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Abstract: Small peptides and proteins play critical regulatory roles in plant development and
environmental stress responses; however, only a few of these molecules have been identified and
characterized to date because of their poor annotation and other experimental challenges. Here, we
present that rice (Oryza sativa L.) OsS1Fa1, a small 76-amino acid protein, confers drought stress
tolerance in Arabidopsis thaliana. OsS1Fa1 was highly expressed in leaf, culm, and root tissues of rice
seedlings during vegetative growth and was significantly induced under drought stress. OsS1Fa1
overexpression in Arabidopsis induced the expression of selected drought-responsive genes and
enhanced the survival rate of transgenic lines under drought. The proteasome inhibitor MG132
protected the OsS1Fa1 protein from degradation. Together, our data indicate that the small protein
OsS1Fa1 is induced by drought and is post-translationally regulated, and the ectopic expression of
OsS1Fa1 protects plants from drought stress.

Keywords: small protein; rice; OsS1Fa1; drought stress; post-translational modification

1. Introduction

Abiotic stresses such as drought, salinity, cold, and heat induce biochemical and
molecular changes that affect plant growth and crop yields [1,2]. To survive under these
stress conditions, plants activate various cell signaling pathways such as the production of
antioxidants, the induction of stress-related proteins, and the accumulation of compatible
solutes [1,3].

Drought refers to low water availability for an extended period of time. At the
molecular level, plant drought resistance is a complex process involving many genes
and signaling pathways that modify several physiological, morphological, and molecular
responses. The perception of external drought stress stimuli by sensors located at the plant
cell membrane induces the expression of a large number of genes with diverse functions,
resulting in drought adaptation [4,5].

Drought-responsive proteins can be categorized into three groups: transcription
and signaling cascade-related proteins such as transcription factors and protein kinases;
protein- and membrane-protecting proteins such as the late embryogenesis abundant (LEA)
protein and antioxidants; and water and ion uptake and transport-related proteins such
as aquaporins and sugar transporters [4,6–8]. Thousands of drought-responsive genes
have been identified using next-generation sequencing (NGS) approaches such as RNA
sequencing (RNA-seq), and the functions of many of these genes have been characterized
to date [9,10].

S1Fa is a spinach (Spinacia oleracea L.) nuclear protein that binds to the cis-element
of the Site 1 binding site, one of three binding sites (Site 1, 2, and 3) located within the
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promoter of the nuclear gene rps1, which encodes the plastid ribosomal protein cS [11]. S1Fa
is a small protein, with only 76 amino acids (aa), and is different from the Site 1 Factor (S1F)
protein, which has been characterized in spinach leaf extracts as a 28–30 kDa protein [12].
The predicted amino acid sequence of S1Fa contains a nuclear localization signal (NLS)
peptide and a DNA recognition motif [13], supporting its function as a transcription factor.
The spinach S1Fa gene is expressed at higher levels in roots and etiolated seedlings than
in green leaves, indicating that S1Fa binds to the rps1 promoter to repress its expression
specifically in roots and etiolated plants [13].

S1Fa is highly conserved among dicots and monocots. Although there are no more
than five S1Fa-like protein families in several plant species, including rice (Oryza sativa L.),
soybean (Glycine max L.), tomato (Solanum lycopersicum L.), and Arabidopsis, 126 S1Fa-like
protein families have been identified in Arachis duranensis, and genes encoding the S1Fa
proteins belonging to these 126 families are more highly expressed in roots and etiolated
seedlings than in green leaves, similar to spinach S1Fa [14]. These findings suggest that
S1Fa plays important roles in plant growth and development, including in responses
to environmental stress. Nevertheless, the biochemical, molecular, and physiological
functions of S1Fa have not yet been elucidated.

According to previous studies, small proteins and peptides are involved in plant
growth, development, reproduction, and environmental stress responses [15–18]. Never-
theless, compared with larger proteins, the roles of small proteins in plant processes remain
poorly understood. In this study, we provide evidence showing that the rice small protein
OsS1Fa1, a homolog of spinach S1Fa, participates in plant survival under drought, and its
stability is regulated by the ubiquitination pathway.

2. Materials and Methods
2.1. Plant Growth Conditions and Stress Treatments

Rice (Oryza sativa L. cv. Nipponbare) seeds were germinated in soil in a growth
chamber at 28 ◦C under a 14 h light/10 h dark cycle, and seedlings were grown under the
same conditions for 3 weeks. In the drought stress treatment, watering of seedlings was
withheld for 10 d, whereas in the mock treatment, seedlings were watered every day for 10 d.
After 10 d, samples were harvested, frozen in liquid nitrogen, and stored at −70 ◦C until
needed for further analysis. Plants of Arabidopsis thaliana ecotype Columbia (Col-0; wild
type [WT]) and OsS1Fa1 overexpression lines were grown in a growth chamber at 22 ◦C
under a 16 h light/8 h dark cycle on Murashige and Skoog (MS) medium supplemented
with 0.5 g/L MES, 10 g/L sucrose, and 0.75% agar. To test the drought stress tolerance
of WT and transgenic Arabidopsis plants, seeds of these genotypes were cold-stratified
on wet soil at 4 ◦C in the dark for 3 d, and seedlings were grown at 22 ◦C under a 16 h
light/8 h dark photoperiod, without watering, for 28 d. After the drought stress treatment,
plants were rewatered for 5 d and then photographed.

2.2. Production of Recombinant Proteins

To produce His6-OsS1Fa1, full-length OsS1Fa1 cDNA was cloned into the pET28a vec-
tor (Novagen, Madison, WI, USA). The resultant construct was transformed into Escherichia
coli BL21/DE3 (pLysS) cells. Then, isopropyl-β-D-thiogalactoside (IPTG) was added to the
transformed E. coli cell culture to induce the expression of the fusion protein. To extract
the His6-OsS1Fa1 recombinant protein, bacteria were lysed in a buffer containing 50 mM
NaH2PO4 (pH 8.0), 300 mM NaCl, 1% Triton X-100, 1 mM imidazole, 5 mM DTT, 2 mM
PMSF, and a proteinase inhibitor cocktail (Roche, Basel, Switzerland). The extracted re-
combinant protein was then purified using Ni2+-nitrilotriacetate (Ni2+-NTA) resin (Qiagen,
Hilden, Germany), according to the manufacturer’s instructions. Primers used for plasmid
construction are listed in Table S1.
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2.3. RT-qPCR Analysis

To evaluate the effect of drought stress on OsS1Fa1 expression, the mock- and drought-
treated rice leaf samples were ground thoroughly to obtain a fine powder. Total RNA was
isolated from the ground tissue using the FavorPrepTM Plant Total RNA Mini Kit (Favorgen,
Ping-Tung, Taiwan) and then reverse transcribed to produce cDNA using ReverTra Ace®

qPCR RT Master Mix, with gDNA Remover (TOYOBO, Osaka, Japan). Then, the cDNA
template was amplified by RT-qPCR on LightCycler®480 using the KAPA SYBR® FAST
qPCR Master Mix (2X) Kit (Kapa Biosystems, Wilmington, NC, USA) and OsS1Fa1-specific
primers. The Ubiquitin 5 (UBQ5) gene was used as an internal reference.

To examine the level of OsS1Fa1 expression in rice seedlings during vegetative growth,
total RNA was isolated from the shoot, leaf, culm, and root tissues of rice seedlings
harvested at five different vegetative growth stages and amplified by RT-qPCR.

To examine the transcript levels of drought-responsive genes in Arabidopsis, total
RNA was isolated from the leaves of 14-d-old WT and OsS1Fa1-overexpressing plants, and
RT-qPCR was carried out using gene-specific primers. Primers for Actin (internal control)
were added to the RT-qPCR reaction together with other gene-specific primers.

All experiments were repeated three times, with three replicates per sample. Primers
used for all RT-qPCR assays are listed in Table S2.

2.4. Antibody Production and Western Blotting

The recombinant His6-OsS1Fa1 protein was purified using the Ni2+-NTA affinity
column, according to the manufacturer’s instructions (Qiagen), and the concentration
of the purified protein was measured with the Bradford assay [19]. The anti-OsS1Fa1
antibody was produced by subcutaneous injection of the recombinant protein into rabbits.
To examine the level of OsS1Fa1 in rice and Arabidopsis, total proteins were extracted
from the required samples and separated by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) on 12% acrylamide gel. The OsS1Fa1 protein was then detected
by Western blotting with anti-OsS1Fa1 antibody.

2.5. Production and Characterization of Transgenic Arabidopsis Lines

To generate transgenic Arabidopsis lines overexpressing OsS1Fa1, the full-length
cDNA of OsS1Fa1 was cloned into the pBA002 vector under the control of the cauliflower
mosaic virus (CaMV) 35S promoter. The resulting 35S-OsS1Fa1 construct was introduced
into Agrobacterium tumefaciens strain LBA4404, which was further used to transform Ara-
bidopsis via the floral dipping method [20]. The expression level of OsS1Fa1 was examined
in transgenic plants by RT-qPCR (as described above), and the protein level of OsS1Fa1
was examined in the leaves of 14-d-old WT and transgenic plants by Western blotting with
anti-OsS1Fa1 antibody.

2.6. Prediction of Conserved Motifs in the OsS1Fa1 Protein

Conserved motifs in the OsS1Fa1 protein were predicted based on its amino acid
sequences using the QUARK computer algorithm [21] (https://zhanglab.Ccmb.med.umich.
edu/QUARK/, accessed on 2 October 2018).

2.7. Effect of MG132 on OsS1Fa1 Protein Level and Stability

To perform a cell-free degradation assay, leaves of 10-d-old soil-grown rice seedlings
were ground in liquid nitrogen and resuspended in a buffer containing 25 mM Tris-HCl
(pH 7.5), 10 mM NaCl, 10 mM MgCl2, 4 mM PMSF, 5 mM DTT, and 10 mM ATP. Cell debris
was pelleted by centrifugation, and equal volumes of the supernatant were aliquoted into
individual tubes. Then, purified His6-OsS1Fa1 and 50 µM MG132 (Calbiochem, San Diego,
CA, USA) were added to the protein extract in each tube, and samples were incubated
at room temperature for 4 h. The reaction was stopped by adding an equal volume of
2× SDS sample buffer. Finally, the level of OsS1Fa1 was analyzed by Western blotting with
anti-OsS1Fa1 antibody. To estimate the effect of MG132 on OsS1Fa1 in vivo, 2-week-old

https://zhanglab.Ccmb.med.umich.edu/QUARK/
https://zhanglab.Ccmb.med.umich.edu/QUARK/


Plants 2021, 10, 2181 4 of 12

transgenic Arabidopsis seedlings or 7-d-old rice seedlings grown on MS medium were
treated with 50 µM MG132 for 15 h. Leaf samples were ground in liquid nitrogen, and equal
amounts of total protein were analyzed by Western blotting with anti-OsS1Fa1 antibody.

3. Results
3.1. Expression of OsS1Fa1 Is Upregulated by Drought Stress

To identify the small protein involved in the drought stress response in rice, we chose
S1Fa (LOC_Os04g33420), as it has not yet been functionally characterized in rice and is
highly conserved among monocots and dicots [14]. To perform the drought stress treatment,
wild-type (WT) seedlings were grown in a pot for 20 d under well-watered conditions.
On day 20, irrigation was withheld for the next 19 d. To determine the role of OsS1Fa1 in
drought stress response, we first investigated the expression pattern of the OsS1Fa1 gene
by quantitative real-time PCR (RT-qPCR). The expression of OsS1Fa1 was significantly
induced in rice leaves following the dehydration treatment (Figure 1A). Interestingly, the
deduced amino acid sequence of OsS1Fa1 contained four possible functional domains:
transmembrane domain, NLS, DNA recognition α-helix, and sumoylation motif (Figure 1B).
Thus, despite its small size (76 aa), OsS1Fa1 could perform multiple functions in different
subcellular organs.
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Figure 1. Analysis of OsS1Fa1 transcript levels and the OsS1Fa1 amino acid sequence. (A) RT-qPCR
analysis of OsS1Fa1 expression in rice seedlings under drought stress. Wild-type (WT) seedlings
were grown for 20 d under well-watered conditions by maintaining equal-sized seedlings in pots.
Irrigation was withheld on day 20 for the next 19 d. Transcript levels of OsS1Fa1 were examined by
RT-qPCR using gene-specific primers. Data represent mean ± standard deviation (SD; n = 3). (B) The
deduced amino acid sequence of OsS1Fa1. Conserved motifs are indicated in bold.

3.2. OsS1F1a Transcript and the Encoded Protein Exhibit Organ-Specific Expression

Next, we evaluated the expression level of OsS1Fa1 in the leaf, culm, and root tissues
of 14-d-old rice seedlings (Figure 1A). The OsS1Fa1 expression was higher in leaves than in
culms and roots (Figure 2B). To investigate the OsS1F1a protein levels, we produced an
anti-OsS1Fa1 antibody using the recombinant His6-OsS1Fa1 protein, which was produced
in E. coli and purified by nickel affinity chromatography. The results of Western blotting
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showed that the OsS1Fa1 protein level was very low in leaves (unlike its transcript level)
but was detectable in the culm and root (consistent with its transcript level) (Figure 2C).
The molecular weight (MW) of OsS1Fa1, based on its amino acid sequence, was estimated
at approximately 8.36 kDa; however, on the Western blot, the OsS1Fa1protein was detected
at approximately 14.0 kDa (Figure 2C).

Plants 2021, 10, x FOR PEER REVIEW 5 of 12 
 

 

anti-OsS1Fa1 antibody using the recombinant His6-OsS1Fa1 protein, which was produced 
in E. coli and purified by nickel affinity chromatography. The results of Western blotting 
showed that the OsS1Fa1 protein level was very low in leaves (unlike its transcript level) 
but was detectable in the culm and root (consistent with its transcript level) (Figure 2C). 
The molecular weight (MW) of OsS1Fa1, based on its amino acid sequence, was estimated 
at approximately 8.36 kDa; however, on the Western blot, the OsS1Fa1protein was de-
tected at approximately 14.0 kDa (Figure 2C). 

 
Figure 2. Analysis of OsS1Fa1 expression in rice tissues and detection of the His-tagged recombinant 
proteins in E. coli. (A) Photograph of a 3-week-old rice seedling showing the leaf, culm, and root 
tissues used for total RNA isolation. (B) Expression analysis of OsS1Fa1 in rice tissues by RT-qPCR. 
Data represent mean ± SD (n = 3). (C) Western blot analysis of OsS1Fa1 in rice tissues using anti-
OsS1Fa1 antibody. Total proteins were extracted from the same samples as those used in (B). The 
corresponding protein gel is shown below. (D) Detection of the His6-OsS1Fa1 recombinant protein 
in E. coli extracts using anti-OsS1Fa1 antibody. The recombinant protein was detected in E. coli be-
fore and after the addition of IPTG. 

We also examined the affinity of anti-OsS1Fa1 antibody to bind to OsS1Fa1 in the 
crude extracts of E. coli expressing His6-OsS1Fa1. The results showed that the anti-OsS1Fa1 
antibody specifically recognized OsS1Fa1 (Figure 2D). The size of the His6-OsS1Fa1 pro-
tein was approximately 15.5 kDa on the Western blot, which was greater than that pre-
dicted based on its amino acid sequence (9.02 kDa) (Figure 2D). 

Because the OsS1Fa1 protein level in the leaf tissue was quite low, despite the high 
OsS1Fa1 transcript level, we evaluated the expression level of OsS1Fa1 in the shoot, leaf, 
culm, and root of rice seedlings at five different growth stages (1–5) (Figure 3A). The 
OsS1Fa1 transcript level in the shoot at stage 1 was approximately 1.25-fold higher than 
that in leaf tissues at stages 2–5 (Figure 3B), and in the culm and root tissues, the OsS1Fa1 
transcript levels decreased slightly during growth. We also evaluated the OsS1Fa1 protein 

Figure 2. Analysis of OsS1Fa1 expression in rice tissues and detection of the His-tagged recombinant
proteins in E. coli. (A) Photograph of a 3-week-old rice seedling showing the leaf, culm, and root
tissues used for total RNA isolation. (B) Expression analysis of OsS1Fa1 in rice tissues by RT-qPCR.
Data represent mean ± SD (n = 3). (C) Western blot analysis of OsS1Fa1 in rice tissues using
anti-OsS1Fa1 antibody. Total proteins were extracted from the same samples as those used in (B).
The corresponding protein gel is shown below. (D) Detection of the His6-OsS1Fa1 recombinant
protein in E. coli extracts using anti-OsS1Fa1 antibody. The recombinant protein was detected in E.
coli before and after the addition of IPTG.

We also examined the affinity of anti-OsS1Fa1 antibody to bind to OsS1Fa1 in the
crude extracts of E. coli expressing His6-OsS1Fa1. The results showed that the anti-OsS1Fa1
antibody specifically recognized OsS1Fa1 (Figure 2D). The size of the His6-OsS1Fa1 protein
was approximately 15.5 kDa on the Western blot, which was greater than that predicted
based on its amino acid sequence (9.02 kDa) (Figure 2D).

Because the OsS1Fa1 protein level in the leaf tissue was quite low, despite the high
OsS1Fa1 transcript level, we evaluated the expression level of OsS1Fa1 in the shoot,
leaf, culm, and root of rice seedlings at five different growth stages (1–5) (Figure 3A).
The OsS1Fa1 transcript level in the shoot at stage 1 was approximately 1.25-fold higher
than that in leaf tissues at stages 2–5 (Figure 3B), and in the culm and root tissues, the
OsS1Fa1 transcript levels decreased slightly during growth. We also evaluated the OsS1Fa1
protein level in different tissues of rice seedlings at different growth stages. The level of
OsS1Fa1 in leaves was lower at stage 2 than at stage 1, and the protein was undetectable in
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leaves at stages 3 to 5. However, in the culm and root tissues, the OsS1Fa1 protein level
was somehow proportional to its gene transcript level at all growth stages (Figure 3C).
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analysis of OsS1Fa1 expression in the leaf, culm, and root tissues of rice seedlings at different developmental stages. Stage 1,
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3.3. OsS1Fa1 Overexpression in Arabidopsis Enhances Drought Stress Tolerance

Because drought treatment increased the expression level of OsS1Fa1 in rice (Figure 1A),
we hypothesized that OsS1Fa1 acts as a positive regulator of drought stress tolerance. To
test this hypothesis, we constructed and introduced the 35S-OsS1Fa1 plasmid in Ara-
bidopsis and analyzed the OsS1Fa1 transcript and OsS1Fa1 protein levels in transgenic
Arabidopsis lines by RT-qPCR and Western blotting, respectively. The OsS1Fa1 gene was
expressed to high levels in three different transgenic lines, and the results of Western
blotting were consistent with those of RT-qPCR, although a slight difference was observed
between OsS1Fa1 transcript and OsS1Fa1 protein levels (Figure 4A,B). Next, we deter-
mined the transcript levels of drought-responsive genes, including Late Embryogenesis
Abundant (LEA), Growth Regulating Factor 7 (GRF7), YODA, a mitogen-activated kinase ki-
nase kinase (MAPKKK) gene, Response-to-Dehydration 29A (RD29A), and Calcium-dependent
protein kinase 6 (CPK6), in transgenic OsS1Fa1 overexpression lines. Expression levels of all
drought-responsive genes were higher in transgenic lines than in WT plants (Figure 4C).
Next, we examined the drought stress tolerance of transgenic OsS1Fa1 overexpression
lines. Seeds of the WT and transgenic lines were cold-stratified on wet soil for 3 d, and
the emerged seedlings were grown at 22 ◦C without watering for 28 d. After the drought
stress treatment, plants were rewatered for 5 d and then photographed. The results showed
that the OsS1Fa1-overexpressing plants showed higher rate of plant survival than the WT
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plants (Figure 4D). Thus, these data suggest that OsS1Fa1 enhances plant survival under
drought.
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OsS1Fa1 expression in WT and transgenic Arabidopsis plants using gene-specific primers. Data represent mean ± SD (n = 3).
(B) Western blot analysis of the OsS1Fa1 protein in WT and transgenic plants using anti-OsS1Fa1 antibody. Total proteins
were isolated from the same samples as those used in (B). Rubisco was used as the loading control. (C) Expression analysis
of LEA, GRF7, YODA, RD29A, and CPK6 in WT and transgenic plants by RT-qPCR using gene-specific primers. Total RNA
samples used in this experiment were the same as those used in (A). Data represent mean ± SD (n = 3). (D) Drought
tolerance assay.

3.4. OsS1Fa1 Degradation Is Influenced by Proteasome Inhibition

The high transcript and low protein levels of OsS1Fa1 during leaf development
(Figures 2B,C and 3B,C) suggest that the stability of OsS1Fa1 is regulated at the post-
translational level. To test this possibility, we examined the cell-free degradation of OsS1Fa1
using the total protein extract from rice leaves and purified His6-OsS1Fa1 in the presence
or absence of a 26S proteasome inhibitor, MG132. OsS1Fa1 degradation was substantially
delayed with the proteasome inhibitor (Figure 5A). The effect of MG132 on OsS1Fa1 lev-
els in rice seedlings and OsS1Fa1-overexpressing Arabidopsis plants was also assessed.
The OsS1Fa1 levels increased in both rice seedlings and transgenic Arabidopsis plants
after direct treatment with MG132, as shown by Western blotting with anti-OsS1Fa1 an-
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tibody (Figure 5B,C). These results indicate that OsS1Fa1 can be degraded by the 26S
proteasome complex.
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Figure 5. Effect of a proteasome inhibitor on the OsS1Fa1 protein level. (A) Cell-free degradation
assay of OsS1Fa1. Rice leaf extracts were mixed with purified His6-OsS1Fa1 and treated with 50µM
MG132 (26S proteasome inhibitor) or 2% dimethyl sulfoxide (DMSO; solvent for the inhibitor; control)
for the indicated time periods. OsS1Fa1 levels were determined by Western blotting using anti-
OsS1Fa1 antibody, with known concentrations of actin serving as loading controls. (B,C) Proteasome
pathway-mediated OsS1Fa1 degradation in vivo. Rice seedlings (B) and OsS1Fa1-overexpressing
Arabidopsis plants (C) were treated with 50µM MG132. After overnight incubation, the OsS1Fa1
protein concentration was assessed by Western blotting using anti-OsS1Fa1 antibody, with known
concentrations of actin or binding protein (BIP) serving as loading controls. Values below each lane
indicate relative intensities. All experiments were repeated three times, with similar results.

4. Discussion

In this study, we demonstrate that the rice small protein OsS1Fa1 enhances drought
tolerance in Arabidopsis. Recent studies have improved our understanding of the molec-
ular genetic mechanisms underlying drought resistance in plants, thus facilitating the
development of drought tolerant crops. However, most of these studies investigated large
transcripts and proteins. Recently, several research groups reported the role of small pro-
teins and peptides in plant development, nutrient assimilation, and environmental stress
response [22–26]. This has led to a large-scale investigation of small proteins and peptides
via bioinformatic analysis of genomic, transcriptomic, and proteomic data [27,28].

Rice is a semi-aquatic plant species that requires standing water for proper growth
and development. Thus, drought is one of the major abiotic stresses that directly influences
plant growth and productivity in rice. Here, we explored the role of OsS1Fa1 in the drought
stress response. A previous study showed that spinach S1Fa is expressed to higher levels
in etiolated seedlings and roots than in green leaves [13]. In the current study, OsS1Fa1
was highly expressed in green leaves and culms; however, its expression was relatively
low in roots (Figures 2B and 3B). These data suggest that the expression pattern of S1Fa
genes in monocots, including rice, is different from that in dicots such as spinach.

Protein mobility shift during SDS-PAGE fractionation can occur for several reasons.
First, it is caused by chemical modifications of proteins such as phosphorylation [29], gly-
cosylation [30], hydroxylation [31], methylation [32], and ubiquitination [33,34]. The acid-
ity and hydrophobicity of proteins are other factors that could influence protein mobil-
ity [35,36]. In our data, the MW of native OsS1Fa1 and recombinant His6-OsS1Fa1 proteins
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in SDS-PAGE is approximately 5.64 and 6.30 kDa larger than its predicted MW, respectively
(Figure 2C,D). OsS1Fa1 contains a transmembrane domain (Figure 1B), thus suggesting
that its migration might be affected by a hydrophobic surface. Further examination of the
transmembrane domain of mutant OsS1Fa1 proteins is required to find out the cause of the
mobility shift. It is also possible that OsS1Fa1 is modified by chemicals. Mass spectrometry
analysis by using gel electrophoresis liquid chromatography-mass spectrometry can also
be applied to find a clue.

A number of small proteins and peptides, such as CLAVATA3/EMBRYO-
SURROUNDING REGION-RELATED 25 (CLE25), INFLORESCENCE DEFICIENT IN
ABSCISSION (IDA), and IDA-LIKE 1, are involved in the response to abiotic stresses such
as drought and salt [18,37–40]. Our results showed that OsS1Fa1 expression was induced
under drought stress (Figure 1A). Consistent with this result, overexpression of OsS1Fa1 in
Arabidopsis increased the survival rate of transgenic plants under drought (Figure 4D). Ad-
ditionally, OsS1Fa1 overexpression in Arabidopsis upregulated the expression of drought-
responsive genes (Figure 4E). These data indicate that OsS1Fa1 protects plants against
drought stress. Despite the high transcript levels of OsS1Fa1 in leaves during develop-
ment, the level of the OsS1Fa1 protein in leaf tissues was very low (Figures 2B,C and 3B,C),
suggesting that the stability of OsS1Fa1 is regulated at the post-translational level. We,
therefore, determined the concentration of OsS1Fa1 in transgenic Arabidopsis plants carry-
ing the 35S-OsS1Fa1 construct as well as in rice seedlings. Treatment with the proteasome
inhibitor MG132 increased the concentration of OsS1Fa1 and delayed its degradation
(Figure 5A–C). In addition, the computer program QUARK predicted several ubiquitina-
tion sites in OsS1Fa1 (Table S3). Taken together, these results indicate that the stability of
OsS1Fa1 in vivo is regulated by the proteasome complex after polyubiquitination.

The binding of spinach S1Fa to the rpsl gene promoter in the nucleus [11] suggests
that S1Fa functions as a transcription factor. In this study, we found a putative sumoy-
lation motif in the DNA recognition α-helix domain of OsS1Fa1 (Figure 1B). Increasing
evidence shows that sumoylation changes the conformation of the target protein, thereby
affecting its subcellular localization, stability, and activity as well as interactions with other
proteins [41–44]. This suggests that the transcriptional activation function and stability of
OsS1Fa1 can be controlled by sumoylation. In addition, the presence of a transmembrane
domain in OsS1Fa1 strongly suggests that OsS1Fa1 functions in the membrane and poten-
tially participates in cellular processes as an interaction partner of other membrane proteins.
Further subcellular localization analysis of the OsS1Fa1 protein and the identification of
nuclear and cytoplasmic membrane-localized OsS1Fa1-interacting proteins will help to
further understand the function of OsS1Fa1 in the cell.

MicroProteins are small proteins that interact with and modulate the activity of large
proteins [45]. Recently, an improved algorithm capable of processing poorly annotated
genomes and advanced translatomics was employed to predict small proteins and their
interacting partners [46,47]. This strategy can be used to identify the function of the small
protein itself or the effects of small proteins on their interacting partners. MicroProteins
also act as a regulatory tool. For example, in Arabidopsis, two B-box-containing microPro-
teins, microProtein1a (miP1a) and miP1b, regulate CONSTANS (CO) to control flowering
time [48]. In addition, the overexpression of the synthetic Hd1 B-box domain in rice inter-
feres with the endogenous function of the CO homolog, Hd1 [49]. Small proteins are also
known to regulate fundamental plant processes such as growth and stress response [47]
and therefore can be used for crop bioengineering. Together, these studies suggest that
OsS1Fa1 interacts with target proteins via its NLS and transmembrane domain and can be
used to develop drought tolerance crops.

In summary, OsS1Fa1 expression is induced by drought, and overexpression of
OsS1Fa1 in Arabidopsis not only enhances drought stress tolerance but also increases
the expression of drought tolerance-related genes. In addition, the stability of the OsS1Fa1
protein is post-translationally modulated. Further studies are needed to investigate the
potential roles of the conserved motifs of OsS1Fa1 in its subcellular localization. Elucida-
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tion of the ubiquitination and sumoylation of OsS1Fa1 in vivo and the effects of OsS1Fa1
overexpression on drought stress tolerance are also required for understanding the role
of OsS1Fa1. In addition to these, identification of OsS1Fa1-interacting proteins would
bring another insight into the understanding of the function of OsS1Fa1 in drought stress
response. Together, these studies will elucidate the role of OsS1Fa1 in plant development
and stress responses.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10102181/s1, Table S1: Putative ubiquitination sites of OsS1Fa1 identified using the
computational Prediction of protein Ubiquitination sites with a Bayesian Discrimination Method
(BDM-PUB), Table S2: Primers used for plasmid construction, Table S3: Primers used to perform
quantitative real-time PCR (RT-qPCR).
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