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Abstract: In the present study, we assessed for the first time the performance of our custom-designed
low-cost Particulate Matter (PM) monitoring devices (Atmos) in measuring PM10 concentrations.
We examined the ambient PM10 levels during an intense measurement campaign at two sites in the
Delhi National Capital Region (NCR), India. In this study, we validated the un-calibrated Atmos for
measuring ambient PM10 concentrations at highly polluted monitoring sites. PM10 concentration
from Atmos, containing laser scattering-based Plantower PM sensor, was comparable with that
measured from research-grade scanning mobility particle sizers (SMPS) in combination with optical
particle sizers (OPS) and aerodynamic particle sizers (APS). The un-calibrated sensors often provided
accurate PM10 measurements, particularly in capturing real-time hourly concentrations variations.
Quantile–Quantile plots (QQ-plots) for data collected during the selected deployment period showed
positively skewed PM10 datasets. Strong Spearman’s rank-order correlations (rs = 0.64–0.83) between
the studied instruments indicated the utility of low-cost Plantower PM sensors in measuring
PM10 in the real-world context. Additionally, the heat map for weekly datasets demonstrated
high R2 values, establishing the efficacy of PM sensor in PM10 measurement in highly polluted
environmental conditions.

Keywords: urban air pollution; PM10; real-time monitoring; low-cost sensors; data merging tool;
data validation

1. Introduction

One in eight deaths in India is said to be caused by air pollution, according to a report co-authored
by the Indian Council of Medical Research [1]. Particulate matter (PM) includes inhalable PM (PM10,
aerodynamic diameter ≤ 10 µm) and finer PM (PM2.5, aerodynamic diameter ≤ 2.5 µm), and PM-based
air pollution is said to be the leading cause of deaths from ambient air pollution [2–4]. The annual
average PM10 and PM2.5 concentrations in Indian cities were found to be 106.4 and 58.6 µg·m−3,
respectively, with every 10 µg·m−3 increase in PM2.5 increasing all-cause mortality by between 3% and
26%, chances of childhood asthma by 16%, chances of lung cancer by 36%, and heart attacks by 44%.
India, as of January 2020, has around 200 citizen-facing Continuous Ambient Air Quality Monitoring
Stations (CAAQMS), which provide real-time PM2.5 or PM10 information to people. The country has
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over 4000 cities and towns where real-time air quality monitoring stations are required to be installed.
The “affordable” or “low-cost” sensor devices to measure these PMs is a promising technology for
increasing the density of the sparse urban PM pollution monitoring network [5–8]. In developing
countries like India, the implementation of such technology becomes a very relevant solution for
large-scale deployment of a nationwide air quality monitoring network [9–11]. Measurements of air
pollution underpin a wide range of applications that extend from academic investigation to regulatory
functions and services for the general public, governments, and businesses [12]. A nationwide dataset
on air pollution is required to raise awareness of pollution and for advancing research in associated
fields. Public and media attention is increasingly conscious of the health and economic expenses of
high outdoor PM pollution.

Consequently, start-up companies are stepping up to produce affordable, user-friendly, and very
compact wireless PM sensors to monitor air pollution [9,13–16]. These devices have the potential
to bridge gaps between sparse government measurements and research groups to assess their
exposure [17,18]. This wide-ranging use of this technology presumes that these portable, low-cost air
pollution sensors are fit for PM measurements, although the analysis of the data quality is a subject of
lively debate [19,20]. Lewis and Edwards [20] commented that the penetration of these devices into the
public domain, generating a large amount of unproven data, is inevitable. Since low-cost PM sensors
have not been scientifically evaluated and certified by regulatory agencies as yet, there is a significant
need for benchmarking them against accurate monitors before deploying into the field conditions.
Efforts from environmental technologists are of utmost importance so that these emerging technologies
can realize their true potential [10,21]. The United States Environmental Protection Agency (US EPA).
approved instruments for measuring PM concentrations include impactors, cyclones, Tapered Element
Oscillating Microbalances (TEOM), and Beta Attenuation Monitors (BAM) [22]. These techniques are
the US EPA-approved Federal Reference Methods (FRMs) of measuring PM for aerodynamic size less
than 2.5 µm (PM2.5) and size less than 10 µm (PM10) from the ambient. These techniques, however,
are reported to neglect the prospect of being able to correlate the variations in short-term intra-day
atmospheric parameters [23,24].

Consequently, these non-continuous techniques can affect ambient particle concentration [24].
On the other hand, a continuous method could obtain PM10 levels through measurements by a
combined system comprising of certified instruments, i.e., scanning mobility particle sizer (SMPS)
and optical particle sizer (OPS) or aerodynamic particle sizer (APS). These derive particle mass
concentrations from measured particle size distributions [23]. Evaluation of the SMPS–APS system
has successfully determined to match well with the reference instrumentations for measuring PM
concentrations [24–26]. Moreover, it was demonstrated experimentally that APS and OPS similarly
measure PM [27]. Multi Instrument Manager Version 3.0 (MIM™ 3.0), a data merging tool, is useful in
providing PM10 concentrations from two different research-grade equipment for measuring particulates
(in two different ranges) in the absence of a single reference instrument. Notably, in emerging economies
around the world, these well-proven techniques would play a vital role in validating PM2.5, PM2.5-10

(coarse particles), and PM10 sensors.
Continuous PM10 measurement instruments, including federal equivalent methods (FEMs)

and other standardized research-grade devices, often cost several hundred thousand dollars and,
in general, must be run in climate-controlled conditions and with extensive oversight and repairs.
These instruments require significant effort to operate continuously for in-depth aerosol-driven deep
statistical analysis. It is, therefore, not a cost-effective approach to rely only on these instruments to
generate additional insight into pollution behavior across the country [23]. New sensor technologies
may address some issues of cost and convenience posed by conventional measurement equipment.
On the other hand, sensor-based PM monitors are available in roughly three orders of magnitude lower
than standard instruments [10]. The overall budget of execution encompassing all other costs, such as
data analytics, sensor replacement timeframe, and sensor calibration, is less well established [23].
The use of affordable miniature sensors is already underway in different applications, such as identifying
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hotspots for outdoor pollution, generating additional insight into pollution behavior with higher
spatial and temporal resolution, mapping indoor pollution concentrations, accumulating data on
personal exposure, and collecting mobile monitoring data [28–30]. Concerns about their precision and
performance do remain unanswered [23,30].

In this manuscript, only PM10 is compared and not the other important metrics, such as PM2.5 or
PM1. Using low-cost sensors, many authors have already well-documented PM1 and PM2.5 across
the world. Another work [7] published on the performance evaluation of low-cost PM sensors by
some of the authors of our research group evaluated PM2.5 using a low-cost PM sensor at IIT Kanpur
and Duke University campuses. They validated Plantower PM sensors for PM2.5 measurements.
They demonstrated field calibration of these PM sensors using Environmental Beta Attenuation
Monitor (EBAM) as reference instruments for PM2.5 measurements at multiple sites with diverse
environments. Mostly, the PM sensors, including the Plantower model PMS7003, are validated for
PM2.5 measurements. However, to the best of our knowledge, no detailed study in India has been
published focusing on the assessment of PM10 concentration using low-cost PM sensors in real-world
scenarios. We compare our sensors in measuring PM10 levels with the co-located SMPS–OPS and
SMPS–APS. We collect PM10 data during an intense measurement campaign period of seven weeks
conducted for pollution monitoring at two selected sites in the Delhi National Capital Region (NCR),
India. Merging data obtained from the certified reference instruments result in approximate overall
PM mass concentrations. We validate our PM sensors for PM10 data with the aid of statistical tools.

2. Materials and Methods

2.1. Study Site

The two selected study sites were Manav Rachna International Institute of Research and Studies
(MRIU), Faridabad, (28.45◦N, 77.28◦E and ~209 m above msl), and Centre for Atmospheric Sciences,
Indian Institute of Technology Delhi (IITD), New Delhi, (28.54◦N, 77.19◦E and ~232 m above msl).
These sites are in the Delhi-NCR (which is among the top-ranked polluted megacities in the world) [31].
Both the sites exist in the Indo-Gangetic Plain (IGP), which, due to its geographical components and
some specific anthropogenic activities, is considered a hotspot for air pollution [32]. The selected
sites suffer from heavy air pollution that masks the whole region, usually during the winter season.
The field deployment of PM2.5 sensors at similar polluted monitoring sites is reported to perform
well [7,33]. We considered only the two polluted locations in the populous Delhi-NCR, India, to cover
the higher range of PM10 concentration. Our aim was specified to test the low-cost PM sensors in
highly polluted cities and find their suitability in PM10 measurements.

The PM sensors were mounted on the terrace of the buildings at the respective sites.
The research-grade instruments were kept inside the room, while their inlets were connected through
tubing for the intake of ambient air from the outside the window. The mounted sensors and reference
instruments were deployed such that their sample inlets were very close to each other to provide similar
environmental conditions. At first, the two newly developed Atmos devices were installed side by side
at the rooftop of Centre for Environmental Science and Engineering, Indian Institute of Technology
Kanpur (IITK; 26.52◦N, 80.23◦E, 142 m msl), India. The ambient environment of Kanpur, India, which
also comes in the IGP, is also known for its characteristic high ambient particulate concentrations.
Sensors were implemented for two and a half weeks at the IITK site. After attaining sufficient data,
these devices were tested for consistency, as described in the methodology section.

2.2. Instrumentation

New Plantower PM Sensor: The new low-cost sensors assessed in this study were Plantower
PM sensors (model PMS7003). The Amos device is presented in Figure 1a. These devices are priced
at only a fraction of the cost of the reference monitors. The measurement range of the PM sensors
used was 0–1000 µg·m−3, with a resolution of ±1 µg·m3 and response time 1–10 s. The dimension
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of the miniature PM sensors used was 48 mm × 37 mm × 12 mm, and the temperature and relative
humidity ranges were −10 ◦C to 60 ◦C and 0% to 99%, respectively. The manufacturer reported that
maximum errors were relatively low (±10 µg·m−3 in < 100 µg·m−3 concentrations, and ±10% in the
100–500 µg·m−3 range). The detailed specifications of the PM sensor used in this study are described
in Supplementary Table S1. These PM sensors use a laser-scattering technique to measure real-time
PM mass concentrations and apportion laser scattering to PM1, PM2.5, and PM10. It is based on a
proprietary algorithm that is not fully accessible by others [34]. A detailed description of the working
of selected PM sensors is mentioned in a field evaluation study of PM2.5 by Zheng et al. [7]. We used
the sensor-reported PM10 concentration estimates that were un-calibrated. Before field deployment,
no attempt was made to calibrate these sensors under laboratory conditions due to a potentially marked
discrepancy in particle size, composition, and optical properties of field and laboratory conditions [7].Sensors 2020, 20, 1347  5 of 19 
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Figure 1. Images from the deployment of low-cost particulate matter (PM) sensors at the study
site. (a) PM sensor Atmos comparable to the size of a marker pen, (b) the PM sensor box housing
all components, (c) two sensor boxes (used in this study) co-located for consistency test, and (d)
experimental setup at one of the monitoring sites for ambient air monitoring.

Atmos—Real-Time PM Air Quality Monitors: The newly developed PM sensor Atmos box
housing all the components is as shown in Figure 1b. The Atmos device uses the Plantower PMS7003
sensor for measuring PM1, PM2.5, and PM10 concentration values. The DHT22 sensor is used for
monitoring temperature and relative humidity. The data from both these sensors are transmitted in
real-time via a Quectel M66 general packet radio services (GPRS) module using 2G mobile network
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connectivity from local mobile service providers. A rechargeable Li-Ion battery provides backup power
to the device for 10 hours. In the case of power failure, there is a seamless failover of the power module
from the mains power to the backup battery. From our device itself, a local MicroSD card slot allows
data to be stored and downloaded. The Atmos unit also has a Liquid Crystal Display (LCD) to view
debug messages. The Atmos unit was developed in two models—with an external onboard GPS and
without the GPS. The Atmos GPRS model used in this study had dimensions of length 155 mm ×
width 80 mm × height 60 mm. The Atmos device used the HTTP protocol to send data every 1 minute
to the remote Atmos server.

Atmos—Big Data application program interface (API) and Dashboard Access: The Atmos real-time
streaming data server was built using open source technologies-Apache Cassandra and KairosDB.
For fast time-series database access, Apache Tomcat and HTTP server, for custom Java-based API
access and HTML5/JavaScript/LeafletJS for interactive Map-based dashboard were used. Data from the
Atmos device is received on the server via web services APIs and made available for comma-separated
values (CSV) download and programmatic JavaScript Object Notation (JSON) access via custom-built
Java APIs. Device nos. 0523 and 1292 were the two Atmos deployed at MRIU and IITD, respectively,
after testing their sensitivity at ambient conditions in Kanpur, as shown in Figure 1c.

Reference Sizers: We measured particle concentration in the range of 14 nm–10 µm. We used
a combination of an OPS™, Model 3330, TSI Inc., Shoreview, Minnesota, United States of America
(USA) (for particles ranging from 0.3 µm to 10 µm), APS™, Model 3321, TSI Inc., USA (for particles
ranging from 0.5 µm to 20 µm). The SMPS™, TSI Inc., consisting of an electrostatic classifier, Model
3082, connected to a condensation particle counter (CPC, model 3776, TSI Inc., USA (from 14 nm
to 760 nm particles) as shown in Figure 1d. The time resolution for the measurements was 5 min,
so that 12 data points of every hour were averaged to get hourly concentrations. The SMPS utilized a
differential mobility analyzer (DMA) to classify particles as a function of electrical mobility size. At the
same time, with a condensation particle counter (CPC), it determined particle concentrations, giving
particle size distributions. Mass concentrations were computed through the integration of the product
of the size distribution function and particle mass of every size. We acquired a continuous particle
size distribution function through data inversion. It further related particulate concentration to the
charging efficacy of the neutralizer, the detection efficiency of the CPC, and the transfer function of the
DMA [35]. The merging process was adapted following by the method described by [36], forming the
complete size distribution from 14 nm to 10 µm. However, we stated a brief on the merging process
in the subsequent sub-section. We applied the necessary corrections in all the reference measuring
instruments before merging and during merging, as per the requisite.

Data Merging: We merged the SMPS number distribution data with APS number distribution
data using the Data Merger software Module (developed by TSI) to obtain merged mass distribution
(dM/dlogDp versus Dp). During the monitoring period, we averaged the samples recorded every hour
at the time of data merging. We then summed the hourly mass distributions using the trapezoidal rule
to acquire hourly PM concentrations.

The SMPS number distribution data were merged with OPS number distribution data using
MIM™ 3.0 (developed by TSI) in the mass mode to get PM concentrations for every hour. The MIM
software is a MATLAB-based tool that allows reviewing, averaging, merging, and post-processing of
data from SMPS and OPS and compiles it into a single, wide-range data set. TSI introduced it after
the initial development of dedicated algorithms [37,38]. We averaged samples recorded over one
hour during data merging. We then compared the PM10 obtained from SMPS and OPS data merging
and the PM10 derived from the combination of SMPS and APS data. Thus, we tested merging for its
suitability in getting SMPS- and OPS-acquired PM mass and also tested for over and under prediction.
The merging process eliminated the discontinuity in the number distribution [39]. We took into account
the inherent difference between the mobility size measured by the SMPS and aerodynamic diameter
measured by the APS. During the merging, the shape factor of 1, as described by Misra et al. [40],
and a widely accepted density of bulk atmospheric aerosols equal to 1.2 g.cm−3, was taken in the data
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analysis. As described by them, we combined the size distributions from SMPS and APS into a single
size distribution (from 14 nm–20 µm) [40]. For this purpose, we used the TSI Aerosol Instrument
Manager Program Data merge software module version 3.0.1.0.

2.3. Methodology

The methodology included a consistency check of the Atmos PM sensors used in similar field
conditions. It also included correlating site-specific data collected from different combinations of
devices and validation of Atmos PM10 concentrations using merged data as a reference. The schematic
flowchart for this study is shown in Figure 2.
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Figure 2. Schematic diagram showing the methodology used in this study.

Although a single manufacturer developed the PM sensors that were used in the studied Atmos
boxes, their performance in measuring PM10 has not yet been tested in field conditions. First, we
checked the sensors for consistency, and then we deployed them in the field next to the inlets of
different research-grade PM measuring instruments. We compared sensor data with the merged PM10

concentration from the reference instruments. The suitability of using SMPS–OPS merged PM10 was
evaluated for reference measurements and as an alternative to well-demonstrated SMPS–APS merged
PM-products [39]. However, studies have focused on getting number size distribution mostly from
the SMPS–APS combination [24,26]. Simultaneously, merged PM10 from SMPS–OPS at both the sites
(MRIU, Faridabad and IITD, New Delhi) and from SMPS–APS only at one of the monitoring sites
(MRIU, Faridabad) was used to validate Atmos PM10 measurements.

2.4. Statistical Analysis

The experimental results from the deployment period were statistically analyzed using R packages,
namely psych, rcompanion, and ggpubr. This included determining the mean, standard deviation,
Quantile–Quantile plot (QQ-plot) formation, Pearson correlation (r), and Spearman’s correlation (rs).
We followed a methodology as described in Ann et al. [41], Well and Myers [42], and Cohen [43]. Data
were collected and arranged for analysis in a spreadsheet under Microsoft® Excel© 2020. Furthermore,
a time series for PM2.5, PM10, and coarse particles for the deployment period as well as a heat map
were plotted for weekly-basis PM10 data during the campaign using Origin pro evaluation, 2018
software. We sought the influence of the sensors’ run-time duration on the correlation with the
measured PM10 concentrations.
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3. Results and Discussion

This section discusses various analyses done on the data collected during the considered
deployment.

3.1. Consistency Test among the Sensors

Before deployment in Delhi-NCR, we co-located both the selected Atmos devices (device numbers
0523 and 1292, or Sensor 1 and Sensor 2, respectively) for a sufficient duration at IITK, India. A study
conducted in Kanpur showed that PM concentration levels are quite high, similar to Delhi-NCR, with a
wide-range in PM concentrations [44]. Reported studies have analyzed trends of PM10 in Delhi and
Kanpur, India, and have found crop residue burning to be a major source. Zheng et al. [7] also selected
Kanpur as a site for PM sensor field deployment with characteristic high PM concentrations. Time
series and scatter plots observed for the two co-located Atmos devices (sensor one and sensor two)
during this period are shown in Figure 3a,b, respectively.
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Figure 3. (a) Time-series of ambient PM10 concentrations (µg·m−3) from two co-located Atmos PM
sensors for consistency test and (b) scatterplot for the collected data from two co-located sensors at
ambient conditions.

The time series indicated that the ambient PM10 concentrations (µg·m−3) from two co-located
Atmos PM sensors (PMS7003) were quite similar for the entire test period of two and a half weeks. We
observed that the hourly time series for PM concentrations measured by both the devices matched
very well. Consistency was observed between both the devices in measuring the ambient conditions
with PM10 concentrations <100 µg·m−3 and ranging up to 579 µg·m−3. A similar time series or pattern
was observed for both the devices without any ambiguities in them. In other words, no significant
variation seemed to appear in measured PM concentrations (p < 0.05) among the two devices. For the
two studied devices, for two and a half weeks, the coefficient of determination (R2) was found to
be 0.97. This indicates a strong correlation between the two sensor boxes. Time series and scatter
plots from the two Atmos devices were expected to be highly similar as these were from the same
manufacturer, as reported by many authors [7,45]. However, due to limited field evaluation results
from the manufacturer, we examined the consistency in the real-world scenario. The cause of slight
variations in the ambient PM measurements may consist of instrument contamination, changed fan
flow rates, and potentially inadequate cleaning of the sensors [46].

Attempting a consistency test for the PM10 measurement of studied Atmos sensors at MRIU
and IITD sites provided high confidence in terms of their deployment in the real-world conditions or
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fields. Hence, these devices were then co-deployed in the Delhi-NCR next to the research-grade PM
measuring instruments.

3.2. Time Series of Measured PM10 Concentrations

After collecting sufficient PM10 data during the deployment period of 21 January 2018–16 March
2018, time series were plotted for the two study sites, as shown in Figure 4a,b. The PM10 time
series plots for the two sites consisted of data from SMPS–OPS, SMPS–APS, and Atmos at MRIU and
data from SMPS–OPS and Atmos at IITD. Total numbers of hourly averaged data points at MRIU,
Faridabad from SMPS–OPS, Atmos PM sensor, and SMPS–APS were 717, 1124, and 766, respectively.
The overall mean PM10 concentrations measured by SMPS–OPS, Atmos PM sensor, and SMPS–APS
were 98.2 ± 65.5 µg·m−3, 149.2 ± 86.1 µg·m−3, and 74.4 ± 54.6 µg·m−3, respectively.
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Figure 4. Time series of ambient PM10 concentrations (µg·m−3) data collected from Atmos PMS7003
sensor and reference instruments (merged PM10 from SMPS-OPS and SMPS–APS) during the
deployment period at (a) Manav Rachna International Institute of Research and Studies, Faridabad
(Delhi-NCR) and (b) Indian Institute of Technology Delhi, New Delhi monitoring sites.

The total number of hourly averaged data points at IITD, New Delhi from SMPS–OPS and the
Atmos PM sensor was 832 and 1029, respectively. Mean PM10 concentrations measured by SMPS–OPS
and Atmos were 182.3 ± 84.2 µg·m−3 and 181.0 ± 111.5 µg·m−3, respectively. The idea was to look
for PM10 concentrations patterns of Atmos with SMPS–APS and to evaluate the correlation between
SMPS–APS and SMPS–OPS, simultaneously. At both MRIU and IITD sites, trends obtained for
measured PM10 concentrations by Atmos matched those estimated by the reference instruments.
However, Atmos was generally on the higher side among the two tools measuring PM10 levels.
Similarly, previous studies on low-cost PM sensors have shown that the sensors overestimated ambient
PM2.5 to that with the reference monitors readings [34,47].

We measured the mean absolute error (MAE) for each of the pairs of datasets. The observed
MAE value in measured PM10 from Atmos (uncorrected) at the IITD site concerning SMPS–OPS was
68.74 µg·m−3. On the other hand, observed MAEs in Atmos at MRIU site while comparing with
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SMPS–OPS and SMPS–APS were 56.63 µg·m−3 and 68.43 µg·m−3, respectively. These uncorrected
PM10 readings of the sensors have an offset from that of the reference measured concentrations.
The potential effect of relative humidity on particle size measurements could be attributed to the offset
in measurements of PM sensors [7,17,23,48,49].

The concentration trends of SMPS–OPS were well tracked by Atmos, suggesting SMPS–OPS
to be suitable for consideration as a reference for ambient PM10 measurements for sites with high
PM10 concentration environments. This enhances the scope for different research communities to use
affordable PM sensors and validate and calibrate PM10 datasets using extensive data collection by
merging SMPS–OPS data.

As far as the environmental impacts are concerned, the daily PM10 concentrations exceeded
the Indian Central Pollution Control Board limit (100 µg·m−3) most of the days during the studied
deployment period. The PM10 mass concentrations at both the sites were quite high during the
monitoring period of seven weeks of January-March. The PM10 levels are comparable to those
estimated by Tiwari et al. [50] measured by the recommended method for multiple sites in Delhi in the
same months. In addition to this, the measured PM10 mass was highest during the initial monitoring
period, which gradually decreased on moving from week 1 to week 7. Nagar et al. [44] also showed
that in the winter season, PM10 concentrations were higher during the January months in comparison
to the next subsequent months. Results from our study are in agreement with the long-term research
on seasonal variation and annual pattern in PM10 conducted in Ganga Basin [44]. Diurnal variations by
both the devices matched quite well. For high PM concentrations, anthropogenic sources like biomass
burning products with downwind directions were reported as one of the principal contributors. Crop
residue burning is identified and well documented as the primary cause of high PM10 concentrations
in the studied regions [51–53].

The total number of hourly averaged PM2.5 data points at IITD and New Delhi from SMPS–OPS
and the Atmos PM sensor, respectively, were the same as those were recorded for PM10 (Supplementary
Figure S1). Mean PM2.5 concentrations measured by SMPS–OPS and Atmos were 117.31 ± 64.7 µg·m−3

and 161.70 ± 98.0 µg·m−3, respectively, for the same measurement period. Similarly, at MRIU the
mean PM2.5 concentrations measured by SMPS–OPS, SMPS–APS, and Atmos were 65.0 ± 51.3 µg·m−3,
72.3 ± 52.2 µg·m−3, and 139.1 ± 74.7 µg·m−3, respectively, for the same measurement period. The PM2.5

concentrations from Atmos tracked well the measured concentrations of reference instruments for
both the sites. Nevertheless, the values were overestimated as there was a constant offset between the
measured concentrations from both.

The idea was to look for PM10 concentrations patterns of Atmos with SMPS–APS and to evaluate
the correlation between SMPS–APS and SMPS–OPS, simultaneously. At both MRIU and IITD sites,
however, Atmos was generally on the higher side among the two devices measuring PM10 levels.
Similarly, previous studies on low-cost PM sensors have shown that the sensors overestimated ambient
PM2.5 compared to the reference monitors readings [37,47].

Previous research works have also reported that these sensors determine size fractions differently
from exact measurements of PM concentrations [54]. Similarly, the precision levels at various locations
may differ depending on the chemical composition and particle size distribution [23]. Again, for the sites
with a dominating source like traffic emissions, the changing size distribution on an hourly-averaged
basis may also add a distinguishable change in error to the measured PM concentrations [53]. In our
case as well, the MRIU site was located in the proximity of a busy cross-town roadway, which was
likely to affect the performance of the different PM measuring devices. Moreover, both the locations
were urban backgrounds. Hence, the respective environments could be affected by local sources such
as campus vehicles, street sweeping, and other local emission sources inside the institutes. Particle
measurements, when categorized across various size ranges, could be even more complicated than
the analysis of gaseous pollutants. They may be altered by many parameters that vary for different
measuring techniques and diverse particle kinds [55].
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3.3. Distribution Pattern and Pairwise Correlation of Measured PM10 Data

At first look, the patterns of the PM10 concentrations from different instruments appear to track
well with each other. Peaks and troughs in the measured PM10 levels by Atmos devices for both the
sites followed those measured by reference instruments. Therefore, the observed PM10 time series
indicated to proceed further and look for the correlations among the datasets. To select among available
options to find correlation types, we analyzed using QQ-plots for the collected data from each device
and from both the sites, as shown in Supplementary Figure S2.

The QQ-plots, as shown in Supplementary Figure S2a–e, demonstrate the normality of data
sampled from different instruments used in this deployment. The black line inside the grey area
represents the normally distributed theoretical dataset, while the grey shaded area represents the
theoretical confidence interval of a normally distributed dataset. The black data points represent the
actual sampled data points observed for the studied instruments. If the sampled data falls within
the confidence interval, it is generally assumed to be normally distributed. However, from the above
figures, it was observed that the sampled data sets were above the confidence interval, which infers
that the sampled dataset in our case was positively skewed. This confirms the execution of Spearman’s
correlation in the collected data set.

As the data collected was positively skewed, we passed both the reference and Atmos data into
the ln function, which confirmed that the data was indeed log-normally distributed. The Pearson
correlation was estimated for the normally distributed data. This was done after passing the dataset
to the log-function. The Pearson correlation for the normally distributed data after moving it into
ln-function was 0.67 (slightly better) for SMPS–OPS and Atmos at IITD. The observed correlations
between Atmos and merged PM10 concentrations for SMPS–APS and SMPS–OPS were 0.93 and 0.84,
respectively. Similarly, in the case of PM2.5, the Pearson correlation after passing the dataset to the
log-normal function was on the higher side. For the IIT Delhi site, it was observed that Pearson
correlation = 0.94 between Atmos and SMPS–OPS. While at the MRIU site, Pearson correlation = 0.86,
0.90 between Atmos and SMPS–APS and Atmos and SMPS–OPS, respectively.

The skewed data could be explained by the high seasonal variability of PM concentrations in
Delhi—January registers high PM concentrations as compared to that in March [56]. The Spearman
method does not assume normality of distribution while calculating the coefficient. It is a non-parametric
method of correlation, sometimes also referred to as a distribution-free test, and is often used to calculate
the correlation between skewed datasets. Spearman’s correlation method has an analogy with Pearson’s
method [43], which can make it comparable to the Pearson coefficient in an analysis. It was also
observed that the spearman correlation method was similar when compared with Pearson’s correlation
after the dataset was normalized using the ln function. The scatter plots, along with Spearman’s
correlation for both the sites, are illustrated in Figure 5a–d. Pairwise correlation and data distribution
of measured PM10 between instruments for MRIU and IITD are presented in Figure 5e,f, respectively.

We observed a p-value < 0.001 for all four cases; this rejects the null hypothesis and suggests
that there was a strong dependence between the sampled PM10 measurements. The correlation is
often defined as simple-specific measure and is also affected by the variability of the sampled data
sets [42]. Pairwise correlations illustrated the natural distributions of different data sets collected
during the study period. Correlation results revealed that there was a strong linear positive correlation
among the sampled datasets. The correlation between merged PM10 concentrations for SMPS–APS and
SMPS–OPS was found to be 0.92 and was in line with the earlier inferred results. It is hence clear from
the rs values that OPS was able to capture the measurements in variation when compared with APS.
Furthermore, data from the SMPS section were common in both the merged PM products. These results
support the use of research-grade OPS in combination with SMPS for PM10 measurement purposes.
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Figure 5. Scatter plots for measured PM10 between (a) SMPS–OPS and Atmos or PMS 7003 at the
Indian Institute of Technology Delhi (IITD) site, (b) SMPS–OPS and PMS 7003, (c) SMPS–APS and
SMPS–OPS, and (d) SMPS–APS and Atmos or PMS 7003 at the Manav Rachna International Institute of
Research and Studies (MRIU) site, with their respective rs and p-values, (e) pairwise correlation and
data distribution of measured PM10 between SMPS–OPS, SMPS–APS, and Atmos at the MRIU site and
(f) pairwise correlation and data distribution of SMPS–OPS and Atmos at the IITD site. The grey area
along the black line represents the 95% confidence interval of regression. Numeric values in upper
halves represent the Spearman’s coefficients.
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Additionally, SMPS–OPS and Atmos devices at both sites seem to appear strongly correlated.
The main reason for using Spearman’s correlation was due to skewed data obtained from the
instruments used for PM10 measurements. Pearson’s correlation method requires normal distribution
as a preliminary condition to calculate an unbiased correlation. The correlation coefficient (rs ≥ 0.64)
for each of the cases was observed to be quite high, which shows that there was a strong linear positive
correlation. The observed findings suggest that OPS, also in combination with SMPS, acted well as
the reference equipment. It may prove to be useful for developing countries’ prospects in making
portable and affordable PM sensors. Periodic calibration is recommended for these low-cost sensors,
as suggested by Rai et al. [29]. However, a more profound statistical attempt considering confounders’
effects on their measuring efficiency is required to ensure more confidence in such devices. The slopes
and intercepts observed for the paired combinations in our study are shown in Table 1.

Table 1. Observed parameters for different pairwise Spearman’s rank-order correlation among sampled
datasets using various PM10 measuring instruments at two sites.

Instruments
MRIU IITD

rs Slope Intercept (µg·m−3) rs Slope Intercept (µg·m−3)

SMPS–OPS Vs. PMS7003 0.83 1.069 42.883 0.64 0.787 47.269
SMPS–APS Vs. SMPS–OPS 0.92 0.782 1.640 - - -
SMPS–APS Vs. PMS7003 0.83 1.188 53.396 - - -

The pairwise correlation among sampled PM10 datasets also showed only 1.64 µg·m−3 as intercept
(for rs = 0.92). These two datasets had nearly the same variation. Moreover, the parameters calculated
from correlation analysis on the conducted experiments at two sites showed no significant change
among them. However, local sources, including vehicular pollution nearby roads with other sources
for re-suspension of dust, waste burning, several combustion sources, and secondary PM formation,
are known to affect the PM-related parameters [55,57,58] routinely. Similarly, influencing factors like
temperature, relative humidity, interference due to a light source, wind speed, and pressure likely
bring variation in measurements.

The correlation observed between Atmos and reference instruments for measured PM2.5 was
better than that for PM10 (Supplementary Figure S3). Some of the recent papers from other countries
have also shown that low-cost sensors’ PM2.5 matches more in comparison to PM10 [8]. In the case of
PM2.5 as well, we observed p < 0.001 for all four cases. This rejects the null hypothesis and suggests that
there was a strong dependence between the sampled values and PM2.5 measurements. Correlations
ranging from results revealed that there was a strong linear positive correlation among the sampled
datasets. The correlation between merged PM2.5 concentrations for SMPS–APS and SMPS–OPS was
found to be 0.95 (it was 0.91 in the case of PM10) and between Atmos and research-grade instruments
from 0.73 to 0.91. Since in the present study as well, the focus of the study was on the validation part
of PM10 measurements by Atmos in measuring ambient concentration and to compare it with that
of the accurate research-grade instruments, detailed information on PM2.5 analysis is not presented.
Nevertheless, wherever necessary, we have provided the illustrations as the supplementary files.

Furthermore, coarse PM or PM2.5–10 (particle size between 2.5 and 10 µm) measured from Atmos
devices at both the sites were compared along with the research-grade instruments at the respective
sites. One time series of coarse PM for the whole duration and another time series with collocated time
period with continuous period is presented in Supplementary Figure S4b. It was observed that the
Atmos captured the coarse PM, which is comparable to the research-grade instruments, and the results
were consistent for both the sites. The time series shows that the trends of the measured PM2.5, PM2.5–10,
and PM10 from Atmos were comparable to that of the research-grade used in this study. The mean
value of PM2.5-10 measured from Atmos was 21.39 ± 12.55 µg·m−3 (n = 702) while that from SMPS–OPS
and SMPS–APS were 25.52 ± 18.74 (n = 940) and 9.78 ± 7.10 (n = 737) µg·m−3, respectively. Similarly,
in the case of IITD site, coarse particles measured using SMPS–OPS and Atmos were 64.67 ± 33.88 and



Sensors 2020, 20, 1347 13 of 19

19.75 ± 14.88 µg·m−3, respectively. Coarse PM data revealed that Atmos measurements underestimated
the SMPS–OPS by 2.00 and 44.92 µg·m−3 at the MRIU and IITD sites, respectively, and overestimating
the SMPS–APS by 24.80 µg·m−3. We also found that there was a variability in the observed coarse
fraction and the ratio of PM2.5 to PM10 concentrations.

In the validation of the commodity PM sensors, a variety of reference methods were used. In our
study, we did not validate our PM10 sensors to evaluate any reference methods. Instead, we looked for
the suitability of the studied PM sensor. We also used available research-grade instruments that were
considered as reference equipment to measure PM10. For insight into the stability of Atmos devices,
the heat map for the obtained R2 was generated (Figure 6).
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Figure 6. Heat map representing the coefficient of determinations (R2) for weekly basis data between
the different studied instruments during their field deployment of seven weeks. The different shades of
blue color represent different R2 values ranging from 0.3–0.9, and the yellow color describes that there
was no data collected during the specific week.

The R2 for each bivariate combination between the implemented PM measuring instruments
for both the sites separately was determined weekly (week 1–week 7). The daily pattern of PM2.5 is
cyclic, and in our case, the PM10 measurement was conducted over a single season. It indicated that
weekly data should be normally distributed. We, therefore, assumed that normality would prevail after
classifying the data weekly. The agreement of the Atmos (Plantower PMS7003) with the SMPS–OPS
and the SMPS–APS was observed to be moderate to high for different weeks from the seven-weeks-long
field deployment (R2 = 0.3–0.9). Therefore, a heat map with various shades of blue indicates the
different coefficient of determinations observed from 0.3–0.9. Yellow represents the absence of data
during the specific week for some of the combinations. The R2 values observed between SMPS–APS
and SMPS–OPS ranged from 0.6–0.9. Clearly, the R2 between SMPS–APS and SMPS–OPS at the MRIU
site was seen to be very high during the whole deployment.

The observed R2 for the data collected during the six weeks between Atmos and SMPS–OPS at IITD
were 0.43, 0.52, 0.56, 0.59, 0.43, and 0.81, respectively. The number of hourly data points varied in the
seven weeks time period studied. Similarly, at MRIU for the same bivariate combination, the observed
R2 for consecutive weeks was 0.30, 0.45, 0.63, NA, 0.94, 0.58, and 0.44, respectively. On the other
hand, with SMPS–APS as a reference for the comparative analysis of Atmos data, the observed R2 for
consecutive weeks were 0.32, 0.53, 0.63, NA, 0.68, 0.60, and 0.70, respectively. Mostly, the observed R2

for the data was generally around 0.4–0.6, except for one week with a value as high as 0.9. The number
of data points for PM10 in a week for IITD was 108–208, and that for MRIU was 22–173 with p < 0.001.
We looked into the weekly-based data only to see the ranges of the R2 between Atmos and reference.
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However, there is more scope to be looked into while considering the reliability of Atmos in varying
ambient PM10 concentration ranges. It includes the duration of data collection, the number of hourly
data points, and impacting environmental parameters.

Similarly, at both the study sites, no specific diminishing concentrations were observed in
the pattern of the R2 values between Atmos PM sensors and reference instruments. The results,
as mentioned above for different weekly PM sensor data, showed the correlations could go very high.
Furthermore, it would improve by applying the correction factors.

The difference between the numbers of collected samples for hourly averaged PM10 concentrations
can be attributed to the varying hourly averaged data points measured during the different weeks
studied. The cause of variations in the ambient PM measurements may also include instrument
contamination, hardware degradation, changed fan flow rates, and potentially insufficient cleaning
of the sensors [46]. Zerrath et al. [27] investigated and described that the results of the OPS matched
well with the APS and SMPS. However, their investigations focused primarily on the number of
concentration and modes. For the variations between SMPS–APS and SMPS–OPS, Zerrath et al. [27]
also showed that equivalent diameters of urban aerosol measured by OPS and APS might differ from
each other in field conditions. Variations in correlation could be due to the presence of a difference in
physicochemical properties, like the density of ambient particles in different environments.

The correlation between SMPS–OPS and SMPS–APS was observed to be very high for the
MRIU site. Similarly, Szymanski et al. [59] and Hand and Kreidenweis [60] also demonstrated that
SMPS–APS/OPS were comparable in their experiments. Data-driven analysis indicated that SMPS–APS
and SMPS–OPS are very similar in PM10 measurements. Furthermore, the correlation coefficients
for PMS7003 sensors with both devices exhibited similar values for MRIU, which reinforces the
hypothesis. No specific difference in the patterns was observed due to the change in reference data as
SMPS–OPS merged data instead of the SMPS–APS combination. In developing countries like India,
there are large urban areas with less or no monitoring of air pollution [6,61]. As already discussed,
most of the existing pollution monitoring instruments used are expensive, hence the extensive use
of low-cost sensors for PM2.5 and PM10 might be helpful in a better understanding of sources with
high-resolution spatiotemporal data, along with the lesser number of monitoring stations equipped
with reference-grade instruments. At the same time, big data generated from such a dense network
of low-cost sensors might provide crucial information and also an opportunity for exploring further
research aspects.

Additionally, seven-weeks-long data might not be sufficient to conclude the existence of drifts in
the sensor measurements. For understanding the impacts of time on the performance of Atmos, a study
over a longer duration of field deployment period is required. Johnson et al. [23] also mentioned that
the actual response of light scattering-based PM sensors is predominantly a function of the ambient
aerosol features varying with the site. Clearly, in the case of PM sensors, there is a need to explore
further its size distribution and chemical composition. The envisioned better prospect of extensively
available PM sensors hinges on data reliability. Hence, some of the limitations are collectively described
in the subsequent section.

Limitations of the study: Like most of research studies, this study also has certain limitations,
which are described below:

• A comparison of identical sensors generally revealed the highest agreement. Nevertheless,
attempting more statistical analyses might have thrown light onto the cause of even the very slight
variations among them. Accessory measurements indicating ambient temperature, humidity,
and aerosol refractive index were not included in this study. The optics-based detection of
particulates is probably affected by relative humidity. The uptake of moisture by hygroscopic
particulates leads to increased scattered light signals. An attempt to calibrate these Atmos devices,
especially for PM10 measurements with longer deployment duration, may help to explore more
potential impacts from the variables such as relative humidity and temperature;
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• Among the limitations of the study, lower and upper detection limits are also an expected factor in
sensor performance not considered in this case. Hence, to ensure complete accuracy, the PM sensors
need to be deployed in the environments where they can be tested for its performance at extreme
extents. A longer duration of PM sensor deployment featuring high and low concentrations
would be a challenge;

• Data from research-grade adjacent instruments (SMPS–APS and SMPS–OPS) were proven as
suitable for PM measurements. However, to the best of our knowledge, no previous study using
these instruments for similar applications is available. Hence, we suggest looking deeper into the
data accuracy and uncertainties from these instruments as well as those being used as references;

• Transparency remained an issue with the many sensor developers where algorithms applied
are valuable intellectual property. Developers and researchers should explicitly document
independent algorithms to put faith in air sensor data. Hagler et al. [13] have also reported that
trust in the developed sensors could augment when manufacturers would share which factors
they integrated while post-processing the raw data;

• Likewise, most of the other available PM sensors studied Plantower PMS7003 also had no
inertial-based size cuts preventing large particles from moving towards the optical chamber.
It is therefore expected that it might affect the precision of readings to some extent as well.
The limitations of this study also act as points to be considered as the future scope that may further
serve with more information.

4. Conclusions

The data-driven assessment of our custom-designed sensors elucidated scopes where further
advancement in its research and development can be crucial. We emphasized inter-comparison
of low-cost PM sensors in the polluted sites in Delhi-NCR. The performance of PM sensors was
consistent, as tested by their R2. The trends of PM10, PM2.5, and PM2.5-10 measurements from Atmos
devices matched well with research-grade monitors. The uncorrected PM10 measurements by low-cost
PM sensors exhibited a strong correlation with merged PM10 concentrations from SMPS–APS and
SMPS–OPS. The Atmos devices appeared promising for PM10 measurement applications. Results also
showed that the un-corrected PM sensors displayed consistent performance (with 0.64 ≤ rs ≤ 0.83) for
PM10 data acquired from the research-grade instruments. During the campaign, a sufficiently high R2

value was observed between PM10 measured by Atmos and research-grade instruments, which also
validates the sensors’ data quality.

The weekly separation of data and the regression test implies that the Atmos devices could
estimate the PM10 level very well. In some cases, for particular instances, R2 > 0.7 was observed
between the devices. The few inconsistencies where data were sufficient but the device performance
was poor remain a subject of further study. Applying a calibration equation or the correction factor
should improve the sensor performance for real-time ambient PM10 measurements.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/5/1347/s1,
Figure S1: Time series of ambient PM2.5 concentrations (µg·m−3) data collected from Atmos PMS7003 sensor
and reference instruments (merged PM2.5 from SPMP-OPS and SMPS-APS) during the deployment period at
(a) Manav Rachna International Institute of Research and Studies, Faridabad (MRIU) and (b) Indian Institute
of Technology Delhi (IITD) monitoring sites., Figure S2: (a–c) from left to right represents Quantile-Quantile
(QQ)-plots for measured PM10 from merged SMPS–APS, merged SMPS–OPS, and un-calibrated Plantower
PMS7003 sensor, respectively at Manav Rachna International Institute of Research and Studies, Faridabad (MRIU)
and (d,e) represents the QQ-plots for merged SMPS–OPS and un-calibrated PMS7003 from Indian Institute of
Technology Delhi (IITD), respectively., Figure S3: (a–d) Scatter plots for measured PM2.5 between (a) SMPS-OPS
and Atmos at Indian Institute of Technology Delhi (IITD) and Manav Rachna International Institute of Research
and Studies, Faridabad (MRIU) between, (b) SMPS–OPS and PMS 7003, (c) SMPS–APS and SMPS–OPS, and (d)
SMPS–APS and Atmos, respectively with their respective rs and p-values, (e) pairwise correlation and data
distribution of measured PM2.5 between SMPS–OPS, SMPS–APS, and Atmos at MRIU site, and (f) pairwise
correlation and data distribution of SMPS–OPS and Atmos at IITD site. The grey area along the black line
represents the 95% confidence interval of regression. Numeric values in upper halves represent the Spearman’s
coefficients., Figure S4: Time series of coarse particle PM2.5-10 measured from merged SMPS–APS, merged

http://www.mdpi.com/1424-8220/20/5/1347/s1


Sensors 2020, 20, 1347 16 of 19

SMPS–OPS, and Atmos at (a) Manav Rachna International Institute of Research and Studies, Faridabad (MRIU),
Faridabad during the whole study period and (b) for a small section of time series with common collocated
data points.
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