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Abstract

Wireless capsule endoscopy (WCE) is an effective technology that can be used to

make a gastrointestinal (GI) tract diagnosis of various lesions and abnormalities. Due

to a long time required to pass through the GI tract, the resulting WCE data stream

contains a large number of frames which leads to a tedious job for clinical experts to

perform a visual check of each and every frame of a complete patient’s video footage.

In this paper, an automated technique for bleeding detection based on color and tex-

ture features is proposed. The approach combines the color information which is an

essential feature for initial detection of frame with bleeding. Additionally, it uses the

texture which plays an important role to extract more information from the lesion cap-

tured in the frames and allows the system to distinguish finely between borderline

cases. The detection algorithm utilizes machine‐learning‐based classification methods,

and it can efficiently distinguish between bleeding and nonbleeding frames and per-

form pixel‐level segmentation of bleeding areas in WCE frames. The performed experi-

mental studies demonstrate the performance of the proposed bleeding detection

method in terms of detection accuracy, where we are at least as good as the state‐of‐
the‐art approaches. In this research, we have conducted a broad comparison of a num-

ber of different state‐of‐the‐art features and classification methods that allows build-

ing an efficient and flexible WCE video processing system.
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1 | INTRODUCTION

Bleeding in the GI tract may be an indication of various abnormali-

ties such as ulcerative colitis (UC), vascular tumors, and inflammatory

disease.1 The standard diagnosis procedure is the manual inspection

of the entire GI tract performed by an experienced clinician in order

to detect bleeding as one of the most common abnormalities which

may indicate a disease. Traditional endoscopy techniques such as

sonde and push enteroscopy are painful and risky procedures for the

patients as it can tear intestinal walls in case of severe medical con-

ditions. Also, they have limitations to reach and visualize the small

intestine.2,3 The wireless capsule endoscopy (WCE) technology,

which made its debut around the year 2000, uses a wireless elec-

tronic device4 that captures images or videos of the entire GI tract.
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The capsule, shaped like a normal pill, can be swallowed by the

patient in the presence of clinical experts without any discomfort.

Unlike conventional endoscopy procedures, it explores the whole GI

tract of the patient without any pain, sedation, and air insufflation.

The Food and Drug Administration (FDA) approved the use of WCE

in 2001 as a medical tool to examine the mucosa of the stomach

and small intestine in order to detect various abnormalities and dis-

eases. Until now, the WCE technology has assisted more than 1.6

million patients worldwide.

Figure 1 shows the typical internal components of a WCE. Mod-

ern WCEs are pill‐shaped (26 mm × 11 mm) devices, and they con-

sist of the light sources, a short focal length charge‐coupled device

(CCD) camera, a radio frequency transmitter, a battery‐based power

supply, and a few other electronic components. Once a patient swal-

lows the capsule, the WCE starts capturing frames with 1–30 frames

per second (FPS), depending on the device type and its purpose, and

the frames are sent wirelessly to the recorder unit. This process usu-

ally takes 8–10 h before the WCE’s battery is drained. During this

time, the WCE has produced around 50,000–80,000 frames for each

patient. The captured video allows clinicians to diagnose and detect

ulcers, tumors, bleedings, and other lesions within the GI tract later

offline to make diagnostic decisions. Although the WCE technology

has many advantages, there is still room for research. For example,

currently, it is tough for the clinicians to inspect the whole set of

50,000 and more frames to locate a disease. They might miss the

disease at the early stage due to visual fatigue and small size of the

lesion area. A software was developed by Given Imaging, which aims

to detect active blood automatically, but the sensitivity and speci-

ficity are reported very low.6

A new method is proposed in this paper, based on morphological

operations and a machine‐learning‐based classification including a

support vector machine (SVM) to differentiate between normal and

abnormal frames for bleeding findings. As color and texture are the

main features to explore bleeding frame candidates, this paper is

focusing on color detection in the red‐green‐blue (RGB) color space

and various texture features. Experimental analysis depicts that this

method is capable of performing bleeding detection with the perfor-

mance achieved at least as good as the state‐of‐the‐art techniques.

At the same time, this paper provides the broad comparison and

analysis of the different state‐of‐the‐art features and classification

methods in terms of their usability for building the efficient and flex-

ible WCE video processing systems. The remainder of this paper is

organized as follows: Section 2 provides a short survey of the

related works found in the literature. Section 3 describes our

methodology and the proposed algorithm. Results and discussions

are presented in section 4. Finally, in section 5, we present our con-

clusions and provide directions for future work.

2 | RELATED WORK

Bleeding is very a common abnormality found in the GI tract. Many

researchers have contributed to detecting this with high‐perfor-
mance classifiers. It is crucial to detect bleeding at an early age since

it is a precursor for inflammatory bowel diseases such as Crohn’s

disease and UC. Figures 2(a) and 2(b) show the normal mucosa and

bleeding, respectively. Bleeding are not limited to the stomach, but

in fact, they can occur anywhere in the whole GI tract,7 and they

can be considered as a common anomaly detected by WCEs often

defined as "bleeding of unknown origin that recurs or persist or is

visible after an upper endoscopy and/or negative endoscopy result".8

The primary challenge is that blood spot and residual traces do not

F I G . 1 . Composition of WCE and data
acquisition setup.5
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have any typical shape and texture, and the color of blood might

vary from light red to dark intense red and brown, which makes the

blood challenging to differentiate from the intestinal content or

other objects present in the intestine. This diversity of color might

depend on the position of the camera capsule, the bleeding timing9

and the surrounding condition of the intestinal content.10 Bleeding is

not a single pathology, and it may be caused by a variety of small

intestinal diseases, such as angiodysplasia, open wounds, ulcer, vas-

cular lesions, tumors, and Crohn's disease. Both color and texture

features have been used to discriminate pathology, and some related

works are discussed in this section.

Baopu Li11 incorporated an intelligent system to detect a bleed-

ing region in WCE videos using chrominance‐moments‐based tex-

ture. Mathew and Gopi12 have presented a method of discrimination

between bleeding and nonbleeding frames using a contourlet trans-

form with two levels of decomposition for color and texture features

into coarse band and sub‐bands. A rotation invariant Local binary

pattern is applied on coarse band and sub‐bands. Liu and Gan13 have

designed an algorithm using a joint diagonalization principal compo-

nent analysis (PCA) combined with the color coherence vector (CCV)

where no iterations, approximations, and inverting procedures are

required. This method overcomes the problem of PCA and the

“curse of dimensionality” of the original asymptotic PCA. Tuba

et al.14 proposed an algorithm for automatic segmentation for bleed-

ing detection in WCE frames in HIS color space using the intensity

channel for extracting texture features. They calculated a histogram

for uniform LBP with 8 x 8 regions in terms of mean, variance,

entropy, kurtosis, skewness, and energy.

Furthermore, Liu and Gu15 used covariance wavelet transform to

discriminate between normal and abnormal tissue. Color information

is extracted from the most used color spaces RGB, CIE Lab, XYZ,

HSI, K‐L, and HSV. The texture feature is extracted using a discrete

wavelet transform for multi‐resolution analysis. The color wavelet

covariance features were obtained in each color channel of the

frame. Piotr Szczypinski16 introduced an ANOVA using the F‐statics
measure and the sequential floating forward search to classify vari-

ous abnormalities such as bleeding and ulcer (excessive ulcer) for

color and texture features. Yeh and Wu17 also proposed a novel

method for detecting bleeding and ulcers in WCE frames. RGB, HSV,

and CCV are used to compute color features. The frames were

transformed into grayscale frames that are binarized on a predefined

threshold. Yuan and Bapou Li18 introduced a new method for WCE

frame classification with various abnormalities such as bleeding,

ulcers, and polyps. They first build up bag‐of‐visual‐words by extract-

ing scale‐invariant feature transform features from normal and

abnormal frames, followed by a novel coding method based on sal-

iency and adaptive locality constrained linear coding to detect multi-

ple abnormalities in WCE frames. Anjany and Surya,19 extracted

speed‐up robust features (SURF) which are used for classification.

Lack of distinguish pattern and manually crafting of a feature vector

of SURF, the author used a convolutional neural network to learn

texture feature from various abnormal endoscopic findings.

Pixel‐level methods are supposed to be more accurate in order

to classify bleeding and nonbleeding pixel samples efficiently. Yuan20

extracted color features on the pixels in WCE frames and used

thresholding in the color space to identify bleeding regions. Jia21

presented an automated bleeding detection strategy which includes

discrimination of the bleeding and nonbleeding frames, and, later,

applying segmentation on the bleeding region using pattern recogni-

tion approaches. Moreover, in Ref. 22 the authors used super‐pixel
segmentation to reduce the computational complexity with high

diagnostic accuracy. In comparison with frame‐level methods, detec-

tion using a pixel‐based method is more accurate with respect to

high performance and accuracy. However, pixel‐based methods still

have a high computational cost, and it is computationally demanding

(more than 50,000 frames need to be examined for a single patient).

To summarize, researchers have studied to analyze each and

every frame of WCE video sequences to detect the frames with a

pathological alteration. These experiments have been performed by

using various image processing and pattern recognition techniques

to generate proper frame characteristics, for example, computing

color and texture features using various color models. These charac-

teristics define the classification on the basis of frame pixels and

frame regions for discrimination between normal and abnormal tis-

sue structure. In our previous work, we have developed an algorithm

to extract color feature for ulcer using statistical feature analysis.23.

This work has the contribution to explore color‐ and texture‐depen-
dent features. Most of the techniques extract the color and texture

feature from WCE frames. Various methods are dealing with the

individual pixel value, although the blocks of pixels have the poten-

tial to detect bleeding frames with high‐performance metrics such as

sensitivity, specificity, and accuracy.

3 | BLEEDING DETECTION

The bleeding detection technique proposed in this paper is shown in

Fig. 3. It was done in two phases, where the classification of bleed-

ing and nonbleeding frame is performed in the first phase using only

color features and classification of bleeding and nonbleeding pixel is

performed in the second phase using color and texture features.

First, we perform an input frame loading with an appropriate data

F I G . 2 . Wireless capsule endoscopy frame samples: normal GI
mucosa (a) and active bleeding (b).
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format conversion to RGB color space. Then, we perform a removal

the frame borders, over‐ and under‐exposed pixel block to reduce

the number of fault detection in these areas. Next, a frame enhance-

ment step is performed using edge masking and noise removal. Later,

the feature extraction and bleeding detection are performed using

color and texture features. Finally, a classification step is performed

for bleeding detection at a frame‐level and a pixel‐level with an

appropriate classifier.

3.A | Removal of bright and dark blocks

In the GI tract, there can be areas that are both under‐ and over‐illumi-

nated, and which are, therefore, cannot be processed. For example, a

large air bubble packet23 can be categorized in this class. Luminance is

computed as the square root of a sum of individual RGB squares. We

have calculated this for each 16x16 block of pixels:

IBlock i; jð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
Block i; jð Þ þ G2

Block i; jð Þ þ B2
Block i; jð Þ

q
; (1)

where i and j are the horizontal and vertical indices in the frame,

respectively.

3.B | Edge and noise removal

We encounter various false results due to the presence of edge

information in frames which may lead to a wrong detection. These

edges are basically intestinal folds, and the ambiguous edging is

caused by a random vector of camera’s view direction. To eliminate

this information, we are using a canny operator.24 The parameters of

the canny algorithm allow recognizing edge with differing character-

istic depending on desired requirements. For this experimental setup,

we have chosen a standard deviation of 0.35% and 35% of the pix-

els in the frame to reduce noise and to perform a robust detection

of pixels at the edges. Hence, we have used the upper and lower

threshold values of τ1 = 0.3 and τ2 = 0.7, respectively. Morphological

dilation is then applied to dilate the detected information. If A is a

frame after masking operation and B is the structural element, then

dilation of A by B is defined as follows22:

A� B ¼ zj B̂
� �

z∩A≠ ;
n o

(2)

The above equation is based on getting the reflection of B to its

origin, and the reflection is shifted by z. For this experiment, we

have chosen the structuring element of dilation B to be a square

with a three‐pixel width. Morphological erosion is performed later to

remove few bleeding pixels wrongly detected to enhance final result

[Fig. 4(d)].

Also, frame enhancement25 is required to highlight key data by

removing auxiliary information in a frame. We have removed any

Gaussian noise using wavelet denoising with three levels of decom-

position. Wavelet db2 with soft thresholding is applied to reduce

noise and enhance relevant information in bleeding frames.

3.C | Color features

Color is one of the most often used features of images, and it can

be specified by using various color models. Once the color space is

defined, the color feature can be extracted from the frame or a par-

ticular defined region. In the RGB color space, the optical frequency

bands are defined as 630–780 nm for red (R) band, 490–560 nm for

green (G) band, and 450–490 nm for blue (B). For bleeding, the red

channel has a high reflectivity, but the green and blue channels have

comparatively lower reflectivity and a little difference between val-

ues. Thus, we can detect a bleeding region by detecting high red

areas, and by computing the red ratio feature for individual pixels

containing the three components as features C1, C2, and C3 are

F I G . 3 . The frame processing sequence of the proposed bleeding
detection method.

F I G . 4 . The example of the frame processing steps output for
frame‐level bleeding detection procedure.
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shown in eqs. (3)–(5), respectively. The C3 feature is the proportion

of the R channel in all three primary colors which is also called the

chromaticity. Our fourth feature (C4) is the ratio of the red channel

with the vector amplitude of the green and blue channels as repre-

sented in eq. (6). The chroma value for bleeding is very high com-

pared to normal mucosa, and the chroma value is therefore used as

another feature (C5), as shown in eq. (7).

C1 ¼ R i; jð Þ
G i; jð Þ (3)

C2 ¼ R i; jð Þ
B i; jð Þ (4)

C3 ¼ R i; jð Þ
R i; jð Þ þ G i; jð Þ þ B i; jð Þ (5)

C4 ¼ R i; jð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
Block i; jð Þ þ B2

Block i; jð Þ
q (6)

C5 ¼ 1�min G i; jð Þ;B i; jð Þð Þ
R i; jð Þ (7)

3.D | Color‐based classification

The color features extracted are then used as an input to SVM

supervised learning model. SVMs are accurate as they contain appro-

priate kernels (implicit mappers of inputs into high‐dimensional fea-

ture spaces) that work well even if the data are not linearly

separable in the future base space. By using the kernel functions of

SVMs,24 one can perform a nonlinear classification more accurately

by mapping its input to high‐dimensional feature spaces.25 Various

hyper‐planes separate the input instances between a set of prede-

fined classes (two in our use‐case). However, it is important to select

the best one which has the largest distance to the nearest data point

of two classes. Grid search25 is the conventional method of perform-

ing the optimization of hyper‐parameter utilizing parameter sweep or

grid search through a manually specified subset of the hyper‐param-

eter of a learning algorithm. This algorithm must be guided by some

performance metric, normally measured by evaluation on a held‐out
validation set or by cross‐validation of the training dataset. In this

article, we are using an SVM classifier with a radial basis function

(RBF) kernel having at least two parameters (regularization constant

C and kernel hyperparameter γ) that need to be tuned to achieve

high performance on the testing data. The mathematical descriptor is

shown below for a binary classification problem: {(x1, y1), (x2, y2), …,

(xk, yk)}, where xi ε Rn represents the n‐dimensional feature vectors,

and yi ε {1, −1} is the corresponding class label. The SVM requires

the solution of the following optimizing problem:

min
1
2
ωTωþ C ∑

k

i¼1
ɛi

� �
; (8)

subject to yiðωTϕðxiÞ þ bÞ≥1� ɛi; ɛi ≥0; i ¼ 1; . . . ; k:

here, εi is the slack variable for misclassified examples, and C is the

penalty parameter of the error term. In addition, K(xi, xj) = φ(xi)
T φ(xj)

is the kernel function. There are four kernel functions used for the

pattern recognition and classification: a linear kernel, a polynomial

kernel, an RBF and a sigmoid kernel. We have adopted the RBF24

kernel in this paper:

K xi; xj
� � ¼ exp �γ k xi � xj k2

� �
; γ>0: (9)

here, γ is the parameter which must be carefully selected in the

experiment. The optimum values for the parameter C and log2 γ

were selected from the range: (−8, 7, 6, …, 6, 7, 8). The grid

method25 was adopted as the searching procedure (a 0.8 step was

used). Each γ and C value pair was used in the training data with

tenfold cross‐validation in order to evaluate the model performance.

Once the optimal values of γ and C were found, they were adopted

to train a new SVM model.

The feature vector used as an input for our SVM‐based detection

approach is defined as [C1, C2, C3, C4, C5]. After removal of dark

spots, as shown in Fig. 3(b), each pixel is classified as either bleeding

or nonbleeding pixels. All the features are fed to SVM which consid-

ers three types of kernels, that is, polynomial, linear, and RBF. The

number of pixels is considered as the threshold for frame classifica-

tion which depicts whether the current frame is showing bleeding or

nonbleeding areas. A frame containing bleeding pixels is labeled as a

bleeding sample; otherwise, it is labeled as a negative sample.

3.E | Texture features

Texture is a very useful feature for a wide range of use cases in image

processing and classification tasks. It is generally assumed that the

human visual system uses textures for recognition and interpretation

of visual input. In general, color is usually a pixel property while texture

can only be measured from a group of pixels.26 A large number of

techniques have been proposed27 to extract texture features. Based

on the domain from which the texture feature is extracted, they can

be broadly classified into spatial texture feature extraction methods

and spectral texture feature extraction methods. For the former

approach, texture features are extracted by computing the pixel statis-

tics or finding the local pixel structures in the original frame domain,

whereas the latter transforms a frame into a frequency domain and

then calculates features from the transformed frame. Spatial texture

features can extract information from any shape without loss of data

but are sensitive to noise and distortion. Spectral texture features are

robust and need less computation power, but have no semantic mean-

ing and need square frame regions of sufficient size for extraction.

One of the good candidates for the texture analysis is a statisti-

cal method of examining texture that considers the spatial relation-

ship of pixels is the gray‐level co‐occurrence matrix (GLCM). GLCM

is a matrix that is defined over a frame to be the distribution of co‐
occurring pixel values (grayscale values, or colors) at a given offset,

also known as the gray‐level spatial dependence matrix. The GLCM
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functions characterize the texture of a frame by calculating how

often pairs of pixel with specific values and in a specified spatial

relationship occur in a frame, creating a GLCM, and then extracting

statistical measures from this matrix.27 The horizontal direction 0°

with a range of 1 (nearest neighbor) was used in this work. The 22

texture descriptions extracted from each of the gray tone spatial

dependence matrices are presented in Table 1. The following pre‐de-
fined formulas are used:

TAB L E 1 Used texture features.

Feature identifier Feature Definition

T1 ASM28
T1 ¼ ∑

Ng

i¼1
∑
Ng

j¼1
p i; jð Þf g2

T2 Entropy28 T2 ¼ � ∑
Ng

i¼1
∑
Ng

j¼1
p i; jð Þ log p i; jð Þð Þ

T3 Dissimilarity28 T3 ¼ ∑
Ng

i¼1
∑
Ng

j¼1
i� jj jp i; jð Þ

T4 Contrast28 T4 ¼ ∑
Ng�1

n¼0
n2 ∑

Ng

i¼1
∑
Ng

j¼1
p i; jð Þ i� jj j ¼ n

( )

T5 Inverse difference28 T5 ¼ ∑
Ng

i¼1
∑
Ng

j¼1

1
1þ i�jj j p i; jð Þ

T6 IDM28
T6 ¼ ∑

Ng

i¼1
∑
Ng

j¼1

1
1þ i�jð Þ2ð Þ p i; jð Þ

T7 Correlation28 T7 ¼ ∑Ng
i¼1 ∑

Ng
j¼1 ijð Þp i;jð Þ�μxμy

σxσy

T8 Autocorrelation28 T8 ¼ ∑
Ng

i¼1
∑
Ng

j¼1
ijð Þp i; jð Þ

T9 Cluster shade28 T9 ¼ ∑
Ng

i¼1
∑
Ng

j¼1
iþ j� μx � μy
� �3

p i; jð Þ 0

T10 Cluster prominence28 T10 ¼ ∑
Ng

i¼1
∑
Ng

j¼1
iþ j� μx � μy
� �4

p i; jð Þ

T11 Maximum probability28 T11 ¼ max
i;j

p i; jð Þ

T12 Variance28 T12 ¼ ∑
Ng

i¼1
∑
Ng

j¼1
i� μð Þ2p i; jð Þ

T13 Sum average28 T13 ¼ ∑
2Ng

i¼2
ipxþy ið Þ

T14 Sum variance28 T14 ¼ ∑
2Ng

i¼2
i� T15ð Þ2pxþy ið Þ

T15 Sum entropy28 T15 ¼ � ∑
2Ng

i¼2
pxþy ið Þ log pxþy ið Þf g

T16 Difference variance28 T16 ¼ variance of px�y

T17 Difference entropy28 T17 ¼ � ∑
2Ng

i¼2
pxþy ið Þ log Px�y ið Þf g

T18 IMC128 T18 ¼ HXY�HXY1
max HX;HYf g

T19 IMC228 T19 ¼ 1� exp �2:0 HXY2�HXYð Þ½ �ð Þ12

T20 Maximal correlation coefficient28 T20 ¼ Second largest eigen value of thematrixQð Þ1=2

T21 INN28
T21 ¼ ∑

Ng

i¼1
∑
Ng

j¼1

p i;jð Þ
1þ i�jj j2=Ng2

T22 IDN28
T22 ¼ ∑

Ng

i¼1
∑
Ng

j¼1

p i;jð Þ
1þ i�jð Þ2=Ng2

ASM, angular second moment; IDM, Inverse difference moment; ICM, Information measures of correlation; INN, Inverse difference normalized; IDN,

Inverse difference moment normalized.
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p i; jð Þ ¼ P i; jð Þ
R

; (10)

px ið Þ ¼ ∑
Ng

j¼1
P i; jð Þ; (11)

py ið Þ ¼ ∑
Ng

i¼1
P i; jð Þ; (12)

pxþy kð Þ ¼ ∑
Ng

i¼1
∑
Ng

j¼1
p i; jð Þ iþ j ¼ k; k ¼ 2;3 . . . ;2Ngj ; (13)

px�y kð Þ ¼ ∑
Ng

i¼1
∑
Ng

j¼1
p i; jð Þ i� jj j ¼ k; k ¼ 0;1; . . . ;Ng � 1j ; (14)

HXY ¼ � ∑
Ng

i¼1
∑
Ng

j¼1
p i; jð Þ log p i; jð Þð Þ; (15)

HXY1 ¼ � ∑
Ng

i¼1
∑
Ng

j¼1
p i; jð Þ log px ið Þpy jð Þf g; (16)

HXY2 ¼ � ∑
Ng

i¼1
∑
Ng

j¼1
px ið Þpy jð Þ log px ið Þpy jð Þf g; (17)

Q i; jð Þ ¼ ∑
k

p i; kð Þp j; kð Þ
px ið Þpy jð Þ ; (18)

where p(i, j) is the (i, j)‐th entry in a normalized gray‐tone spatial‐de-
pendence matrices, px(i) is the i‐th entry in the marginal probability

matrix obtained by summing the rows of p(i, j), Ng is the number of

distinct gray levels in the quantized frame, and HX and HY are the

entropies of px and py.

The entire textural features are extracted from the gray‐tone
spatial‐dependence matrices. The equations, which define a set of

22 measures of textural features, are presented in Table 1. The men-

tioned features T1, T2, T5, T6, T12‐T19 are taken from the Haralick

feature,27 the features T3, T8‐T11 are inspired from,28 and the other

features T5, T21, and T22 are used from 29.

The feature T1 is also called Energy or Uniformity, which is a

measure of homogeneity of a frame. A similar scene will contain only

a few gray levels, giving a GLCM with only a few but relatively high

values of P(i, j). Thus, the sum of squares will be high.

T2 is the entropy function, which is the randomness or the

degree of disorder present in the frame. The value of entropy is sig-

nificant when all elements of the co‐occurrence matrix are the same

and small when elements are unequal. Inhomogeneous scenes have

low first order entropy, while a similar scene has high entropy. In

dissimilarity, (T3) the weights with which GLCM probabilities are

multiplied, increase linearly away from the diagonal (along which

neighboring values are equal).

The features T3‐T6, T18, and T19 are the smoothness statis-

tics, which use a weighted distance from the main diagonal of the

GLCM (i.e., location.). The inverse difference moment (IDM) (T6)

is also called homogeneity, and it measures the local homogene-

ity of a frame. The IDM feature obtains the measures of the

closeness of the distribution of the GLCM elements to the

GLCM diagonal. IDM has a range of values to determine whether

the frame is textured or nontextured. Homogeneity measures

how close the distribution of elements in the GLCM is to the

diagonal of GLCM. As homogeneity increases, the contrast, typi-

cally, decreases.

The correlation (T7) feature measures how correlated a pixel is

to its neighborhood. Correlation is a measure of gray level linear

dependence between the pixels at the specified positions relative to

each other. Feature values range from −1 to 1, these extremes indi-

cating perfect negative and positive correlation, respectively. The

μx; μy; σx; and σy parameters/values are the mean and standard devi-

ation of Px and Py. If the frame has horizontal textures, the correla-

tion in the direction of 0° degree is often more significant than

those in other directions.

The cluster shade (T9) is a measure of the skewness of the

matrix and catches the perceptual concepts of uniformity 30 and

works as follows: A new “i + j” frame is created, having a range of

integer intensities from 0 to 2(Ng − 1). The ui + j value is computed

and stored for the first neighborhood of the frame and is subse-

quently updated as the neighborhood is moved by one pixel. When

the cluster shade is high, the frame is asymmetric.

Cluster prominence (T10) is also a measure of asymmetry.30

When the cluster prominence value is high, the frame is less sym-

metric. In addition, when the cluster prominence value is low, there

is a peak in the GLCM matrix around the mean values. For an ultra-

sound image, a low cluster prominence value indicates small varia-

tion in gray‐scale. Maximum probability (T11) is the simple static

records in the central pixel of the window, the most significant p(i, j)

value found within the window. High maximum probability values

occur if one combination of pixels dominates the pixel pairs in the

window.

Variance (T12) is also known as Sum of Squares and is a mea-

surement of heterogeneity which is strongly correlated to first order

statistical variable such as standard deviation. The variance increases

when the gray level values differ from their mean. It also includes

the average calculated over the sum of adjacent pixels (T13), the

variance calculated over the sum of the adjacent pixels (T14), the

variance over the difference between adjacent pixels (T16), the

entropy on the sum of the adjacent pixels (T15) and the entropy on

the difference of the adjacent pixel (T17).

The informational coefficient of correlation (T18 and T19) is a

function of the joint probability density function p(x, y) of the two

variables x and y. It is an invariant under a change of parameteriza-

tion x’ = f(x), y’ = f(y), and reduces to the classical correlation coeffi-

cient when p(x, y) is normal.

The maximal correlation coefficient (T20) defines the square root

of the second largest Eigenvalues of the matrix Q. It expresses the

singular value characterization for the finite‐valued random variables.
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3.F | A combined color‐ and texture‐based
classification

The color and texture features described earlier are designed to

extract the different local characteristics at a level of individual

pixels. In this work, we are using the machine‐learning‐based two‐
class‐classification methods to differentiate between two different

pixel groups. The first group includes all pixels that show bleed-

ing‐related findings, like fresh and old blood, open wounds, etc.

These findings are typically colored in shades of red: from bright

red for fresh blood to dark brown for old blood residuals. At first

glance,30 the color features seem to be the best option for the

detection of areas with bleeding, but, in general, it is not true

because of the second group of pixels which are dominating in

the GI tract frames.

The second group of pixels is associated with different findings

that are not‐bleeding‐related, like normal GI tract tissue, stool

masses, food leftovers, bubbles, instruments, water, over‐ under‐illu-
minated areas, etc. All these “normal” findings can be colored in

more or less random colors, but they can also be colored in shades

of red, for example, food leftovers, some types of fecal masses,

some types of normal GI tract tissue, etc. In contrast to the first

group of pixels, for this group of pixels, the texture is an important

characteristic that allows the system to distinguish between different

types of findings, and in combination with the color information, the

texture‐related local characteristics are an essential input for

machine‐learning methods to perform pixel‐level classification.

Detailed pixel‐perfect classification is essential because the bleeding

areas can be both big and very small and, at the same time, the

state‐of‐the‐art WCE devices have a relatively low spatial resolution.

Thus, an evaluation of each pixel is essential for high‐performance

bleeding detection in this scenario.

In the proposed pixel‐level classification approach, we use Ran-

dom Tree (RT),30 Random Forest (RF),30 and Logistic Model Tree

(LMT)30 machine‐learning‐based classifiers with the input vectors

consist of the different combinations of the color and the texture

features.

4 | EXPERIMENTAL RESULTS

This research has obtained its novelty through collaboration with the

medical experts (experienced endoscopists) from Endoscopy unit at

University of Malay Medical Center (UMMC), Kuala‐Lumpur, Malay-

sia. The data collection has been performed at their medical center

especially to carry out this research. In order to validate our results,

the experts provided the ground truth data in the form of frame

labels (bleeding/nonbleeding) for all the collected frames and the

pixel‐level bleeding areas segmentation masks [see Fig. 5(d) for

example] for bleeding frames only with the highlighted bleeding

areas. The WCE devices used to record the frames were Olympus

Endocapsule with the resolution of 288 × 288 pixels per frame.

4.A | Performance metrics

The performance metrics used in the experimental evaluation of our

methods are accuracy (ACC), precision (PREC), sensitivity or recall

(REC), specificity (SPEC), F‐Measure (F1), Matthews correlation coef-

ficient (MCC), area under receiver operator characteristic curve30

and area under precision‐recall curve.30 Four cases can be recorded

for detection of bleeding and nonbleeding frames and pixels. A

bleeding frame (pixel) which is detected as a nonbleeding frame is

called false nonbleeding detection or false negative (FN). A non-

bleeding frame (pixel) which is detected as a bleeding frame is called

a false bleeding detection or false positive (FN). The other two cases

are true bleeding detection or true positive (TP) and true nonbleed-

ing recognition or true negative (TN). The performance metrics are

defined as the following:

Accuracy ¼ TPþ TN
TPþ FPþ TNþ FN

(19)

Precision ¼ TP
TPþ FP

; (20)

Recall Sensitivityð Þ ¼ TP
TPþ FN

; (21)

F I G . 5 . The sample wireless capsule endoscopy frames and their segmentation masks.
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Specificity ¼ TN
FPþ TN

; (22)

F�Measure ¼ 2TP
2TPþ FPþ FN

; (23)

Matthews correlation coefficient ¼
TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþ FPð Þ TPþ FNð Þ TNþ FPð Þ TNþ FNð Þp : (24)

For overall performance evaluation of the proposed methods, we

selected the MCC metric which is used in machine learning as a

measure of the quality of binary (two‐class) classification methods. It

takes into account true and false positives and negatives and is gen-

erally regarded as a balanced measure that can be used even if the

classes are of very different sizes. The MCC value lies in the region

between −1 and +1. A coefficient of +1 represents a perfect predic-

tion, 0 no better than random prediction and −1 indicates total dis-

agreement between prediction and observation. Our previous

research 31,32 confirmed that MCC is the most convenient and effi-

cient metric for the binary classification tasks evaluation and com-

parison.

4.B | Frame‐level bleeding detection

As per data availability at UMMC, we have chosen 300 bleeding

frames and 200 nonbleeding or normal frames for the training data-

set (500 frames). The testing data set consists of 500 bleeding and

200 nonbleeding frames (700 frames). All these samples are ran-

domly extracted from 27 different videos for comparative experi-

ments. All the bleeding frames were annotated by the experienced

endoscopists provided the bleeding areas segmentation masks with

the true values assigned to the bleeding pixels.

The example output of the sequential frame processing steps is

depicted in Fig. 4. The number of pixels that are considered as the

positive bleeding detection threshold was set to 280 pixels in order

to achieve the optimal bleeding detection performance metrics for

this example and all the frame‐level bleeding detection experiments.

This threshold value was selected based on our previous studies 33

showed that below this number, the detection method could incor-

rectly detect angiodysplasia or other small dark patches as a bleeding

region.

The experimental results depicted in Table 2 shows the REC,

SPEC, ACC, F1, and MCC metrics for the different classifications.

Among three different kernels of SVM, RBF kernel shows the best

results for classification. Few frames have misclassified as they con-

tained angiodysplasia, which is a small vascular malformation of the

gut, also colored in red. The performance of our methods is com-

pared to the best results reported in Ref. 10,24 Although the

reported results from other authors also have promising detection

results, the proposed methods have less computational costs of

0.38 s per frame due to the simplicity of algorithm in addition to

high detection performance.

As we can see from Table 1, we have good results in terms of

REC and ACC. Most of the times, the bleeding regions are dark red,

and this color is difficult to identify as a bleeding frame. Other

bleeding areas in the same frame were well detected as bleeding

areas. Therefore, the overall performance of detecting a bleeding

frame is high. Specificity is relatively high too considering gastric

conditions with the nonuniform light. It might be the case for

reduced performance.

4.C | Pixel‐level bleedings detection

For the pixel‐level bleeding detection, we have selected a subset of

frames from the dataset that has been used for frame‐level bleeding
detection experimental studies. First, we have chosen 93 bleeding

frames and 186 nonbleeding or normal frames for the pixel‐level
detection evaluation data set (279 frames in total). Then, we have

randomly divided the selected bleeding and nonbleeding frames into

training and test sets containing 47 and 46 bleeding and 93 and 93

nonbleeding frames, respectively. The whole segmentation masks for

the nonbleeding frames as well as the not‐bleeding‐related pixels in

areas in bleeding frames, like normal GI tract tissue, stool masses,

parasites, food leftovers, bubbles, instruments, water, over‐ and

under‐illuminated areas, frame borders, etc. are marked with false

values. The examples of the source frames and the corresponding

segmentation masks are depicted in Fig. 5.

The different color and texture features can provide different

amounts and quality of information. Regardless of the native proper-

ties of the machine‐learning methods, which can support automatic

selection of the most meaningful features, it is essential to under-

stand and be able to estimate the importance of the different color

and texture features. In this research, we have performed a simple

analysis of the color and texture features in terms of the value for

the binary bleeding classification. During this analysis, we extracted

all the color and texture features from all the frames in both the

training and test sets. The features extracted then were used in ten-

fold cross‐validation of a single‐feature‐based RT classifier.

Table 3 depicts a visual representation of the extracted color and

texture features for the two sample frames (see Fig. 5) and the cor-

responding weighted average of the MCC measure values for

TAB L E 2 Performance comparison with state‐of‐the‐art methods.

Metrics

Method

10 24

Proposed method

SVM SVM SVM
Polynomial Linear RBF

Recall (sensitivity) 0.970 0.931 0.959 0.946 0.976

Specificity 0.936 0.884 0.913 0.917 0.955

Accuracy 0.948 0.915 0.900 0.892 0.977

F1 n/a n/a 0.962 0.949 0.978

MCC n/a n/a 0.868 0.860 0.898

F1, F‐Measure; MCC, Matthews correlation coefficient; SVM, support

vector machine.
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bleeding classification performance. As one can see, all the color and

texture features outperform the ZeroR base‐line classifier with zero

MCC value. All the individual color features showed the promising

performance with MCC values from 0.449 up to 0.832. Thus, all the

color features can be considered as the right candidates for the

pixel‐level bleeding detection. The individual texture features shown

the MCC value varies in a range from 0.151 to 0.486 that is signifi-

cantly lower than the color features. However, the MCC values

greater than zero correspond to valid and better‐than‐random pre-

dictions. Thus, we can expect small but noticeable benefits of

TAB L E 3 The comparison of the color and texture features (marked as “F”) for the bleeding (marked as “Bleeding”) and normal (marked as
“Nonbleeding”) WCE samples with the corresponding bleeding pixels detection tenfold cross‐validation weighted average MCC performance.
The color and texture features are marked with “C” and “T” prefixes respectively with the following texture identifier. All the feature output
frames are range‐normalized. Red color is used to mark pixels that are nonmeaningful or contain nonnumbers after the features extraction.

F
Non-

bleeding
Bleeding MCC F

Non-

bleeding
Bleeding MCC F

Non-

bleeding
Bleeding MCC

C1 0.832 T5 0.271 T14 0.364

C2 0.449 T6 0.328 T15 0.185

C3 0.690 T7 0.270 T16 0.273

C4 0.508 T8 0.408 T17 0.267

C5 0.450 T9 0.271 T18 0.164

T1 0.178 T10 0.198 T19 0.197

T2 0.184 T11 0.289 T20 0.151

T3 0.292 T12 0.171 T21 0.264

T4 0.296 T13 0.486 T22 0.287
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combining color and texture features in one feature vector. For the

following experiments, we have therefore selected all the color fea-

tures as a joint feature vector base (C1‐C5). The texture features

had been used in different combinations which included (a) all the

texture features (T1‐T22), (b) the top‐MCC texture features (T4, T6,

T8, T13 and T14), and (c) the visually different texture features with

the highest possible MCC (T4, T6, T9, T11, and T13).

In the following experiments, we have evaluated the different

approaches to the pixel‐level bleeding detection using the different

combinations of the color and texture features and the different

variants of the machine‐learning methods used for pixel classifica-

tion. The feature combinations used include the five best‐performing

color features only, the five best‐performing texture features only

and three combinations of all the color and different texture fea-

tures: [T1‐T22], [T4, T6, T8, T13, T14], and [T4, T6, T9, T11, T13]

named "All", "Five top", and "Five different" respectively in the fol-

lowing tables. All the color and texture features were extracted for

each meaningful pixel (not a black frame border, not an over‐ and

under‐exposed pixel) of the input frames using the corresponding

equations described in sections 3.4 and 3.5. The features extracted

were combined using the simple early‐fusion approach when the

resulting pixel's feature vector made as a simple enumeration of all

the feature values used. The machine‐learning approaches used are

RT, RF, and LMT; all have been proven 31,32,34 to be able to provide

a good two‐class classification performance for GI tract frames. RT is

the simplest one that therefore has the lowest computation com-

plexity with good enough performance. RF and LMT are balanced in

terms of complexity and the performance provided, while RF is more

straightforward to compute and LMT has a slightly better perfor-

mance depending on the data being classified.

Table 4 depicts the results of the tenfold cross‐validation using

the entire pixel‐level bleeding detection dataset which consist of 93

bleeding and 186 nonbleeding frames. As one can see, all the pro-

posed combinations of features and machine‐learning‐based

classifiers can significantly outperform the base‐level ZeroR classifier.

As it was expected form the individual features performance evalua-

tion, the texture‐only run with RT classifier had the worst MCC per-

formance value of 0.645. The color‐only run with RT classifier

showed much higher performance with an MCC value of 0.824. The

significantly higher performance of the color‐only‐based approach is

expected due to a primary color‐based nature of bleedings. The fol-

lowing runs were performed using the combination of all the color

features and different texture features in order to verify the theory

of the potential advantages of texture information for bleeding

detection. The total number of the combined runs were evaluated is

9–3 runs per the classifier. As it was expected from our previous

experience 32, RT classifier performs the worst in terms of classifica-

tion performance comparing to RF and LMT resulting in the highest

MCC performance of 0.895 for all the color and [T4, T6, T9, T11,

T13] texture features. The RF and LMT classifiers achieved the com-

parable classification performance. Controversial to our previous

experimental studies 32, RF had noticeable better MCC performance

of 0.931 for all the color and all the texture features, which is higher

comparing LMT with the MCC value of 0.922 for the same feature

combination. The relatively low numbers of features and frames

(comparing to our previous research) used in this experimental stud-

ies can be a reason for such an unexpected behavior of the LMT

classifier. Nevertheless, the performance results of this evaluation

confirm that proposed combinations of texture and color features

provide the significantly better results than color and texture fea-

tures used alone.

To investigate the validity and potential of the proposed feature

combinations for the real‐world bleeding detection approaches, we

have performed twofold cross‐validation of the algorithms using the

previously created training and test datasets. The validation results

are depicted in Table 5. The detailed analysis of the performance

numbers confirmed the already discovered interrelationships in the

performance of different runs regarding the sets of features and the

TAB L E 4 Tenfold cross‐validation results for the whole pixel‐level bleeding detection dataset.

Color features Texture features Classifier PREC REC SPEC ACC F1 MCC ROC PRC

None All RT 0.876 0.875 0.770 0.875 0.876 0.645 0.823 0.836

All None RT 0.938 0.938 0.883 0.938 0.938 0.824 0.911 0.912

All All RT 0.962 0.962 0.930 0.962 0.962 0.893 0.946 0.946

All Five top RT 0.963 0.963 0.931 0.963 0.963 0.894 0.947 0.946

All Five different RT 0.963 0.963 0.932 0.963 0.963 0.895 0.947 0.947

All All RF 0.976 0.976 0.959 0.976 0.976 0.931 0.997 0.997

All Five top RF 0.975 0.974 0.956 0.974 0.975 0.928 0.996 0.996

All Five different RF 0.976 0.975 0.958 0.975 0.975 0.930 0.997 0.996

All All LMT 0.973 0.973 0.954 0.973 0.973 0.922 0.995 0.994

All Five top LMT 0.970 0.970 0.945 0.970 0.970 0.914 0.994 0.993

All Five different LMT 0.973 0.972 0.954 0.972 0.972 0.922 0.995 0.994

‐ ‐ ZeroR 0.598 0.773 0.227 0.773 0.674 0.000 0.500 0.649

PREC, precision; REC, sensitivity or recall; SPEC, specificity; F1, F‐Measure; ACC, accuracy; MCC, Matthews correlation coefficient; ROC, receiver oper-

ator characteristic curve; PRC, precision‐recall curve; RT, Random tree; LMT, logistic model tree.
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machine‐learning approach used. The RF classifier with the combina-

tion of all the color and all the texture features performed best with

an MCC score of 0.903. Moreover, the measured difference

between all the performance metrics measured during the original‐
and flipped‐order runs is small (with the maximum value of 0.014 for

MCC measure) and shows a slightly better detection performance

for the original order of training and test sets for all the runs, what

is confirm is that the bleeding detection approach is complete, valid,

and can be used in real‐world applications with the real datasets

obtained from WCE endoscopic procedures.

However, the measured difference between the best performing

RF‐based bleeding detection runs with all the texture, and the [T4,

T6, T9, T11, T13] texture features is almost nonnoticeable with the

difference value of 0.001, thus using of only these five texture fea-

tures in combination with five color features recommended for

reducing the classification computation complexity. In our future

work, after collecting and annotating of a more significant number of

bleeding frames form a broader range of patients and bleeding cases,

we are going to re‐evaluate the value of the different texture fea-

tures using the statistical methods in order to find the combination

of texture features with the best possible performance and computa-

tional complexity balance for this use‐case.
A comparison of our bleeding detection method to the best state‐

of‐the‐art methods is depicted in Table 6. The direct comparison of

our method to the existing methods is difficult because the different

research teams are reporting different and sometimes nonoverlapping

performance metrics. However, the obtained results from the related

work performance numbers allow performing the comparison based

on PREC, REC, specificity, accuracy, and F‐Measure scores. As shown

in Table 6, our bleeding pixels detection method outperforms the Refs.

20 and 22 approaches in terms of accuracy achieving accuracy value

of 0.976. Next, we perform better in terms of PREC with a value of

0.976 than Ref. 20 and slightly worse than Ref. 21 with the accuracy

of 0.99. Sensitivity (recall) of 0.976 achieved in our experiments is bet-

ter than Refs. 20 and 22, was slightly worse than Ref. 22 with recall

value of 0.99. The 0.959 value of specificity is better than results

described in Ref. 22 but lower than Ref. 20 with the peak of 0.97.

Concerning the F‐Measure score, it is possible to compare our results

only to Ref. 21, and we are performing almost as efficient with the F1

value of 0.976 (lower by 0.004).

Generally speaking, a fair comparison of the different two‐class
classification approaches is difficult with the widely used PREC, REC,

specificity, accuracy, and even F‐Measure scores because none of

these metrics assess the imbalances in the positive and negative sam-

ples in the datasets, as well as the sizes of the datasets. In the case of

a fully balanced dataset with the equal number of positive and nega-

tive samples, the MCC value measured is equal to the F‐Measure

value. With the increase of the level of the dataset imbalance, the

TAB L E 6 Performnce comparison with the state‐of‐the‐art methods.

Bleeding detection method PREC REC SPEC ACC F1 MCC ROC PRC

20 0.95 0.92 0.97 0.96 n/a n/a n/a n/a

21 0.99 0.97 n/a n/a 0.98 n/a n/a n/a

22 n/a 0.99 0.94 0.95 n/a n/a n/a n/a

Our method 0.976 0.976 0.959 0.976 0.976 0.931 0.997 0.997

PREC, precision; REC, sensitivity or recall; SPEC, specificity; F1, F‐Measure; ACC, accuracy; MCC, Matthews correlation coefficient; ROC, receiver oper-

ator characteristic curve; PRC, precision‐recall curve.

TAB L E 5 Twofold cross‐validation results for the two pixel‐level bleeding detection datasets. The performance measures are presented in the
original/ flipped order regarding the selected training and test sets.

Color
features

Texture
features Classifier PREC REC SPEC ACC F1 MCC ROC PRC

None All RT 0.882/0.851 0.875/0.854 0.762/0.745 0.875/0.854 0.878/0.852 0.607/0.620 0.818/0.800 0.850/0.800

All None RT 0.936/0.921 0.934/0.922 0.873/0.864 0.934/0.922 0.935/0.922 0.787/0.800 0.903/0.893 0.914/0.887

All All RT 0.958/0.943 0.957/0.944 0.911/0.898 0.957/0.944 0.957/0.943 0.859/0.856 0.934/0.921 0.941/0.916

All Five top RT 0.959/0.944 0.958/0.944 0.918/0.896 0.958/0.944 0.958/0.944 0.863/0.857 0.938/0.920 0.943/0.916

All Five different RT 0.958/0.946 0.958/0.946 0.912/0.903 0.958/0.946 0.958/0.946 0.861/0.862 0.935/0.925 0.941/0.920

All All RF 0.971/0.957 0.970/0.957 0.946/0.924 0.970/0.957 0.971/0.957 0.903/0.890 0.993/0.985 0.992/0.985

All Five top RF 0.970/0.955 0.969/0.955 0.945/0.919 0.969/0.955 0.969/0.955 0.899/0.886 0.992/0.984 0.990/0.984

All Five different RF 0.971/0.956 0.970/0.956 0.945/0.922 0.970/0.956 0.970/0.956 0.902/0.888 0.993/0.984 0.991/0.984

All All LMT 0.968/0.955 0.968/0.956 0.940/0.923 0.968/0.956 0.968/0.955 0.894/0.887 0.989/0.982 0.984/0.983

All Five top LMT 0.969/0.954 0.968/0.955 0.944/0.918 0.968/0.955 0.968/0.954 0.896/0.884 0.988/0.982 0.979/0.981

All Five different LMT 0.968/0.954 0.967/0.954 0.939/0.920 0.967/0.954 0.967/0.954 0.893/0.883 0.988/0.983 0.977/0.983

‐ ‐ ZeroR 0.665/0.533 0.816/0.730 0.184/0.270 0.816/0.730 0.733/0.616 0.000/0.000 0.500/0.500 0.699/0.605

PREC, precision; REC, sensitivity or recall; SPEC, specificity; F1, F‐Measure; ACC, accuracy; MCC, Matthews correlation coefficient; ROC, receiver oper-

ator characteristic curve; PRC, precision‐recall curve; RT, Random tree; LMT, logistic model tree.
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MCC value becomes lower with the limit of zero for the fully unbal-

anced dataset. Thereby, comparative analysis of the F‐Measure and

MCC score can also be used to estimate the dataset balance for the

results obtained using the nonpublic and not well‐described datasets.

Thus, the only metrics that can efficiently be used for the direct per-

formance comparison of the different methods on the different data-

sets is MCC, and we, therefore, invite all the researches to report this

metrics or a whole set of TP, TN, FP, and FN values enabling a compu-

tation of all the metrics can be used for the method's comparison.

5 | CONCLUSION

In this paper, we presented a developed automated bleeding detec-

tion algorithm that detects the frame with bleeding as well as pixels

that are associated with bleeding areas. We briefly describe the

related work and the base ideas of our detection approach. We

introduced the color and texture features used for frames analysis

and presented both our approaches using either color or features

and the combined color‐texture‐based approach. The novelty of the

best‐performing detection approach includes a combination of the

best color and texture features used. A detailed evaluation of the

frame‐ and pixel‐level bleeding detection has been performed. The

experimental results displayed a good performance of our bleeding

detection method in terms detection accuracy at least as good as

state‐of‐the‐art approaches. Not only that the novelty of the pro-

posed method promises the higher accuracy, provides a broader

comparison of distinctive state‐of‐the‐art features, and various classi-

fication methods, alongside with the detection method performance

measurement using a comprehensive combination of metrics. The

conducted experimental studies confirmed the importance of the

features combination even for the relatively simple case of GI tract

bleeding detection. Using of both the color and texture features is

required for the highest detection performance.

For the future work, we plan to extend the sets of texture and

color features used in our classification approach and to perform a

more in‐depth statistical analysis of the value of different features

for the classification performance. Next, we plan to extend the

methods presented in this paper for WCE ulcer frames analysis in

order to support UC and inflamed areas detection and localization.

Finally, using our previous successful experience21 in speeding‐up of

feature extraction using heterogeneous resources such as graphical

processing units (GPU), we plan to implement the feature extraction

code on GPU, which will allow a significant increase in the perfor-

mance of our proposed detection approach in relevance with frame

processing speed.
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