in our collection of
spectral densities.

Although more advanced techniques (67) may result in
a better compression, i.e. fewer dimensions, we decided to
use PCA, which is readily available and familiar for many
practitioners. We used the leading six spectral density
principal components to organize hundreds of ChIP-seq
experiments and aid annotation of novel samples. We
termed this representation Arpeggio MDS.

Use of Arpeggio M DS coordinates for classification and
clustering

Classification and clustering are affected by choice of data
representation and dissimilarity measures. Here, we use
the Davies—Bouldin index (52) to assess discernability
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between clusters and inferred class labels for each class
variable using a k-nearest neighbor classification.

First, for each class variables, e.g. antibody target,
cellular mechanism, or organism, we considered class
labels as cluster indices and computed the Davies—
Bouldin index (see ‘Materials and Methods’ section).
Our analysis showed significantly small Davies—Bouldin
indices for all class variables (Supplementary Table S4).
This indicates that the organization of the data based on
Arpeggio MDS coordinates has a structure amenable for a
variety of machine-learning approaches. The Davies—
Bouldin index might have been affected by sampling
bias of proteins analyzed within each organism group,
skewing the index for the organism class variable.

Second, for each class variable, we trained a k-nearest
neighbor classifier (k =1) and using a leave-one-out
approach, we computed the balanced accuracy of class
label assignments (see ‘Materials and Methods’ section).
For most class variables, the performance of the trained
classifier was above the performance of a classifier assign-
ing labels at random (Supplementary Table S4).
Importantly, misclassification was rare but was more
common between total DNA input and immunoglobulin
G controls (Figure 4).

Similarity between Arpeggio profiles is indicative of
biological functions

We showed that the Arpeggio profiles could be used to
train classifiers that suggest annotation for new experi-
ments. We sought to extend this paradigm and address
whether, given a new set of experiments, Arpeggio
profiles could be used to rapidly select available ChIP-
seq experiments that would enable a more complete de-
scription of the biological mechanism of interest.
Typically, this analysis involves identification of peaks
from the ChIP-seq signals and the study of the overlap
between events in two or more different experiments (8).
For this reason, we compared the proximity mapping
determined by the Arpeggio profiles with the proximity
score determined using the Jaccard distance of peak
overlaps.

For each ChIP-seq experiment, peaks were identified
using the Qeseq program (61), assigning to each experi-
ment the best matching control as described in the
previous sections. We set the fragment size to 150 bp for
experiments using MNase digestion and to 250 bp for ex-
periments using sonication (see Supplementary Table S2).
We considered two peaks to be overlapping if they shared
at least 1bp. For any pair of experiments, the total
number of peaks was computed as the sum of the
number of peaks in each experiment, minus the number
of overlapping peaks. The pairwise peak overlap score was
computed using the Jaccard distance, namely, one minus
the ratio between the number of overlapping peaks and
the total number of peaks. In contrast to our Arpeggio
approach, peak overlap does not directly allow cross-
species comparison. To ensure a fair comparison
between data representations, we split our data set into
a set of human samples (7 = 541) and a set of murine
samples (n = 237) and analyzed them separately.

Nucleic Acids Research, 2013, Vol. 41, No. 16 el61

Unspecific Control | 17.8% 10.6%  8.5% -

Genomic Control -{ 10.3% 8% 6.6%  20.6% 30.4%

RNA Polymerase 3.9% 3.5%

Predicted label

Histone Modification 8% 2.8%

Factor 25.3% 26.7% 16% 16.9%

T T T T
S s @ I I
o = o c €
£ 3 @ G S
= € O O
° = (¢] o
o o] € =
= o S o
[0}
[) < c o
5 z & &2
B - =}
T
True label

Figure 4. Confusion matrix of predicting functional annotations from
the Arpeggio profiles using a k-nearest neighbor classifier with k = 1.
The values along each column of the matrix represent how the instances
in the actual class were assigned to the predicted class. The diagonal
elements indicate sensitivity. Darker colors indicate higher classification
frequencies. Most misclassifications occurred between controls.

Applying PCA to the peak overlap Jaccard distance
matrix revealed that, for the human set, 365 principal
components were needed to capture 85% of the variability
in the data. In contrast, 85% of the variability of the
pairwise distance matrix of the Fourier transforms of the
Arpeggio profiles was captured by the six leading principal
components. Thus, the Arpeggio MDS provides a more
compact representation of the data.

Next, for each class variable, we studied the classification
performance using three distance measures: peak overlap
Jaccard distance, inverse correlation measure between
spectral density of Arpeggio profiles and Euclidean
distance between Arpeggio MDS coordinates. We
analyzed human and mouse samples separately. For each
class variable, we quantified the performance using the
Area Under the receiver operator characteristic Curve
(AUC) as described in the ‘Materials and Methods’ section.

Application of a k-nearest neighbor classifier with k = 1
to these three distance measures resulted in comparable
performances in most class variables. However, proximity
between Arpeggio MDS profiles as compared with peak
overlap Jaccard distance reflected higher association for
cellular mechanisms. This was more evident in the
human set where the larger number of experiments corres-
ponded to smaller error bars (Figure 5).

Arpeggio retains information related to mode of
binding and performs best in clustering cellular mechan-
ism, in contrast peak overlap contains information about
binding locations and best clusters more variables such as
batch effects associated with the Study ID, and cell line
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Figure 5. Classification of biological and experimental factors in terms
of peak-based and Arpeggio-based ChIP-seq signatures for human
samples. The comparison was performed based on proximity
computed using peak overlap between pairs of experiments, inverse
correlation of Arpeggio spectral densities or Euclidean distances of
Arpeggio MDS coordinates. The AUC of a classifier assigning
random labels is shown as a black dashed line. Compared with peak
overlap, proximity based on Arpeggio MDS had a higher median per-
formance of predicting cellular mechanism.

(Supplementary Table S5, Figure 5 and Supplementary
Figure S8).

Reading biological features from Arpeggio profiles

In the previous sections, we have provided evidence that
Arpeggio profiles and their spectral densities can be used
to rapidly compare a large number of experiments. In
this section, we show that Arpeggio profiles can also be
used to derive biologically and technically meaningful
information.

For instance, H3K27me3 Arpeggio profiles exhibited
distinct periodicity with high amplitudes of oscillation
(Figure 1). This suggested a highly ordered array of nu-
cleosomes consistent with a static chromatin structure
where nucleosomes are precisely positioned. This agreed
well with the known role of Polycomb and H3K27 tri-
methylation in transcriptional repression and heterochro-
matin formation. We recall that the profile represents an
aggregate of binding events across the whole genome: the
clear and distinct periodicity for H3K27me3 suggested
that nucleosomes with the tri-methylated H3K27 mark
had remarkably constant periodicities throughout the
genome (4). Further, we show that this periodicity and
the width of the signal (number of clear oscillations) is
similar across species (Figure 6).

Another oscillatory pattern can be observed for Histone
3 Lysine 36 tri-methylation (H3K36me3). This histone
modification mark is deposited along with actively
transcribing Polll complexes and is by far the most
reliable histone mark for actively transcribed genes. In
contrast to H3K27me3 profiles where the oscillation is
only slowly dampening due to the static chromatin
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Figure 6. H3K27me3 shows similar periodicity across fly, mouse and
human. Periodicity was calculated using the local maxima of the
spectral density for the range of the Arpeggio profiles shown.

structure imposed by this mark, H3K36me3 profiles
show a central peak surrounded by slightly smaller
peaks with a rapidly degrading oscillation, indicative of
a fluidic chromatin state where nucleosomes are not pre-
cisely positioned. This is in agreement with this mark
being found in actively transcribed genes as the nucleo-
somes in actively transcribed chromatin are perturbed by
the passing polymerase complexes (Figure 1).

The difference in chromatin state is particularly evident
in the harmonic analysis of Arpeggio profiles. Inspired by
previous work on nucleosome spacing (60), we computed
the ratio:

1
o= A(l90) (9)

T AT AGR
2

where A(1/f) is the magnitude of the ¢ bp length scale in
the spectral density. H3K27me3 exhibited a stronger o
compared with H3K36me3 (Figure 7), which suggests
flexibility in the spacing of nucleosomes carrying
H3K36me3 mark. Interestingly, the ratio o was also
large in Histone 3 Lysine 4 tri-methylation (H3K4me3)
and in the Retinoblastoma protein (pRb). Although the
reasons for such a precise placement of H3K4me3 are
unclear, pRb is an important factor in establishing
heterochromatin.

The effects of open fluidic chromatin states are stronger
in the Arpeggio profiles of histone acetylations. These
profiles are characterized by a high central peak sur-
rounded by unorganized oscillations. These profiles are
clearly indicative of an open fluid chromatin configur-
ation, which is consistent with actively transcribed
regions (Figure 1).

However, the reference ChIP-seq signal for open
actively transcribed chromatin is the Arpeggio profile of
RNA Polymerase II. The Polll complexes move along
actively transcribed genes; thus, the ChIP-seq information
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Figure 7. Flexibility of nucleosome spacing across different experi-
ments. Flexible spacing, or isolated events (Supplementary
Figure S2), is represented by ratios close to one. Ratios clearly above
one indicate strict spacing of 190bp between events (Supplementary
Figure S4). Histone modifications associated with heterochromatin
exhibit higher ratios, indicating less flexibility.

is spread over a relatively large spatial region. For this
reason, Polll ChIP experiments need significant
sequencing depth to obtain a good picture of Polll
activity. The Arpeggio profiles for Polll show a strong
central signal surrounded by two shoulders, each flanked
by disorganized nucleosomes (Figure 2). The central peak
is where Polll is located most closely to the DNA strand,
and thus efficient cross-linking can occur. However, Polll
is part of a large ‘holoenzyme’ transcription machinery,
and the surrounding, smaller humps are likely where this
complex is close enough to the DNA strand to be cross-
linked and enriched in a ChIP-seq experiment. The un-
organized pattern surrounding these peaks is likely a
result of the actively transcribing Polll complex. As it
moves through the chromatin, it perturbs and/or disas-
sembles nucleosomes in front and re-deposits them
behind giving highly disorganized chromatin structure
(Figure 2).

Other proteins, such as Androgen Receptor, SPDEF
(SAM pointed domain-containing Ets transcription
factor), ERG (Ets-Related Gene), FL1 (Follicular
lymphoma, susceptibility to, 1), display typical site-
specific DNA-binding profiles of transcription factors in
which a strong signal occurs at the binding site,
accompanied by disorganized surrounding patterns indi-
cative of active, fluidic chromatin (Figure 2).

DISCUSSION

The contribution of this study is the design of a compact
ChIP-seq data representation based on the denoised auto-
correlation. We show that use of this compact data repre-
sentation has several advantages that facilitates efficient
computation and data storage, linking the cellular mech-
anisms of protein targets in novel ChIP-seq experiments to
data in current repositories, low-dimensional organization
of large repositories of ChIP-seq data that facilitates ex-
ploratory data analysis, cross-species and cross-cell line
comparisons, extraction of technical features such as
fragment length distribution, and biological relevant
interpretation.
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Large collections of ChIP-seq data have been leveraged
to gain new biological insights (8). The volume of ChIP-
seq data in public repositories has noticeably increased in
recent years. Typically, users retrieve samples based on
their prior knowledge and expectations of the biological
system. Currently available data retrieval systems are
based on matching qualitative annotations such as
organism, cell-type, condition and specific immunopre-
cipitated protein. We suggest the use of our novel com-
pression technique, Arpeggio, to enable searching for
samples similar to the query experiment in terms of quan-
titative patterns present in theirs signals, thus facilitating
novel biological discoveries. We note that non-linear data
compression approaches applied to the autocorrelation
functions can organize the data and reveal new insights
(see diffusion map analysis Supplementary Note B). We
present Arpeggio profiles and their spectral densities. This
low-dimensional harmonic data representation can be
used for selecting publicly available experiments that are
biologically related to an experiment of interest. The
Arpeggio profiles are computed from the autocorrelation
of ChIP-seq signals, which have been previously explored
in the context of data quality assessment (7).

In contrast to previous approaches, we applied signal
processing techniques to derive a profile of the IP auto-
correlation that is diminished in technical variability and
requires little pre-filtering. We found that Arpeggio
profiles were remarkably organized in four main
categories, corresponding to intuitive classes of structural
interactions: factors showed peaks with sharply decaying
tails; polymerases showed peaks as well but with slowly
decaying tails; histone modifications showed damped os-
cillations corresponding to trains of peaks at fixed dis-
tances from one another; lastly, controls showed a single
pulse sharper than the peak of factors, indicating that, as
expected, sequenced reads from total DNA inputs have no
recurrent properties. Typical binding patterns of a particu-
lar protein—chromatin interaction are obscured by noise.
Arpeggio profiles overcome this problem by aggregating
the recurrent patterns of protein—chromatin interaction.
The quality of autocorrelation also improves quicker
than the read coverage density as the number of reads
increases. In peak finding, the average coverage is
expected to increase linearly, on the order of O(N - L/G),
where N is the number of sequenced reads, L is the read-
length and G is the size of the genome; in contrast, the
number of distances between reads contributing to the
computation of the autocorrelation scales quadratically,
in the worst case as O(N?- W/G), where W is the
maximum lag at which the autocorrelation is evaluated,
where W > L. We note that Arpeggio profiles do not
provide the location of such binding events; however, we
plan to further develop these characteristic spectral
binding patterns for locating peaks.

In this work, we used an unsupervised approach to
organize a large volume of ChIP-seq experiments. We
show that close proximity between the denoised spectral
densities of two different proteins is often associated with
similar cellular mechanism. In this work, we manually
annotated 806 of the 14306 currently marked as ChIP-
seq samples in the SRA. Databases are expected to
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evolve to be more structured and enable automatic re-
trieval, eliminating the need for data entry tasks and
allowing us to organize thousands of samples at a time.
Moreover high-throughput sequencing is becoming cheap,
facilitating the mass survey of novel ChIP targets for
which function is yet to be determined. Applying the
proposed spectral representation to thousands of existing
annotated ChIP-seq experiments will allow us to screen
these new ChIP targets reducing the resources required
to elucidate their functions. Interpretation of spectral
patterns in many fields of science and engineering (i.e.
radiology, control systems analysis, imaging) is often the
product of years of study. In this study, we focused on
properties that discriminate coarse categories of protein—
chromatin interaction. There is a wealth of knowledge
hidden in Arpeggio representation, and we anticipate
that with increasing database size and quality, it will
provide information on a much finer scale.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online,
including [68-122].
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