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The neuromodulator acetylcholine (ACh) plays an important role in arousal, attention,
vigilance, learning and memory. ACh is released during different behavioural states and
affects the brain microcircuit by regulating neuronal and synaptic properties. Here, we
investigated how a low concentration of ACh (30 µM) affects the intrinsic properties of
electrophysiologically and morphologically identified excitatory and inhibitory neurons in
layer 4 (L4) of rat barrel cortex. ACh altered the membrane potential of L4 neurons
in a heterogeneous manner. Nearly all L4 regular spiking (RS) excitatory neurons
responded to bath-application of ACh with a M4 muscarinic ACh receptor-mediated
hyperpolarisation. In contrast, in the majority of L4 fast spiking (FS) and non-fast
spiking (nFS) interneurons 30 µM ACh induced a depolarisation while the remainder
showed a hyperpolarisation or no response. The ACh-induced depolarisation of L4
FS interneurons was much weaker than that in L4 nFS interneurons. There was
no clear difference in the response to ACh for three morphological subtypes of L4
FS interneurons. However, in four morpho-electrophysiological subtypes of L4 nFS
interneurons, VIP+-like interneurons showed the strongest ACh-induced depolarisation;
occasionally, even action potential firing was elicited. The ACh-induced depolarisation
in L4 FS interneurons was exclusively mediated by M1 muscarinic ACh receptors;
in L4 nFS interneurons it was mainly mediated by M1 and/or M3/5 muscarinic ACh
receptors. In a subset of L4 nFS interneurons, a co-operative activation of muscarinic
and nicotinic ACh receptors was also observed. The present study demonstrates that
low-concentrations of ACh affect different L4 neuron types in a cell-type specific way.
These effects result from a specific expression of different muscarinic and/or nicotinic
ACh receptors on the somatodendritic compartments of L4 neurons. This suggests that
even at low concentrations ACh may tune the excitability of L4 excitatory and inhibitory
neurons and their synaptic microcircuits differentially depending on the behavioural state
during which ACh is released.
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INTRODUCTION

Normal brain function relies on the participation of diverse
neuromodulators such as the acetylcholine (ACh), noradrenaline,
dopamine, and serotonin. These neuromodulators are mainly
released from different subcortical brain regions during different
cognitive and behavioural states and affect neuronal microcircuits
differently yet in a collaborative way. ACh plays a critical role in
many cognitive functions including arousal, attention, vigilance,
learning, and memory (Hasselmo, 2006; Picciotto et al., 2012;
Colangelo et al., 2019). While ACh is mainly released from
axonal boutons of neurons located in the nucleus basalis of
Meynert in the basal forebrain (Mesulam et al., 1983; Zaborszky
et al., 2015), it may also be co-released from neocortical choline
acetyltransferase (ChAT)-expressing/vasoactive intestinal
peptide (VIP)-positive interneurons together with the inhibitory
transmitter GABA and/or VIP (Obermayer et al., 2019;
Granger et al., 2020). ACh effects are mediated by two different
types of receptors, the G-protein-coupled muscarinic ACh
receptors (mAChRs) and the ionotropic nicotinic ACh receptors
(nAChRs). In the neocortex, both receptor types show layer-
specific distributions and effects (Obermayer et al., 2017;
Radnikow and Feldmeyer, 2018). In general, ACh increases the
excitability of pyramidal cells located in different cortical layers
by activating both nAChRs and mAChRs (Gulledge et al., 2007;
Zolles et al., 2009; Bailey et al., 2010; Tian et al., 2014; Hay et al.,
2016; Yang et al., 2020; Patel et al., 2021). In a minor fraction
of deep L2/3 and a subset of L5/6 pyramidal cells, ACh induces
an initial small and transient hyperpolarisation followed by a
sustained depolarisation mediated by muscarinic M1/3 mAChRs
(Gulledge and Stuart, 2005; Gulledge et al., 2007; Eggermann
and Feldmeyer, 2009; Patel et al., 2021). In contrast, excitatory
neurons located in layer 4 are persistently hyperpolarised by
ACh activating M4 mAChRs (Eggermann and Feldmeyer, 2009;
Dasgupta et al., 2018). A similar ACh effect was also found in
L6A corticocortical neurons (Yang et al., 2020).

Cholinergic effects on GABAergic inhibitory interneurons are
heterogenous and dependent on interneuron subtypes (Bacci
et al., 2005; Muñoz and Rudy, 2014). Cortical interneurons
can be broadly divided into two large groups according to
their firing patterns, i.e., fast spiking (FS) and non-FS (nFS)
interneurons. ACh induces a depolarisation in the majority of
nFS interneurons [e.g., somatostatin-expressing (SST+) adapting
firing, VIP+ irregular spiking interneurons] via the activation
of nAChRs and/or mAChRs but induces a hyperpolarisation
in others such as cholecystokinin-expressing (CCK+) regular
spiking interneurons (Kawaguchi, 1997; Gulledge et al., 2007).
Whether FS interneurons show ACh effects is still a matter of
debate (Kawaguchi, 1997; Xiang et al., 1998; Gulledge et al., 2007;
Kruglikov and Rudy, 2008; Chen et al., 2015).

The ACh response of a neuron depends on the concentration
and the speed and spatial profile of application. In the majority
of studies, a high concentration of ACh (∼1 mM) was
applied locally through a puff pipette; this approach reveals
predominantly the nicotinic ACh response but largely obscures
any muscarinic ACh effects. Furthermore, a puff-application
mimics (to some extent) phasic ACh release on a short time

scale (within a few ms) but does not simulate tonic, non-synaptic
ACh release into the extracellular space, the so-called “volume
transmission” (Fuxe and Borroto-Escuela, 2016).

In sensory cortices, L4 neurons receive direct thalamocortical
input and distribute intracortical excitation and inhibition to
other cortical layers. While the neuronal composition and
synaptic connectivity of layer 4 have been studied extensively
(Feldmeyer et al., 1999; Gibson et al., 1999; Lubke et al., 2000;
Beierlein et al., 2003; Xu et al., 2013; Koelbl et al., 2015;
Emmenegger et al., 2018; Scala et al., 2019) a comprehensive
study on their modulation by ACh or other neuromodulators
is still lacking. Here, we investigated how low concentrations of
ACh affect the intrinsic properties of different L4 neuron types
and subtypes in acute brain slices using patch-clamp recordings
and bath-application of cholinergic agonists and antagonists. To
reveal the cell-type specific effects of ACh, L4 neurons were
classified into three electrophysiological types and ten electro-
morphological subtypes as identified previously (Feldmeyer et al.,
1999; Staiger et al., 2004; Koelbl et al., 2015; Emmenegger
et al., 2018). We found that neuromodulation by mAChRs
is a common property of all L4 neurons but is highly cell
type-specific. Furthermore, in some L4 nFS interneuron types
low concentrations of ACh evoked a strong superthreshold
depolarisation mediated by coincident activation of both
mAChRs and nAChRs suggesting a cooperative interaction of
the two receptor types in cholinergic modulation of neuronal
excitability and synaptic transmission.

MATERIALS AND METHODS

All experimental procedures involving animals were performed
in accordance with the guidelines of the Federation of European
Laboratory Animal Science Association (FELASA), the EU
Directive 2010/63/EU, and the German animal welfare law.

Slice Preparation
In this study, Wistar rats (Charles River, either sex) aged 18–
33 postnatal days (P18–P33) were maintained on a 12/12-h
light/dark cycle with lights on from 7 a.m. to 7 p.m. Rats were
anaesthetized with isoflurane at a concentration <0.1% and
decapitated between 10:30 a.m. and 11:30 a.m. The brain was
quickly removed and placed in an ice-cold modified artificial
cerebrospinal fluid (ACSF) containing a high Mg2+ and a low
Ca2+ concentration (4 mM MgCl2 and 1 mM CaCl2), other
components are same to that in the perfusion ACSF as described
below, to reduce potentially excitotoxic synaptic transmission
during slicing. In order to maintain adequate oxygenation and
a physiological pH level, the solution was constantly bubbled
with carbogen gas (95% O2 and 5% CO2). Thalamocortical slices
(Feldmeyer et al., 1999; Qi et al., 2017) were cut at 350 µm
thickness using a Leica VT1000S vibrating blade microtome
and then transferred to an incubation chamber containing
preparation solution for a recovery period of at least 30 min
at room temperature before being transferred to the recording
chamber. After cutting, slices from animals older than P21 were
transferred to a holding chamber placed in a water bath at 35◦C
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for 30 min and then, the water bath was allowed to gradually cool
down to the room temperature.

Solution
During recordings, slices were continuously superfused
(perfusion speed ∼5 ml/min) with ACSF containing (in mM):
125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, 25
NaHCO3, 25 D-glucose, 3 mho-inositol, 2 sodium pyruvate, and
0.4 ascorbic acid, bubbled with carbogen gas (95% O2 and 5%
CO2) and maintained at 30–33◦C. Patch pipettes (5–8 M�) were
pulled from thick-wall borosilicate glass capillaries and filled
with an internal solution containing (in mM): 135 K-gluconate,
4 KCl, 10 HEPES, 10 phosphocreatine, 4 Mg-ATP, and 0.3 GTP
(pH 7.4 with KOH, 290–300 mOsm). Biocytin at a concentration
of 5 mg/ml was added to the internal solution in order to stain
patched neurons after recordings.

Electrophysiological Recording and
Analysis
Slices and neurons were visualised using an upright microscope
equipped with an infrared differential interference contrast (IR-
DIC) optics. The barrels can be identified in layer 4 as dark
stripes with light “hollows” at low magnification (4× objective)
and were visible in 6–8 consecutive slices. Neurons located inside
the barrels were randomly selected for recordings. When being
visualised at high magnification (40× magnification), putative
excitatory neurons have ovoid-shape somata without obvious
apical dendrites and putative interneurons have enlarged oval
somata. They could also be differentiated by their action potential
(AP) firing patterns during recording and by their morphological
appearances thereafter. Whole-cell patch clamp recordings were
made using an EPC10 amplifier (HEKA, Lambrecht, Germany).
Signals were sampled at 10 kHz, filtered at 2.9 kHz using
Patchmaster software (HEKA), and later analysed off-line using
Igor Pro software (Wavemetrics, United States).

Custom-written macros in Igor Pro 6 (WaveMetrics,
Lake Oswego, OR, United States) were used to analyse the
recorded electrophysiological signals. Passive and active AP
firing properties were assessed by eliciting a series of 1 s
current pulses under current clamp configuration. The series
resistance and capacitance were carefully adjusted after breaking
through the membrane into whole-cell mode and continuously
compensated by 80% during recordings. Membrane potentials
were not corrected for a junction potential. Neurons with
a series resistance exceeding 40 M� or with a depolarized
resting membrane potential (>−55 mV) after rupturing the
cell membrane were excluded from analysis. The resting
membrane potential (Vrest) was recorded immediately after
establishing the whole-cell recording configuration. Other
passive membrane properties such as the input resistance
Rin, membrane time constant τm, voltage sag were measured
from membrane potential (Vm) traces induced by a series of
hyper- and depolarizing subthreshold current pulses. Single
AP properties such as the AP threshold, amplitude, half-width,
afterhyperpolarisation (AHP) amplitude were measured for
the first spike elicited by a rheobase current step. Repetitive

firing properties such as the maximum firing frequency, slope
of frequency-current curve were measured. The description of
most electrophysiological parameters for data analysis has been
described previously (Emmenegger et al., 2018).

Drug Application and Analysis
Acetylcholine (30 µM) was applied through the perfusion system.
Atropine (ATRO, 200 nM), mecamylamine (MEC, 10 µM),
tropicamide (TRO, 1 µM), pirenzepine (PIR, 0.5 µM), dihydro-
ß-erythroidine (DHßE, 10 µM), TTX (0.5 µM) and the cocktail
of synaptic blockers including CNQX (10 µM), D-AP5 (50 µM),
gabazine (10 µM) were all bath-applied; drugs were purchased
from Sigma-Aldrich or Tocris. During recordings, a 3 min stable
baseline with a Vm fluctuation <1 mV was recorded before
applying the drug via the perfusion system. The change in
Vm was calculated as the difference between the maximum Vm
deflection (positive or negative) after drug application and the
baseline. To avoid a misclassification of the Vm change because
of background Vm fluctuation, we set a threshold of ±0.5 mV so
that a Vm change≤0.5 mV during drug application is considered
to be no response.

Immunohistochemical Staining
Slices were fixed after electrophysiological recordings with 4%
paraformaldehyde in 100 mM phosphate buffered saline (PBS)
for at least 24 h at 4◦C. To recover the morphology of biocytin-
filled neurons, slices were rinsed several times in 100 mM PBS
and then treated with 1% H2O2 in PBS for about 20 min in
order to reduce any endogenous peroxidase activity. Slices were
rinsed repeatedly with PBS and then incubated in 1% avidin-
biotinylated horseradish peroxidase (Vector ABC staining kit,
Vector Lab. Inc., Burlingame, CA, United States) containing 0.1%
Triton X-100 for 1 h at room temperature. The reaction was
catalysed using 0.5 mg/ml 3,3-diaminobenzidine (DAB; Sigma-
Aldrich, St. Louis, MO, United States) as a chromogen. Slices
were then rinsed with 100 mM PBS, followed by slow dehydration
with ethanol in increasing concentrations and finally in xylene
for 2–4 h. After that, slices were embedded using Eukitt medium
(Otto Kindler GmbH, Freiburg, Germany).

Morphological Reconstruction and
Analysis
Computer-assisted morphological 3D reconstructions of
neurons were made using the NEUROLUCIDA R© software
(MicroBrightField, Williston, VT, United States) and Olympus
BV61 microscopy at 1000× magnification (100× objective, 10×
eyepiece). Neurons were selected for reconstruction based on
the quality of biocytin labelling when background staining was
minimal. The cell body, dendritic and axonal branches were
reconstructed manually under constant visual inspection to
detect thin and small collaterals. Cytoarchitectonic landmarks
such as barrels in the primary somatosensory cortex and layer
borders, pial surface and white matter were delineated during
reconstructions at a low magnification (4× objective). The
position of soma and layers were confirmed by superimposing
the DIC images taken during the recording. Tissue shrinkage was
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corrected using correction factors of 1.1 in the x–y direction and
2.1 in the z direction (Marx et al., 2012).

Statistical Analysis
For all data, the mean ± s.d. is given. Statistical comparisons
among multiple groups were done using a Kruskal–Wallis test
followed by a Dunn–Holland–Wolfe non-parametric multiple
comparison test. Wilcoxon Mann–Whitney U test was performed
to assess significant differences between individual groups. To
assess the differences between two paired groups under different
pharmacological conditions, Wilcoxon signed-rank test was
performed. Correlation analysis was performed by calculating
Pearson’s linear correlation coefficients. Statistical significance
was set at p < 0.05, n indicates the number of neurons analysed.
To prepare box plots for dataset with n > 10, the web application
PlotsOfData was used1 (Postma and Goedhart, 2019). In box
plots, the interquartile range (IQR) is shown as a box, the range
of values that are within 1.5*IQR are shown as whiskers and the
median is represented by a horizontal line in the box.

RESULTS

We performed single-cell patch-clamp recordings in
combination with biocytin fillings in acute brain slices to
characterise the modulatory effect of ACh on the intrinsic
properties of L4 neurons in the primary somatosensory (barrel)
cortex of rats. In total, we have tested the effects of a low
concentration of ACh (30 µM) on 108 L4 excitatory and
inhibitory neurons. The ACh responses of L4 neurons was
highly diverse depending on their electrophysiological and
morphological identities.

Electro-Morphological Classification of
Layer 4 Neurons
Based on their electrophysiological characteristics, L4 neurons
can be broadly classified as regular spiking (RS) excitatory
neurons, FS and nFS inhibitory interneurons (Figure 1A).
Three L4 neuron types can be easily differentiated by only
three electrophysiological parameters, i.e., the maximum
firing frequency, AP half-width and the AHP amplitude
(Figures 1B,C). L4 RS neurons show a regular spiking firing
pattern with a prominent spike frequency adaptation during
a 1 s depolarising pulse (Figures 1B,C). In contrast, L4 FS
interneurons show a high-frequency firing pattern without
obvious spike frequency adaptation. L4 interneurons of the
nFS type show heterogeneous firing patterns including adaptive
spiking, irregular spiking, late spiking, etc.

In addition to their electrophysiological diversity, L4
neurons show highly distinct dendritic and in particular
axonal morphologies (Figure 1D). L4 excitatory neurons fall
into two main groups, spiny stellate neurons (SSNs) without
an obvious apical dendrite and star pyramidal cells (SPCs)
(Feldmeyer et al., 1999; Lubke et al., 2000; but see Staiger
et al., 2004). Their axons originate from the soma or the

1https://huygens.science.uva.nl/PlotsOfData/

initial part of one basal dendrite and project locally in layer
4 and to supra- and infragranular layers. Dendrites of L4
interneurons are aspiny or sparsely spiny and exhibit small
to large multipolar, bipolar, or bitufted orientation patterns.
Their axons project either locally in layer 4 and/or to supra-
and/or infragranular layers in the vertical direction and/or to
neighbouring columns in the horizontal direction. In previous
studies, we have classified L4 FS interneurons as small basket
cells (sBCs), basket cells (BCs), and translaminar cells (TLCs)
(Koelbl et al., 2015) and L4 nFS interneurons as local-projecting
(LP; non-Martinotti cell-like), supragranular-projecting (SP;
Martinotti cell-like), neurogliaform (NGF), VIP+-like (VIP) and
transcolumnar-projecting, interneurons (Emmenegger et al.,
2018; Figure 1D).

Acetylcholine at Low Concentrations
Induces Diverse Changes in the
Membrane Potential of Layer 4 Neurons
We bath-applied 30 µM ACh while monitoring changes in
the Vm of L4 neurons under current-clamp conditions. Of
44 L4 RS neurons, 42 showed a hyperpolarisation; only two
showed no change (Figures 2A,D). On average, ACh-induced
Vm change in L4 RS neurons was −2.8 ± 1.4 mV (n = 44)
(Figure 3A). Of 33 L4 FS interneurons, 25 neurons showed
a weak but significant depolarisation of the Vm, four a weak
hyperpolarisation and another four no change (Figures 2B,E).
On average, the ACh application resulted in a change in Vm in
L4 FS interneurons was 0.9± 1.5 mV (n = 33) (Figure 3A). Of 31
L4 nFS interneurons, 29 neurons showed a strong depolarisation
of the Vm and two a hyperpolarisation (Figures 2C,F). For
the majority of L4 nFS interneurons (25 out of 31), the ACh-
induced depolarisation was subthreshold. In a small fraction
of L4 nFS interneurons (4 out of 31), ACh application evoked
a suprathreshold depolarisation so that spontaneous AP firing
was initiated. On average, the ACh-induced change in Vm in
L4 nFS interneurons was 5.2 ± 5.8 mV (n = 31) (Figure 3A).
Note that the ACh-induced Vm changes were fully reversible by
bath application of control ACSF (Figures 2A–C). To examine
whether these ACh-induced changes in Vm resulted from a direct
effect on the neuronal excitability or were caused indirectly by
altering the activity of local synaptic microcircuits, a cocktail of
synaptic blockers comprising CNQX (10 µM), D-AP5 (50 µM),
and gabazine (10 µM) was applied before ACh. There is no
difference in the Vm change elicited by ACh in the absence and
in the presence of synaptic blockers (Supplementary Figure 1).
However, a clear decrease in background noise of Vm was
observed in the presence of synaptic blockers (Supplementary
Figure 1). A correlation analysis between the change in Vm
and the age of the animal, Vrest and Rin demonstrated that
there is no clear age-dependence of the ACh effect on Vm for
any of the three L4 neuron types (Supplementary Figure 2A);
a significant negative correlation was found between the Vm
change and Vrest for L4 RS neurons (r = −0.53, p = 1.8 × 10−4)
and L4 nFS interneurons (r = −0.48, p = 5.9 × 10−3)
(Supplementary Figure 2B). Furthermore, for L4 nFS
interneurons, a significant positive correlation was found
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FIGURE 1 | Electro-morphological classification of L4 neurons in the rat barrel cortex. (A) Representative firing patterns of L4 regular spiking (RS, black) excitatory
neurons, fast spiking (FS, red) and non-fast spiking (nFS, blue) interneurons. (B) Electrophysiological differentiation of L4 RS, FS and nFS neurons using the maximal
firing frequency, AP half-width and the AHP amplitude. Mean and individual values are shown by large and small dots, respectively. (C) Box plots of three
electrophysiological parameters for L4 RS, FS and nFS neurons. P value was calculated using the non-parametric Wilcoxon–Mann–Whitney two-sample rank test.
*** p < 0.001, n.s. p ≥ 0.05. (D) Morphological sub-classification of L4 RS, FS and nFS neurons. Somata and dendrites, opaque colour; axons, half-transparent
colour.

between the ACh-induced change in Vm and Rin (r = 0.77,
p = 1.6 × 10−7; Supplementary Figure 2C), i.e., L4 nFS
interneurons with higher Rin showed a larger depolarisation.

To evaluate the cell-type specificity of ACh-induced changes
in Vm in more detail, we grouped the ACh response with respect
to the L4 neuron subtype identified by the electrophysiological
and morphological features described above. The two L4 RS
excitatory neuron subtypes did not exhibit a significantly
different ACh response (SSCs: −2.9 ± 1.4 mV, n = 25; SPNs:
−2.8 ± 1.6 mV, n = 19; p = 0.85; Figure 3B). Similarly, no
significant difference was found in the ACh-induced change
in Vm among the three L4 FS interneuron subtypes (sBCs:
0.8± 1.0 mV, n= 17; BCs: 1.3± 2.3 mV, n= 8; TLCs: 0.5± 1.3 mV,
n = 8; p = 0.42; Figure 3C). In contrast, in four subtypes of L4 nFS
interneurons the ACh-induced Vm change in VIP interneurons
was significantly larger than that in the other three subtypes (LPs:
3.0± 2.7 mV, n = 9; SPs: 3.8± 2.2 mV, n = 11; NGFs: 2.8± 0.5 mV,
n = 4; VIPs: 14.3± 6.7 mV, n = 6; p = 1.5× 10−3) (Figure 3D). We
did not record the ACh response of the transcolumnar-projecting
L4 nFS interneuron due to their scarcity.

Acetylcholine Differentially Changes the
Intrinsic Excitability of Layer 4 Fast
Spiking and Non-fast Spiking
Interneurons
Acetylcholine not only modulates Vm but also induces changes
in other intrinsic properties of L4 neurons. We have previously
studied the effects of 100 µM ACh on the intrinsic properties
of L4 excitatory neurons (Eggermann and Feldmeyer, 2009)
and demonstrated that ACh reduces their excitability through a
hyperpolarisation of Vm and a reduction in Rin. In this study, we
focussed mainly on L4 interneurons. Low concentrations of ACh
(30 µM) induced no significant change in the intrinsic properties
of L4 FS interneurons except for the Vm (cf. Figures 2, 3). For
example, no change was found for the AP half-width (Control:
0.26 ± 0.06 ms, n = 8; ACh: 0.26 ± 0.05 ms, n = 8; p = 0.31)
and the AP amplitude (Control: 88.0 ± 12.6 mV, n = 8; ACh:
80.0 ± 8.9 mV, n = 8; p = 0.08) (Figure 4A and Supplementary
Table 1). In contrast, apart from Vm changes (cf. Figures 2, 3)
ACh also altered three other intrinsic electrophysiological
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FIGURE 2 | Low concentration of ACh induces diverse Vm changes in L4 RS, FS and nFS neurons. (A) An example recording of the time course of ACh-induced Vm
change in a L4 RS neuron. (B) Same as panel (A) but for a L4 FS interneuron. (C) Same as panels (A,B) but for two different L4 nFS interneurons: top,
sub-threshold depolarisation; bottom, supra-threshold depolarisation. (D–F) Pie charts summarising the ACh-induced changes in Vm in L4 RS (top), FS (middle), and
nFS (bottom) neurons.

properties of L4 nFS interneurons: the AP half-width was
increased (Control: 0.44± 0.10 ms, n = 10; ACh: 0.48± 0.11 ms,
n = 10; p = 0.04) and the AP amplitude was decreased (Control:
92.8 ± 10.9 mV, n = 10; ACh: 82.6 ± 11.4 mVs, n = 10;
p = 2.0 × 10−3) (Figure 4B). Furthermore, the rheobase current
was significantly reduced by ACh (Control: 158.08 ± 75.5 pA,
n = 10; ACh: 84.0 ± 113.1 pA, n = 10; p = 5.9 × 10−3)
(Supplementary Table 1). Thus, in contrast to L4 excitatory
neurons, ACh enhanced the excitability of all recorded L4 nFS
interneuron types.

One particular L4 nFS interneuron (Figure 4C) responded
to ACh application with a Vm hyperpolarisation, in contrast
to most L4 nFS interneurons. Furthermore, ACh changed its
repetitive firing property (Figure 4C). Under control condition,
this neuron showed a regular spiking firing pattern with a
small spike-frequency adaptation, which in the presence of
30 µM ACh was transformed to an accelerating firing pattern

together with a spike amplitude accommodation. In addition,
AP firing persisted even after terminating current injection.
Because firing pattern and Vm returned to normal after washout
(Figure 4C), the marked alteration in the firing pattern cannot
be the result of deteriorating recording conditions. Hence,
already at low concentrations, ACh can dramatically change
the electrophysiological behaviour of a subpopulation of L4
nFS interneurons.

Acetylcholine-Induced Membrane
Potential Changes in Layer 4 Neurons
Are Mainly Regulated by Muscarinic
Receptors
To reveal the molecular mechanism of ACh-induced Vm
changes in L4 neurons, slices were superfused with the general
mAChR antagonist ATRO (200 nM) before application of
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FIGURE 3 | Acetylcholine-induced Vm changes are related to the L4 RS, FS and nFS neuron (sub)types. (A) Box plots of ACh-induced Vm changes in L4 RS, FS
and nFS neurons. Individual data points are given on the right. P value was calculated using the non-parametric Wilcoxon–Mann–Whitney two-sample rank test.
*** p < 0.001. Dashed lines indicate the Vm change at ±0.5 mV. (B) Histograms of ACh-induced Vm changes for two L4 RS neuron subtypes: spiny stellate cells
and star pyramidal neurons. No statistically significant difference was found between two subtypes. (C) Histograms of ACh-induced Vm changes for three L4 FS
neuron subtypes: small basket cells, basket cells, and translaminar cells. No statistically significant difference was found among three subtypes. (D) Histograms of
ACh-induced Vm changes for five L4 nFS neuron subtypes: local projecting (putative SST+, non-Martinotti cell-like), supragranular projecting (putative SST+,
Martinotti cell-like), NGF, VIP+-like and unclassified interneurons. VIP+-like interneurons show the strongest depolarisation of the five subtypes. Statistically significant
differences (*) were found between VIP+-like and three other interneuron subtypes (LP, SP, NG).

ACh. A comparison of the ACh-induced change in Vm before
and during co-application of ATRO showed that the mAChR
antagonist completely blocked the response in all L4 RS excitatory
neurons (Control: −3.8 ± 0.9 mV, n = 9; ATRO: −0.4 ± 0.5 mV,
n = 9; p = 3.9× 10−3) (Figures 5A,D) and all L4 FS interneurons
(Control: 1.5 ± 0.6 mV, n = 4; ATRO: 0.1 ± 0.3 mV, n = 4;
p = 0.13) (Figures 5B,D). This suggests that the ACh-induced
Vm changes in these L4 neuron types are exclusively mediated
by mAChRs. In contrast, in L4 nFS interneurons, ATRO largely
(but not completely) blocked the Vm change induced by 30 µM
ACh (Control: 9.2 ± 7.2 mV, n = 11; ATRO: 3.7 ± 4.5 mV,
n = 11; p = 9.8 × 10−4) (Figures 5C,D). In the majority (8 out
of 11) of L4 nFS interneurons, ATRO nearly completely blocked
the ACh-induced Vm change while in the remainder (3 out of
11), a residual ACh-induced change in Vm still persisted after
the co-application of ATRO. We tested whether this residual
depolarisation was mediated by nAChRs (see below). To identify
the mAChR type mediating the modulatory effect, TRO (1 µM),

a specific M4 mAChR antagonist, and PIR (0.5 µM), a specific
M1 mAChR antagonist, were applied before ACh. We found that
TRO completely blocked the ACh-induced hyperpolarisation in
L4 RS excitatory neurons (Supplementary Figure 3A) while PIR
completely blocked the ACh-induced depolarisation in L4 FS
interneurons (Supplementary Figure 3B). However, in L4 nFS
interneurons, PIR blocked the ACh-induced depolarisation only
partially (Supplementary Figure 3C).

Layer 4 VIP+-Like Non-fast Spiking
Interneurons Are Strongly Depolarised
by Low-Concentration of Acetylcholine
via Both Muscarinic and Nicotinic
Receptors
The fact that a subset of L4 nFS interneurons showed a
strong ACh-induced depolarisation (Figures 2C, 3A,D) that
was not fully blocked by ATRO (Figures 5C,D) indicates that
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FIGURE 4 | Acetylcholine-induced changes in other intrinsic properties of L4 FS and nFS interneurons. (A) Top, overlay of single APs recorded in a L4 FS
interneuron before (light red) and after (red) the ACh application. Bottom, comparison histograms for AP half-width and AP amplitude. No statistically significant
difference was found. (B) Top, overlay of single APs recorded in a L4 nFS interneuron before (light magenta) and after (magenta) ACh application. Bottom,
comparison histograms for AP half-width and AP amplitude. A statistically significant increase in AP half-width and a decrease in AP amplitude were found. P values
were calculated using the non-parametric Wilcoxon signed rank test. * p < 0.05, ** p < 0.01, n.s. p ≥ 0.05. (C) Example recording from a L4 nFS interneuron; soma
and dendrites are in opaque, the axon in half-transparent blue. ACh induced an abnormal Vm in this neuron. Furthermore, a dramatic change in the firing pattern was
found during the ACh application.
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FIGURE 5 | Acetylcholine-induced Vm changes in L4 RS, FS and nFS neurons are mainly mediated by muscarinic ACh receptors. (A) An example recording of the
time course of ACh-induced Vm change under control condition and in the presence of atropine, a general mAChR antagonist, in a L4 RS neuron. (B) Same as
panel (A) but for a L4 FS interneuron. (C) Same as panels (A,B) but for two L4 nFS interneurons: upper, sub-threshold depolarisation which could be completely
blocked by atropine; lower, supra-threshold depolarisation which could be partly blocked by atropine. (D) Comparison histograms for L4 RS (left), FS (middle), and
nFS (right) neurons under control conditions and in the presence of atropine. P value was calculated using the non-parametric Wilcoxon signed rank test.
** p < 0.01, *** p < 0.001, n.s. p ≥ 0.05.
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FIGURE 6 | A subpopulation of L4 non-FS interneurons are strongly depolarised by ACh via both muscarinic and nicotinic ACh receptors. (A) Firing pattern (left) and
morphology (right) of an example L4 VIP+-like interneuron. (B) Time course of VIP+-like change during ACh application alone (top), during the application of ACh in
the presence of atropine (middle), and during the ACh application in the presence of atropine and mecamylamine (bottom). (C) Histogram of ACh-induced Vm

changes under three conditions. Note that in these four L4 nFS interneurons, two are VIP+-like, one is SST+-like, and one is a NGF cell.

these interneurons may respond to ACh via both mAChRs
and nAChRs. In those L4 nFS interneurons, in which ATRO
blocked the ACh-induced depolarisation only incompletely,
MEC (1 µM), a general nAChR antagonist, together with ATRO
were applied before ACh. An example recording from a putative
L4 VIP+ nFS interneuron (Figure 6A) is shown in Figure 6B.
This neuron exhibits an irregular firing pattern, a bipolar
dendritic structure, and a narrow translaminar axonal projection,
all of which are characteristics typical of VIP+ interneurons
(Porter et al., 1998; Pronneke et al., 2015; Emmenegger et al.,
2018). ACh induced a strong depolarisation in this neuron and
elicited spontaneous AP firing. Even in the presence of ATRO,
the ACh-induced AP firing still exists. Only when ATRO and
MEC were applied together, was the ACh-induced change in
Vm blocked (Figure 6B). A nAChR-mediated depolarisation was
observed not only in L4 VIP+ interneurons (n = 2) but also in
one putative SST+ interneuron and one NGF cell (Figure 6C).
However, only VIP+ interneurons showed such a strong nAChR-
mediated depolarisation. In one recording from a L4 VIP+
interneuron, we found that the ATRO-resistant depolarisation

was completely blocked by DHβE, a specific antagonist for α4β2-
subunit containing nAChRs (Supplementary Figure 3C).

DISCUSSION

In the present study, we found that all L4 neuron types
are persistently modulated by low concentrations of ACh in
a cell-type specific way (see Figure 7): (1) ACh (30 µM)
reduces the intrinsic excitability of L4 RS excitatory neurons
by activating the M4 mAChRs presumably located in the
soma and/or dendrite, which leads to a hyperpolarisation
of Vm and a decreased Rin; (2) ACh induces a small but
significant depolarisation in L4 FS interneurons by activating
M1 mAChRs; (3) ACh elicits a markedly stronger depolarisation
in L4 nFS interneurons compared to L4 FS interneurons by
activating not only mAChRs (of the M1 and/or M3/5 type)
but also nAChRs (presumably of the α4β2∗ type); (4) In a
subset of L4 nFS interneurons, the VIP+-like interneurons,
the ACh-induced depolarisation was sufficiently large to induce
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FIGURE 7 | A cartoon summarising the modulatory effects of low concentrations ACh on L4 RS, FS and nFS neurons and their potential molecular mechanisms.

spontaneous AP firing through activation of both mAChRs
and nAChRs.

Layer 4 Neuronal Cell-Type Classification
A detailed neuronal cell-type classification is necessary and
critical for an in-depth understanding the modulatory effects
of ACh. Traditionally, neurons are classified based on their
morphological (dendritic and axonal) and electrophysiological
(repetitive firing) properties (Petilla Interneuron Nomenclature
Group et al., 2008; DeFelipe et al., 2013). With the development
and sophistication of single-cell mRNA sequencing techniques,
the molecular features of neurons add an additional layer of
complexity to neuronal classification (Zeng and Sanes, 2017;
Yuste et al., 2020). We have performed a series of studies to
dissect the neuronal diversity in layer 4 of rat barrel cortex
(Feldmeyer et al., 1999; Lubke et al., 2000; Koelbl et al., 2015;
Emmenegger et al., 2018). In general, layer 4 comprises three
neuronal cell classes showing distinct repetitive firing properties:
regular spiking, fast spiking and non-fast spiking (adapting,
irregular, late, etc.). Taking the morphological diversity also
into account, L4 RS excitatory neurons have been classified
into spiny stellate cells and star pyramidal neurons (Feldmeyer
et al., 1999; Lubke et al., 2000) while L4 FS interneurons
have been divided into cluster 3 (small basket cells), cluster
2 (basket cells), and translaminar-projecting FS interneurons
(Koelbl et al., 2015). Most of these L4 FS interneurons are
parvalbumin-positive (PV+) but calbindin-negative. L4 nFS
interneurons, on the other hand, have been separated into five
morpho-electrophysiological subtypes including transcolumnar-
projecting interneurons with an adapting firing pattern, locally
projecting with an adapting firing pattern (presumably non-
Martinotti cells), supragranular-projecting with an adapting

firing pattern with a Martinotti-cell appearance, VIP+ cell-like
with an irregular firing pattern (VIP+-like) and neurogliaform
cells (Emmenegger et al., 2018). The former three subtypes are
somatostatin-positive while the latter two Prox1-positive. Our
classification of L4 neurons is in line with several other groups
focusing on the barrel cortex or primary visual cortex of rats and
mice (Gibson et al., 1999; Porter et al., 2001; Beierlein et al., 2003;
Ma et al., 2006; Scala et al., 2019).

The Necessity of Bath-Application of
Low-Concentration Acetylcholine to
Study the Tonic Neuromodulation
Mediated by Muscarinic Receptors
Previously, it has been shown that the ACh concentration in
the cerebrospinal fluid is in a low micromolar range, which
fluctuates between 1 and 10 µM depending on the brain
state (Himmelheber et al., 2000; Mattinson et al., 2011; Teles-
Grilo Ruivo et al., 2017). Recently, accumulating evidence
indicates that functional synaptic contacts are also established
by cholinergic afferents in the neocortex. ACh is released into
the synaptic cleft and its concentration can reach a very high
concentration (>1 mM) (Turrini et al., 2001; Bennett et al., 2012;
Hay et al., 2016; Obermayer et al., 2019). However, the exact
extracellular concentration of ACh is still under investigation
due to the species differences and difficulties arising from
the rapid breakdown by acetylcholinesterase. ACh modulates
the intrinsic neuronal properties through both mAChRs and
nAChRs. mAChRs are G-protein coupled receptors the activation
of which initiates a signalling cascade inside the neuron. In
contrast, nAChRs form ligand-gated cation channels (Unwin,
2003; Dani, 2015). These two types of receptors work at
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different concentrations of ACh. mAChRs already show a high
affinity to ACh at low concentrations (in the range of 1–
100 µM) while nAChRs require a high concentration of ACh
for maximal activity (in the mM range). Previous studies
have used puff-application of 1–10 mM ACh to study the
nicotinic effects of ACh on excitatory and inhibitory neurons in
several cortical areas (Xiang et al., 1998; Gulledge and Stuart,
2005; Gulledge et al., 2007; Poorthuis et al., 2013a,b). Puff-
application of agonists has a high spatiotemporal resolution
and is therefore a suitable strategy to simulate phasic ACh
release at cholinergic presynaptic terminals; it is also required
to minimise the effects of nAChR desensitisation. In addition,
at such high concentrations, ACh will not be hydrolysed (and
hence inactivated) immediately so that it may persist at low
concentrations in the perisynaptic space. Bath application of
cholinergic agonists such as ACh and carbachol is a good
approach to simulate the latter condition because the agonist
concentration will be maintained at a constant level to allow the
measurement of neuronal properties at equilibrium. Carbachol
shares both the muscarinic and nicotinic actions of ACh but
shows a slower binding, dissociation and desensitisation kinetics,
in particular at nAChRs. In addition, carbachol is not degraded
by acetylcholinesterase. Carbachol is not the natural agonist
and the relative affinity of carbachol for mAChRs and nAChRs
is likely to be different from that of ACh so that we may
observe an activation of nAChRs with low concentrations of
carbachol but not with ACh. In order to simulate the in situ
action of cholinergic agonists, the natural agonist ACh has been
used instead of carbachol in this study. It is likely that in the
extracellular space, a neurotransmitter/neuromodulator is only
present at a µM concentration because of its rapid diffusion
from the synaptic release site (Borroto-Escuela et al., 2015). In
addition, application of high concentrations of ACh will mask
the effects mediated by mAChRs so that the application of low
concentrations (∼µM) of ACh is a prerequisite to uncover their
functional effects.

Unique Cholinergic Modulation of Layer
4 Excitatory Neurons
We have shown previously that 100 µM ACh persistently
hyperpolarises L4 excitatory neurons and reduces their intrinsic
excitability (Eggermann and Feldmeyer, 2009), an ACh effect
markedly different from that observed in most of pyramidal cells
except for L6A corticocortical neurons (Yang et al., 2020). In
L2/3, L5 and corticothalamic L6A pyramidal cells, ACh induces a
persistent depolarisation and therefore enhances the excitability.

The ACh-induced hyperpolarisation in L4 excitatory neurons
is mediated exclusively by M4 mAChRs, a finding that is
supported by another study using optogenetic activation of
synaptic ACh release (Dasgupta et al., 2018). Here, using a lower
concentration of ACh (30 µM), similar results were obtained.
Note that, as discussed above, 30 µM is an ACh concentration
closer to the physiological range than 100 µM. There was no clear
difference between the ACh-induced hyperpolarisation in both
L4 RS neuron subtypes suggesting that SSNs and SPCs express
the same mAChR subtype at a similar density.

Acetylcholine Persistently Depolarises
Layer 4 Fast Spiking Interneurons
The effects of ACh on FS interneurons have been a long-standing
matter of debate. Conflicting results have been published by
different research groups. Puff-application of 5 mM ACh induced
a transient hyperpolarisation that was mediated by mAChRs in
rat neocortical L5 FS interneurons (Xiang et al., 1998). Recently,
in the mouse visual cortex it has been shown that optogenetically
stimulated ACh release led to an indirect inhibition in L2/3 FS
interneurons via “facilitation” of the cholinergic responses in
L2/3 somatostatin-positive interneurons (Chen et al., 2015). On
the other hand it has been postulated that ACh does not affect the
Vm of FS interneurons. In the rat frontal cortex, bath-application
of carbachol (10 µM) had no effect on L2/3 FS interneurons
(Kawaguchi, 1997). In a follow-up study the same group used
focal application of ACh (100 µM or 5 mM for comparison
with the study by Xiang et al., 1998) onto FS interneurons in
rat visual and prefrontal cortex; the authors concluded that the
focal application itself (i.e., a mechanical artefact but not the
transient ACh exposure) caused the hyperpolarising response
(Gulledge et al., 2007). Except for Xiang et al. (1998), most
investigators have been unable to show a direct effect of ACh
on FS interneurons (Muñoz and Rudy, 2014); however, they
reported a presynaptic effect of ACh. In contrast to previous
studies, we found a persistent ACh-induced Vm depolarisation in
L4 FS interneurons, an effect that appeared in all three subtypes of
L4 FS interneurons. To the best of our knowledge, this is the first
time that a direct depolarising effect of ACh on FS interneurons
has been demonstrated conclusively. In addition, we were able
to show that this effect is mediated by M1 mAChRs. The ACh-
induced depolarisation persisted in the presence of GABA and
glutamate receptor antagonists so that indirect effects of ACh can
be excluded. We were unable to investigate the effect of ACh
on another subtype of FS interneurons, the chandelier or axo-
axonic cells, which are very scarce if not absent in cortical layer
4 (Wang et al., 2019).

Acetylcholine Modulates Layer 4
Non-fast Spiking Interneuron Activity in a
Subtype-Specific Way
Layer 4 nFS interneurons are a heterogenous population
with diverse firing patterns, dendritic/axonal morphologies and
molecular expression patterns. To elucidate modulatory effects of
ACh on L4 nFS interneurons, a clear separation into identifiable
subtypes is required. The local- and supragranular-projecting
subtypes of L4 nFS interneurons display an adapting firing
pattern similar to that of somatostatin-positive interneurons.
Indeed, immunocytochemistry revealed that both subtypes of L4
nFS interneurons are somatostatin-positive (Emmenegger et al.,
2018). Here, we found that L4 SST+-like interneurons including
both local projecting (non-Martinotti-like) and supragranular
projecting (Martinotti-like) cells that responded to ACh with
a strong depolarisation that is predominantly mediated by
mAChRs. Consistent with our findings, in the mouse barrel
cortex it has been shown that L4 SST+ interneurons were
depolarised and fired spikes in response to bath-applied
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muscarine (3 µM) (Xu et al., 2013). In one L4 SST+-like
interneuron, ACh induced a depolarisation mediated by both
mAChRs and nAChRs suggesting that even at µM ACh
concentrations activation of nAChRs may be also possible. In
a previous study, it has been shown that ACh directly excites
SST+ neurons via both mAChRs and nAChRs in layer 2/3
of mouse visual cortex (Chen et al., 2015). However, a very
high concentration of ACh (10 mM) was puff-applied in that
study, which is very different from the bath-application of ACh
(30 µM) described here.

Excitation of VIP+ interneurons by nAChRs has been
observed in several cortical areas of both rat and mouse
(Porter et al., 1999; Férézou et al., 2007; Koukouli et al., 2017;
Askew et al., 2019; Prönneke et al., 2020). In the rat motor
cortex, local pressure application of ACh (100 µM) or the
selective nAChR agonist DMPP (100–500 mM) depolarised
VIP+ interneurons located in layer 3–5 and induced a discharge
of action potentials (Porter et al., 1999). Pharmacological
experiments suggested that the ACh effect was mediated by
non-α7 nicotinic receptors containing α4β2 and α5 subunits
(Koukouli et al., 2017). In another study from the same group,
it has been shown that bath-application of nicotine (1 µM)
also resulted in a strong depolarisation leading to a sustained
action potential discharge in VIP+ interneurons (Férézou et al.,
2007). Similarly, bath-application of nicotine (1 µM) in the
mouse auditory cortex caused sustained AP discharge in VIP+
interneurons across the layers (Askew et al., 2019). In the
mouse barrel cortex, bath-application of ACh (40 µM) efficiently
depolarised L2/3 VIP+ interneurons and changed the firing
pattern from bursting to tonic spiking in a subpopulation
(Prönneke et al., 2020); however, the authors concluded that
cholinergic modulation was mediated exclusively by nAChRs.
All of the aforementioned studies emphasised the critical role
of nAChRs in the cholinergic modulation of VIP+ interneurons
but overlooked any direct involvement of mAChRs. However,
our recordings from L4 VIP+ interneurons demonstrated that
both AChR subtypes participate in the cholinergic modulation
in a cooperative way because ATRO partially blocked the
depolarisation or shortened the duration of repetitive AP firing
induced by ACh; ATRO together with the nAChR antagonist
MEC completely blocked the ACh effect. Similarly, in rat frontal
cortex, VIP+ cells showed a sustained Vm depolarisation in
response to bath-applied muscarine (3 µM) in the presence of
TTX (Kawaguchi, 1997) indicating that mAChRs are expressed
in these interneurons.

For NGF cells, the focus of attention is mostly cortical layer 1
where NGF cells are abundant (Christophe et al., 2002; Gulledge
et al., 2007; Arroyo et al., 2012; Brombas et al., 2014). Puff-
application of nicotinic agonists such as ACh, DMPP, choline
onto L1 NGF cells or optogenetic stimulation of cholinergic
fibres in layer 1 has revealed nicotinic excitation of NGF
cells. Similar results have been shown for L2/3 5-HT3aR+
NGF cells of mouse barrel cortex (Lee et al., 2010). Here,
we found that in L4 NGF cells of the barrel cortex, low
concentrations of ACh led to a mAChR-mediated sustained
depolarisation. In one L4 NGF cell, a participation of nAChRs
in this depolarisation was also found.

In addition to SST+, VIP+, and NGF cells, layer 4 comprises
other nFS subtypes (Tasic et al., 2018). In one L4 nFS interneuron,
we were able to show that, in contrast to most other L4 nFS
interneurons, ACh application resulted in a hyperpolarisation of
this neuron and dramatically changed its repetitive firing pattern
during the suprathreshold current injection. The cholinergic
response of this neuron together with its firing pattern and
morphology, is reminiscent of a subset of CCK+ neurons
in L2/3 of rat frontal cortex which exhibited a prominent
hyperpolarisation in response to muscarine (3 µM) and had
large somata and an extensive axonal arbour (Kawaguchi,
1997). Therefore, the nFS interneuron showing an ACh-induced
hyperpolarisation described here could be a L4 CCK+ neuron.
Similarly, some hippocampal CA1 CCK+ interneurons showed
also an ACh-induced hyperpolarisation mediated by mAChRs
(McQuiston and Madison, 1999b; Cea-del Rio et al., 2011).
Furthermore, the dramatic change in firing pattern induced
by ACh has also been demonstrated in hippocampal CA1
CCK+ interneurons (McQuiston and Madison, 1999a; Lawrence
et al., 2006; Cea-del Rio et al., 2010, 2011). In these neurons,
through the activation of M1 and M3 mAChRs the AHP was
superimposed by an afterdepolarisation which is often sufficiently
strong to evoke APs in the absence of further stimulation
(McQuiston and Madison, 1999a; Cea-del Rio et al., 2011).

Functional Significance of Cholinergic
Neuromodulation for Layer 4 Neuronal
Microcircuits
In the neocortex, ACh is continuously released into the
extracellular space and its level changes dramatically during the
animal’s diurnal cycle and different behavioural states (Teles-
Grilo Ruivo et al., 2017). Furthermore, there is increasing
evidence for changes in ACh receptor expression levels going
hand in hand with the diurnal change in ACh drive (Hut
and Van der Zee, 2011). Most of the intracortical ACh
is not released at synaptic contacts but rather diffusely
into the extracellular space through an extrasynaptic volume
transmission (Fuxe and Borroto-Escuela, 2016). Under this
condition, cholinergic modulation is spatiotemporally slower but
broader, thereby tuning neuronal network function. Modulation
of neurons and their synaptic interactions through mAChRs
may induce neuronal oscillations and therefore change the
information processing mode in L4 neuronal microcircuits.
Specifically, cholinergic activation of L4 FS, PV+, and nFS, SST+
interneurons by low concentrations of ACh may lead to the
generation of persistent activity such as the gamma rhythm,
which has been demonstrated to enhance the cortical circuit
performance (Bartos et al., 2007; Sohal et al., 2009; Veit et al.,
2017). Indeed, it has been demonstrated that bath-application of
carbachol (10 µM) to activate mAChRs and kainate (300 nM)
to increase the tonic excitatory drive elicited persistent gamma
frequency network oscillations in cortical layer 4 of mouse barrel
cortex (Buhl et al., 1998). In addition, differential modulation
of L4 excitatory and inhibitory neurons, i.e., the persistent
hyperpolarisation of L4 excitatory neurons and depolarisation of
most L4 inhibitory neurons, will change the excitation-inhibition
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balance towards inhibition and reduce the responsiveness of
the L4 recurrent excitatory microcircuit. Therefore, our results
support the hypothesis that ACh has a filtering action in the major
recipient layer of the neocortex (Eggermann and Feldmeyer,
2009). Because neocortical layer 4 is uniquely positioned to gate
thalamocortical input to the neocortex, cholinergic modulation
of L4 neuronal microcircuits will affect the whole barrel cortex
together with the related cortical areas (e.g., M1 and S2) and
finally the animal behaviour (Eggermann et al., 2014; Meir et al.,
2018). In addition, our finding that mAChRs ubiquitously but
differentially modulate the activity of L4 excitatory and inhibitory
neurons might open the door to more specific therapeutic
strategies to treat cognitive dysfunction or psychiatric disorders
linked to degeneration of the cholinergic system in diseases
such as Alzheimer’s disease and schizophrenia (Marin, 2012;
Hampel et al., 2018).
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