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An experimental test of noncontextuality without
unphysical idealizations
Michael D. Mazurek1,2, Matthew F. Pusey3, Ravi Kunjwal4, Kevin J. Resch1,2 & Robert W. Spekkens3

To make precise the sense in which nature fails to respect classical physics, one requires a

formal notion of classicality. Ideally, such a notion should be defined operationally, so that it

can be subject to direct experimental test, and it should be applicable in a wide variety of

experimental scenarios so that it can cover the breadth of phenomena thought to defy

classical understanding. Bell’s notion of local causality fulfils the first criterion but not the

second. The notion of noncontextuality fulfils the second criterion, but it is a long-standing

question whether it can be made to fulfil the first. Previous attempts to test noncontextuality

have all assumed idealizations that real experiments cannot achieve, namely noiseless

measurements and exact operational equivalences. Here we show how to devise tests that

are free of these idealizations. We perform a photonic implementation of one such test, ruling

out noncontextual models with high confidence.
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M
aking precise the manner in which a quantum world
differs from a classical one is a surprisingly difficult
task. The most successful attempt, due to Bell1, shows

a conflict between quantum theory and a feature of classical
relativistic theories termed local causality, which asserts that no
causal influences propagate faster than light. But the latter
assumption can only be tested for scenarios wherein there are
two or more systems that are space-like separated. And yet few
believe that this highly specialized situation is the only point
where the quantum departs from the classical. A leading
candidate for a notion of nonclassicality with a broader scope is
the failure of quantum theory to admit of a noncontextual model,
as proven by Kochen and Specker2. Recent work has highlighted
how this notion lies at the heart of many phenomena that are
taken to be distinctly quantum: the fact that quasi-probability
representations go negative3,4, the existence of quantum
advantages for cryptography5 and for computation6–8, and the
possibility of anomalous weak values9. Consequently, the study of
noncontextuality has not only foundational significance but
practical applications as well.

An experimental refutation of noncontextuality would
demonstrate that the conflict with noncontextual models is not
only a feature of quantum theory, but of nature itself, and hence
also of any successor to quantum theory. The requirements for
such an experimental test, however, have been a subject of much
controversy10–16.

A fundamental problem with most proposals for testing
noncontextuality17–24, and experiments performed to date25–32,
is that they seek to test a notion of noncontextuality which
posits that measurements have a deterministic response in the
noncontextual model. It has been shown that such determinism is
only justified under the idealization that measurements are
noiseless33, which is never satisfied precisely by any real
experiment. We refer to this issue as the problem of noisy
measurements.

Another critical problem with previous proposals is the fact
that the assumption of noncontextuality can only be brought to
bear when two measurement events (an event is a measurement
and an outcome) are operationally equivalent, which occurs
when the two events are assigned exactly the same probability by
all preparation procedures34; in this case they are said to differ
only by the measurement context. In a real experiment, however,
one never achieves the ideal of precise operational equivalence.
Previous work on testing noncontextuality—including the only
experiment to have circumvented the problem of noisy
measurements (by focusing on preparations)5—has failed to
provide a satisfactory account of how the deviation from strict
operational equivalence should be accounted for in the
interpretation of the results. We term this problem the problem
of inexact operational equivalence.

In this work, we solve both of the above problems. We contend
with the problem of noisy measurements by devising a test of a
generalised notion of noncontextuality, proposed in ref. 34,
that allows general measurements to have an indeterministic
response while reducing to the traditional notion in the idealized
case of projective quantum measurements. For the problem of
inexact operational equivalence, whereas some have been led to
consider modifying the definition of noncontextuality so that it
applies to pairs of procedures that are merely close to
operationally equivalent35,36, we circumvent the problem by
demonstrating a general technique that appeals to equivalences
not among the procedures themselves, but certain convex
mixtures thereof. Of course, any judgment of operational
equivalence of measurements (preparations) rests on an
assumption about which sets of preparations (measurements)
are sufficient to establish such equivalence, that is, which sets are

tomographically complete. We here assume that the cardinality
of a tomographically-complete set of measurements
(preparations) for a photon’s polarization is three (four), as it is
in quantum theory. We collect some experimental evidence
for this assumption—another improvement over previous
experiments—but the possibility of its failure is the most
significant remaining loophole for tests of noncontextuality.
For Bell’s notion of local causality, the theoretical work of
Clauser et al.37 was critical to enabling an experimental
test without unphysical idealizations, e.g., without the perfect
anti-correlations presumed in Bell’s original proof1. Similarly,
the theoretical innovations we introduce here make it possible for
the first time to subject noncontextuality to an experimental test
without the idealizations described above. We report on a
quantum-optical experiment of this kind, the results of which rule
out noncontextual models with high confidence.

Results
A noncontexuality inequality. According to the operational
approach proposed in ref. 34, to assume noncontex-
tuality is to assume a constraint on model-construction, namely,
that if procedures are statistically equivalent at the operational
level then they ought to be statistically equivalent in the underlying
model.

Operationally, a system is associated with a setM (resp. P) of
physically possible measurement (resp. preparation) procedures.
An operational theory specifies the possibilities for the condi-
tional probabilities p X P;Mjð Þ : P 2 P;M 2 Mf g where X
ranges over the outcomes of measurement M. In an ontological
model of such a theory, the causal influence of the preparation on
the measurement outcome is mediated by the ontic state of the
system, that is, a full specification of the system’s physical
properties. We denote the space of ontic states by L. It is
presumed that when the preparation P is implemented, the ontic
state of the system, lAL, is sampled from a probability
distribution m(l|P), and when the system is subjected to the
measurement M, the outcome X is distributed as x(X|M, l).
Finally, for the model to reproduce the experimental statistics, we
require that

X

l2L
x X M; ljð Þm l Pjð Þ ¼ p X M; Pjð Þ: ð1Þ

A general discussion of this notion of noncontextuality is
provided in Supplementary Note 1, where we also explain how it
differs from the notion used in previous experimental tests and
why the latter makes unphysical idealizations. This notion can
also be understood through the concrete example we consider
here (which is based on a construction from Section V of ref. 34).

Suppose there is a measurement procedure, M�, that is
operationally indistinguishable from a fair coin flip: it always
gives a uniformly random outcome regardless of the preparation
procedure,

p X ¼ 0; 1 M�; Pjð Þ ¼ 1
2
; 8P 2 P: ð2Þ

In this case, noncontextuality dictates that in the underlying
model, the measurement should also give a uniformly random
outcome regardless of the ontic state of the system,

x X ¼ 0; 1 M�; ljð Þ ¼ 1
2
; 8l 2 L: ð3Þ

In other words, because M� appears operationally to be just like a
coin flip, noncontextuality dictates that physically it must be just
like a coin flip.

The second application of noncontextuality is essentially a
time-reversed version of the first. Suppose there is a triple of
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preparation procedures, P1, P2 and P3, that are operationally
indistinguishable from one another: no measurement reveals any
information about which of these preparations was implemented,

8M 2 M : p X M; Pj 1

� �
¼ p X M; P2jð Þ ¼ p X M; P3jð Þ: ð4Þ

In this case, noncontextuality dictates that in the underlying
model, the ontic state of the system does not contain any
information about which of these preparation procedures was
implemented,

8l 2 L : m l P1jð Þ ¼ m l P2jð Þ ¼ m l P3jð Þ: ð5Þ

In other words, because it is impossible, operationally, to extract
such information, noncontextuality dictates that physically, the
information is not present in the system.

Suppose that M� can be realized as a uniform mixture of three
other binary-outcome measurements, denoted M1, M2 and M3.
That is, one implements M� by uniformly sampling tA{1, 2, 3},
implementing Mt, then outputting its outcome as the outcome of
M� (ignoring t thereafter). Finally, suppose that each preparation
Pt can be realized as the equal mixture of two other preparation
procedures, denoted Pt,0 and Pt,1.

Consider implementing Mt on Pt,b, and consider the average
degree of correlation between the measurement outcome X and
the preparation variable b:

A � 1
6

X

t2 1;2;3f g

X

b2 0;1f g
p X ¼ b Mt ; Pt;b

��� �
: ð6Þ

We now show that noncontextuality implies a nontrivial bound
on A.

The proof is by contradiction. In order to have perfect
correlation on average, we require perfect correlation in each
term, which implies that for all ontic states l assigned
nonzero probability by Pt,b, the measurement Mt must
respond deterministically with the X¼ b outcome. Given
that Pt is an equal mixture of Pt,0 and Pt,1, it follows that for
all ontic states l assigned nonzero probability by Pt,
the measurement Mt must have a deterministic response, i.e.,
x(X¼ b|Mt, l)A{0, 1}.

But equation (5) (which follows from the assumption of
noncontextuality) asserts that the preparations P1, P2 and P3 must
assign nonzero probability to precisely the same set of ontic
states. Therefore, to achieve perfect correlation on average, each
measurement must respond deterministically to all the ontic
states in this set.

Now note that by the definition of M�, the probability of its
outcome X¼ b is x X¼b M�; ljð Þ¼ 1

3

P
t2 1;2;3f g x X¼b Mt ; ljð Þ.

But then equation (3) (which follows from the assumption of
noncontextuality) says

1
3

X

t2 1;2;3f g
x X ¼ b Mt ; ljð Þ ¼ 1

2
: ð7Þ

For each deterministic assignment of values, (x(X¼ b|M1, l),
x(X¼ b|M2, l), x(X¼ b|M3, l))A{(0, 0, 0), (0, 0, 1), y, (1, 1, 1)},
the constraint of equation (7) is violated. It follows, therefore, that
for a given l, one of M1, M2 or M3 must fail to have a
deterministic response, contradicting the requirement for perfect
correlation on average. This concludes the proof.

The precise (i.e., tight) bound is

A � 5
6
; ð8Þ

as we demonstrate in Supplementary Figs 1–3, Supplementary
Tables 1 and 2, and Supplementary Note 2. This is our
noncontextuality inequality.

Quantum violation of the inequality. Quantum theory predicts
there is a set of preparations and measurements on a qubit
having the supposed properties and achieving A¼ 1, the logical
maximum. Take the Mt to be represented by the observables r � nt

where r is the vector of Pauli operators and the unit vectors
{n1, n2, n3} are separated by 120� in the x� z plane of the
Bloch sphere of qubit states38. The Pt,b are the eigenstates of
these observables, where we associate the positive eigenstate
|þ ntihþ nt| with b¼ 0. To see that the statistical equivalence of
equation (2) is satisfied, it suffices to note that

1
3
þ n1j i þ n1h j þ 1

3
þ n2j i þ n2h j þ 1

3
þ n3j i þ n3h j ¼ 1

2
I; ð9Þ

and to recall that for any density operator r, tr r 1
2 I

� �
¼ 1

2. To see
that the statistical equivalence of equation (4) is satisfied, it
suffices to note that for all pairs t, t0A{1, 2, 3},

1
2
þ ntj i þ nth j þ 1

2
� ntj i � nth j ¼ 1

2
þ nt0j i þ nt0h j þ 1

2
� nt0j i � nt0h j;

ð10Þ
which asserts that the average density operator for each value of t
is the same, and therefore leads to precisely the same statistics for
all measurements. Finally, it is clear that the outcome of the
measurement of r � nt is necessarily perfectly correlated with
whether the state was |þ ntihþ nt| or |� ntih� nt|, so that A¼ 1.

These quantum measurements and preparations are what we
seek to implement experimentally, so we refer to them as ideal,
and denote them by Mi

t and Pi
t;b.

Note that our noncontextuality inequality can accommodate
noise in both the measurements and the preparations, up to the
point where the average of p(X¼ b|Mt, Pt,b) drops below 5

6. It is in
this sense that our inequality does not presume the idealization of
noiseless measurements.

Contending with the lack of exact operational equivalence. The
actual preparations and measurements in the experiment, which
we call the primary procedures and denote by Pp

1;0, Pp
1;1, Pp

2;0, Pp
2;1,

Pp
3;0, Pp

3;1 and Mp
1 , Mp

2 , Mp
3 , almost certainly deviate from the ideal

versions and consequently their mixtures, that is, Pp
1 , Pp

2 , Pp
3 and

Mp
� , fail to achieve strict equality in equations (2) and (4).
We solve this problem as follows. From the outcome

probabilities on the six primary preparations, one can infer the
outcome probabilities on the entire family of probabilistic
mixtures of these. It is possible to find within this family many
sets of six preparations, Ps

1;0, Ps
1;1, Ps

2;0, Ps
2;1, Ps

3;0, Ps
3;1, which define

mixed preparations Ps
1, Ps

2, Ps
3 that satisfy the operational

equivalences of equation (4) exactly. We call the Ps
t;b secondary

preparations. We can define secondary measurements
Ms

1, Ms
2, Ms

3 and their uniform mixture Ms
� in a similar fashion.

The essence of our approach, then, is to identify such secondary
sets of procedures and use these to calculate A. If quantum
theory correctly models our experiment, then we expect to get a
value of A close to 1 if and only if we can find suitable secondary
procedures that are close to the ideal versions.

To test the hypothesis of noncontextuality, one must allow for
the possibility that the experimental procedures do not admit of a
quantum model. Nonetheless, for pedagogical purposes, we will
first provide the details of how one would construct the secondary
sets under the assumption that all the experimental procedures do
admit of a quantum model.

In Fig. 1, we describe the construction of secondary
preparations in a simplified example of six density operators
that deviate from the ideal states only within the x� z plane of
the Bloch sphere.

In practice, the six density operators realized in the experiment
will not quite lie in a plane. We use the same idea to contend with
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this, but with one refinement: we supplement our set of ideal
preparations with two additional ones, denoted Pi

4;0 and Pi
4;1

corresponding to the two eigenstates of r � y. The two procedures
that are actually realized in the experiment are denoted Pp

4;0 and
Pp

4;1 and are considered supplements to the primary set. We then
search for our six secondary preparations among the probabilistic
mixtures of this supplemented set of primaries rather than among
the probabilistic mixtures of the original set. Without this
refinement, it can happen that one cannot find six secondary
preparations that are close to the ideal versions, as we explain in
Supplementary Note 3.

The scheme for defining secondary measurement procedures is
also described in Supplementary Fig. 4 and Supplementary
Note 3. Analogously to the case of preparations, one contends
with deviations from the plane by supplementing the ideal set
with the observable r � y.

Note that in order to identify which density operators have
been realized in an experiment, the set of measurements must be
complete for state tomography39. Similarly, to identify which sets
of effects have been realized, the set of preparations must be
complete for measurement tomography40. However, the original
ideal sets fail to be tomographically complete because they are
restricted to a plane of the Bloch sphere, and an effective way to
complete them is to add the observable r � y to the measurements
and its eigenstates to the preparations. Therefore, even if we did

not already need to supplement these ideal sets for the purpose of
providing greater leeway in the construction of the secondary
procedures, we would be forced to do so in order to ensure that
one can achieve full tomography.

The relevant procedure here is not quite state tomography in the
usual sense, since we want to allow for systematic errors in the
measurements as well as the preparations. Hence the task41,42 is to
find a set of qubit density operators, rt,b, and POVMs, {EX|t}, that
together make the measured data as likely as possible
(we cannot expect tr(rt,bEX|t) to match the measured relative
frequencies exactly due to the finite number of experimental runs).

To analyze our data in a manner that does not prejudice which
model—noncontextual, quantum, or otherwise—does justice to it,
we must search for representations of the preparations and
measurements not amongst density operators and sets of effects,
but rather their more abstract counterparts in the formalism of
generalised probabilistic theories43,44 (GPTs), called generalised
states and effects. The assumption that the system is a qubit
is replaced by the strictly weaker assumption that three
two-outcome measurements are tomographically complete.
(In GPTs, a set of measurements are called tomographically
complete if their statistics suffice to determine the state.) We take
these states and effects as estimates of our primary preparations
and measurements, and we define our estimate of the secondary
procedures in terms of these, which in turn are used to
calculate our estimate for A. We explain how the raw data is fit
to a set of generalised states and effects in Supplementary Note 4.
We characterize the quality of this fit with a w2 test.

Experiment. We use the polarization of single photons to test our
noncontextuality inequality. The set-up, shown in Fig. 2, consists
of a heralded single-photon source45–47, polarization-state
preparation and polarization measurement. We generate photons
using spontaneous parametric downconversion and prepare eight
polarization states using a polarizer followed by a quarter-wave
plate (QWP) and half-wave plate (HWP). The four polarization
measurements are performed using a HWP, QWP and polarizing
beamsplitter. Photons are counted after the beamsplitter and the
counts are taken to be fair samples of the true probabilities for
obtaining each outcome for every preparation-measurement pair.
Since the orientations of the preparation waveplates lead to small
deflections of the beam, some information about the preparation
gets encoded spatially, and similarly the measurement waveplates
create sensitivity to spatial information; coupling the beam into
the single-mode fibre connecting the state-preparation and
measurement stages of the experiment removes sensitivity to
these effects. For a single experimental run we implement each
preparation-measurement pair for 4 s (approximately 105 counts).
We performed 100 such runs.

Preparations are represented by vectors of raw data specifying
the relative frequencies of outcomes for each measurement,
uncertainties on which are calculated assuming Poissonian
uncertainty in the photon counts. For each run, the raw data is
fit to a set of states and effects in a GPT in which three
binary-outcome measurements are tomographically complete.
This is done using a total weighted least-squares method48,49.
The average w2 over the 100 runs is 3.9±0.3, agreeing with the
expected value of 4, and indicating that the model fits the data
well (see Supplementary Note 4, Supplementary Data 1 and 2,
and Supplementary Software 1). The fit returns a 4� 8 matrix
that serves to define the 8 GPT states and 4 GPT effects, which
are our estimates of the primary preparations and measurements.
The column of this matrix associated to the t,b preparation, which
we denote Pp

t;b, specifies our estimate of the probabilities assigned
by the primary preparation Pp

t;b to outcome ‘0’ of each of the

P i
1,0

P s
1,0

P s
1,1

P s
2,1

z

x

P s
2,0

P s
3,1

P s
3,0

P i
3,1

P i
3,0

P i
2,1

P i
2,0

P i
1,1

P p
2,1

P p
2,0

P p
1,0

P p
1,1

P p
3,1

P p
3,0

a b

c

Figure 1 | Solution to the problem of inexact operational equivalences.

Here, we illustrate our solution for the case of preparations under the

simplifying assumption that these are confined to the x� z plane of the

Bloch sphere. For a given pair, Pt,0 and Pt,1, the midpoint along the line

connecting the corresponding points represents their equal mixture, Pt.

(a) The target preparations Pi
t;b, with the coincidence of the midpoints of

the three lines illustrating that they satisfy the operational equivalence (4)

exactly. (b) Illustration of how errors in the experiment (exaggerated in

magnitude) will imply that the realized preparations Pp
t;b (termed primary)

will deviate from the ideal. The lines indicate that not only do these

preparations fail to satify the operational equivalence (4), but since the

three lines do not all meet at the same point, no mixtures of the Pp
t;0 and Pp

t;1

can be found at a single point independent of t. The set of preparations

corresponding to probabilistic mixtures of the Pp
t;b are depicted by the grey

region. (c) Secondary preparations Ps
t;b have been chosen from this grey

region, with the coincidence of the midpoints of the three lines indicating

that the operational equivalence (4) has been restored. Note that we

require only that the mixtures of the three pairs of preparations be the

same, not that they correspond to the completely mixed state.
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primary measurements. The raw and primary data are compared
in Fig. 3. The probabilities are indistinguishable on this scale. We
plot the probabilities for P1, P2, and P3 in Fig. 4a on a much finer
scale. We then see that the primary data are within error of the
raw data, as expected given the high quality of the fit to the GPT.
However, the operational equivalences of equations (2) and (4)
are not satisfied by our estimates of the primary preparations and
measurements, illustrating the need for secondary procedures.

We define the six secondary preparations as probabilistic
mixtures of the eight primaries: Ps

t;b¼
P4

t0¼1

P1
b0¼0 ut;b

t0;b0P
p
t0;b0 ,

where the ut;b
t0;b0 are the weights in the mixture. We maximize

CP¼ 1
6

P3
t¼1

P1
b¼0 ut;b

t;b over valid ut;b
t0;b0 subject to the constraint of

equation (4), that is, 1
2

P
b Ps

1;b¼ 1
2

P
b Ps

2;b¼ 1
2

P
b Ps

3;b (a linear
program). A high value of CP ensures that each of the six
secondary preparations is close to its corresponding primary.
Averaging over 100 runs, we find CP¼ 0.9969±0.0001, close to
the maximum of 1. An analogous linear program to select
secondary measurements yields similar results. Supplementary
Tables 3 and 4 display the weights that define each secondary
preparation and measurement, averaged over 100 runs. Figure 3
also displays the outcome probabilities for the secondary
procedures, confirming that they are close to ideal. Figure 4
demonstrates how our construction enforces the operational
equivalences.

We analyzed each experimental run separately and found the
degree of correlation pðX¼bjMs

t ; Ps
t;b:Þ for each value of t and b.

The averages over the 100 runs are shown in Fig. 5a and are all in
excess of 0.995. Averaging over t and b yields an experimental
value A¼ 0.99709±0.00007, which violates the noncontextual
bound of 5/6E0.833 by 2300s (Fig. 5b).

Discussion
Using the techniques described here, it is possible to convert
proofs of the failure of noncontextuality in quantum theory into
experimental tests of noncontextuality that are robust to noise
and experimental imprecisions50,51. For any phenomenon,

therefore, one can determine which of its operational features
are genuinely nonclassical. This is likely to have applications
for scientific fields wherein quantum effects are important and
for developing novel quantum technologies. The definition of
operational equivalence of preparations (measurements) required
them to be statistically equivalent relative to a tomographically
complete set of measurements (preparations). There are two
examples of how the assumption of tomographic completeness is
expected not to hold exactly in our experiment, even if one
grants the correctness of quantum theory. First, our source
produces a small multi-photon component. We measure the
g(2)(0) of our source52 to be 0.0105±0.0001 and from this we
estimate the ratio of heralded detection events caused by multiple
photons to those caused by single photons to be 1:4,000.
Regardless of the value of A that one presumes for
multi-photon events, one can infer that the value of A we
would have achieved had the source been purely single-photon
could have been less than the value given above by at most 10�6, a
difference that does not affect our conclusions. We also expect the
assumption to not hold exactly because of the inevitable coupling
of the polarization into the spatial degree of freedom of the
photon, which could be caused, for example, by a wedge in a
waveplate. Indeed, we found that if the spatial filter was omitted
from the experiment, our fitting routine returned large w2 values,
which we attributed to the fact that different angles of the
waveplates led to different deflections of the beam.
A more abstract worry is that nature might conflict with the
assumption (and prediction of quantum theory) that three
independent binary-outcome measurements are tomographically
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Figure 3 | Outcome probabilities for each measurement-preparation pair.

For each such pair, we report the probability of obtaining outcome 0 in the

measurement. Red bars are relative frequencies calculated from the raw

counts, blue bars are our estimates of the outcome probabilities of the

primary measurements on the primary preparations obtained from a best-

fit of the raw data, and green bars are our estimates of the outcome

probabilities of the secondary measurements on the secondary

preparations. The shaded grey background highlights the measurements

and preparations for which secondary procedures were found. Error bars

are not visible on this scale, neither are discrepancies between the obtained

probabilities and the ideal values thereof, which are at most 0.013;

statistical error due to Poissonian count statistics is at most 0.002.
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Figure 2 | The experimental setup. Polarization-separable photon pairs are

created via parametric downconversion, and detection of a photon at

detector Dh heralds the presence of a single photon. The polarization state of

this photon is prepared with a polarizer and two waveplates (Prep). A single-

mode fibre is a spatial filter that decouples beam deflections caused by the

state-preparation and measurement waveplates from the coupling efficiency

into the detectors. Three waveplates (Comp) are set to undo the polarization

rotation caused by the fibre. Two waveplates (Meas), a polarizing

beamsplitter, and detectors Dr and Dt perform a two-outcome measurement

on the state. PPKTP, periodically-poled potassium titanyl phosphate; PBS,

polarizing beamsplitter; GT-PBS, Glan-Taylor polarizing beamsplitter;

IF, interference filter; HWP, half-waveplate; QWP, quarter-waveplate.
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complete for the polarization of a photon. Our experiment has
provided evidence in favour of the assumption insofar as we have
fit data from four measurements to a theory where three are
tomographically complete and found a good w2 value for the fit.
One can imagine accumulating much more evidence of this sort,
but it is difficult to see how any experiment could conclusively
vindicate the assumption, given that one can never test all
possible measurements. This, therefore, represents the most
significant loophole in experimental tests of noncontextuality,
and new ideas for how one might seal it or circumvent it
represent the new frontier for improving such tests.

Methods
Preparation procedure. A 20-mW diode laser with a wavelength of 404.7 nm
produces photon pairs, one horizontally polarized and the other vertically polarized,
via spontaneous parametric down-conversion in a 20-mm type-II PPKTP crystal.

The downconversion crystal is inside a Sagnac loop and the pump laser is polarized
vertically to ensure it only travels counter-clockwise around the loop. Photon pairs
are separated at a polarizing beamsplitter and coupled into two single-mode fibres
(SMFs). Vertically-polarized photons are detected immediately at detector Dh,
heralding the presence of the horizontally-polarized signal photons which emerge
from the SMF and pass through a state-preparation stage before they are measured.
Herald photons were detected at a rate of 400 kHz. Signal photons emerge from the
fibre and pass through a Glan-Taylor polarizing beamsplitter (GT-PBS) which
transmits vertically-polarized light. Polarization controllers in the fibre maximize the
number of photons which pass through the beamsplitter. A quarter- and half-
waveplate set the polarization of the signal photons to one of eight states.

Spatial mode filter. A single-mode fibre acts as a spatial mode filter. This filter
ensures that information about the angles of the state-preparation waveplates cannot
be encoded in the spatial mode of the photons, and that our measurement proce-
dures do not have a response that depends on the spatial mode, but only on
polarization as intended. The SMF induces a fixed polarization rotation, so a set of
three compensation waveplates are included after the SMF to undo this rotation. It
follows that the preparation-measurement pairs implemented in our experiment are
in fact a rotated version of the ideal preparation and a similarly-rotated version of
the ideal measurement. Such a fixed rotation, however, does not impact any of our
analysis.

Measurement procedure. Measurements are performed in four bases, set by a
half- and quarter-waveplate. A second GT-PBS splits the light, and both output
ports are detected. Due to differences in the coupling and detection efficiencies in
each path after the beamsplitter, each measurement consists of two parts. First, the
waveplates are aligned such that states corresponding to outcome ‘0’ are trans-
mitted by the GT-PBS, and the number of heralded photons detected in a two-
second window is recorded for each port. Second, the waveplate angles are changed
in such a way as to invert the outcomes, so the detector in the reflected port
corresponds to outcome ‘0’ and heralded photons are detected for another two
seconds. The counts are added together and the probability for outcome ‘0’ is
calculated by dividing the number of detections corresponding to outcome ‘0’ by
the total number of detection events in the four-second window. The single-photon
detection rate at detectors Dr and Dt depends on the measurement settings. In the
transmissive and reflective ports of the measurement GT-PBS photons were
detected at maximum rates of 330 and 250 kHz, respectively. Coincident detection
events between herald photons and the transmissive and reflective ports of the
measurement GT-PBS were up to 22 and 16 kHz, respectively.

Code availability. The authors declare that the data-analysis code supporting the
findings of this study are available within the article’s Supplementary Information
files (Supplementary Software 1).

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Files (Supplementary
Data 1 and 2).
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averaged over 100 experimental runs. (a) The probabilities of the primary

measurements (blue bars) differ depending on which of the three mixed
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1 , Pp

2, and Pp
3 are measured. These probabilities are within error

of the raw data (red bars), indicating that a generalised probabilistic theory in

which three two-outcome measurements are tomographically complete fits

the data well. Probabilities for primary measurements on the secondary

preparations (green bars) are independent of the preparation, hence the

secondary preparations satisfy equation (4). Note that one expects these

probabilities to deviate from 0.5. In the example of Fig. 1c, this corresponds to

the fact that the intersection of the lines is not the completely mixed state.

(b) Outcome probabilities of measurement M� on the eight preparations.

Red bars are raw data, blue bars are the measurement Mp
� on the primary

preparations, and green bars are Ms
� on the primary preparations. Regardless

of the input state, Ms
� returns outcome 0 with probability 0.5, hence it is

operationally indistinguishable from a fair-coin flip (equation (2)). Error bars

in all plots are calculated assuming Poissonian count statistics.
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