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The recent “multi-neuronal spike sequence detector” (MNSD) architecture integrates the

weight- and delay-adjustment methods by combining heterosynaptic plasticity with the

neurocomputational feature spike latency, representing a new opportunity to understand

the mechanisms underlying biological learning. Unfortunately, the range of problems

to which this topology can be applied is limited because of the low cardinality of the

parallel spike trains that it can process, and the lack of a visualization mechanism to

understand its internal operation. We present here the nMNSD structure, which is a

generalization of the MNSD to any number of inputs. The mathematical framework of the

structure is introduced, together with the “trapezoid method,” that is a reduced method

to analyze the recognition mechanism operated by the nMNSD in response to a specific

input parallel spike train. We apply the nMNSD to a classification problem previously

faced with the classical MNSD from the same authors, showing the new possibilities the

nMNSD opens, with associated improvement in classification performances. Finally, we

benchmark the nMNSD on the classification of static inputs (MNIST database) obtaining

state-of-the-art accuracies together with advantageous aspects in terms of time- and

energy-efficiency if compared to similar classification methods.

Keywords: classification, delay learning, MNSD, online learning, spike latency, heterosynaptic plasticity, MNIST

database

1. INTRODUCTION

In the last few years, diverse machine learning (ML) methods have been proposed for the
recognition of spike patterns generated by neural populations (Ambard and Rotter, 2012; Tapson
et al., 2013; Grassia et al., 2017; Nazari and Faes, 2019). The ability to learn and decode spike
patterns is not only useful for the interpretation of biological mechanisms (Koyama et al., 2010;
Rudnicki et al., 2012; Heelan et al., 2019) but also for engineering applications, such as artificial
vision and hearing (Nogueira et al., 2007; Zai et al., 2015; Schofield et al., 2018) analysis of brain
signals (Susi et al., 2018), forecasting of energy consumption (Kulkarni et al., 2013), and so on.Most
of such ML methods are based on neural networks, and specifically on the bio-inspired spiking
neural networks (SNNs) (Maass, 1997; Florian, 2012).
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In the literature, there are many learning methods for SNNs
that make use of biologically plausible strategies. While most
of these methods are based on synaptic learning rules aimed at
modifying the weights (i.e., weight adjustment), only few of them
consider the modulation of the delay time to achieve learning
(i.e., delay shift, see Brückmann et al., 2004; Adibi et al., 2005;
Taherkhani et al., 2015; Matsubara, 2017; Hwu et al., 2018; Wang
et al., 2019). Interestingly, it has been demonstrated that the
alteration of delays has advantages in forming spatiotemporal
memories, over altering synaptic weights (Izhikevich, 2006;
Hwu et al., 2018). Incidentally, experimental research proved
that delays are widely present in biological neural networks
and contribute to encode information (Chase and Young,
2007; Minneci et al., 2012), and various biological justifications
have been attributed to the delay adjustment processes, among
which the activity-dependent myelination (Mount and Monje,
2017) (which, in turn, results in the modulation of conduction
velocities) and the spike latency tuning (see Fields, 2008, 2015;
Zhou et al., 2012; Matsubara, 2017; Hwu et al., 2018; Wang et al.,
2019).

The recently developed multi-neuronal spike sequence
detector (MNSD) architecture (Susi et al., 2018) is a simple
but effective bio-inspired topology specialized in online learning
and recognition of parallel spike trains. Such tool integrates
the weight- and delay-adjustment methods by means of the
spike timing-dependent plasticity (STDP) and the well-known
mechanism of spike latency (i.e., the neuron’s intrinsic potential-
dependent delay time between the overcoming of the “threshold”
and the actual spike generation, Izhikevich, 2004; Salerno
et al., 2011), representing a new opportunity to understand the
mechanisms underlying biological learning.

In its original form, the MNSD architecture (Figure 1) is
composed of:

• A layer of delay neurons D1,D2,D3 (termed delay layer), which
receive the parallel spike train (composed of the external spikes
ES1,ES2,ES3). Such neurons are characterized by nearest-
neighbor excitatory interactions mediated by heterosynaptic
STDP (the dashed links in Figure 1); this mechanism allows
the synaptic weights of the neurons to change on the basis
of the current parallel spike train. Through the spike latency
feature, the change in the weight reflects on the modulation
of the delay in relaying the external spike received on the i-th
branch, toward next stages of the structure. In this way, the
MNSD is able to learn the input parallel spike train, which
can be represented into amulti-dimensional, temporal, feature
space (Susi et al., 2018);

• One target neuron T, which performs the summation of the
outputs of the three delay neurons and acts as readout neuron,
signaling the recognition of a specific parallel spike train. In
order for the target to produce a spike, a synchrony of the
contributions arriving from previous steps of the structure
is required. It happens only if the delays introduced by the
delay neurons are able to compensate the initial lags among
the spikes of the input parallel spike train;

• Three sets of weights, each one for a family of
connections. The input weight set (i.e., the set of variables

〈wD1,ES1
,wD2,ES2

, ...,wDn ,ESn
〉, each one representing an input

weight), that is where the learning is finally encoded; the
input weights, that are subject to the action of STDP, are
placed between the input terminals and the delay layer.
The heterosynaptic weight set (i.e., the set of variables
〈wD1,D2

, wD2,D1
,wD2,D3

, wD3,D2
, ...,wDn−1,Dn

, wDn ,Dn−1
〉 each one

representing a heterosynaptic weight); the heterosynaptic
weights, which are placed between adjacent delay neurons,
are characterized by a very low value and serve for the STDP-
based adjustment mechanism of the input weights. The output
weight set (i.e., the set of variables 〈wT,D1

,wT,D2
, ...,wT,Dn

〉,
each one representing an output weight); the output weights
are placed between the delay layer and the target neuron,
and allow us to control the target summation. This is done
by assigning the relevance of each feature in the definition
of the pertaining class. In other words, the output weight
set establishes the shape of the delimiter of a class in the
feature space.

The described structure is able to perform online learning and
recognition. Obviously, it can also be used envisaging separately
a learning phase (with STDP activated) and a recognition phase
(with STDP disabled).

Unfortunately, the range of problems to which the original

version of the MNSD can be applied is limited because of two

reasons: the low cardinality of the parallel spike trains that can

be processed (3 branches, i.e., 3 features per class) and the lack of

a tool able to represent the internal computation in order to set

the parameters in accord to the specification of the problem in a

knowingly manner.
In this work, we present various novelties:

• The nMNSD structure per se (Figure 2), which is a
generalization of the MNSD to any number of inputs. The
analysis of the internal operation of the structure is presented,
considering the two operating modalities highlighted in Susi
et al. (2018):

– Static behavior, i.e., how an nMNSD with a specific weight
configuration will react to a new given input sequence
(disregarding the action of STPD);

– Dynamic behavior, i.e., how an nMNSD with a specific
set of STDP parameters will change its input weights in
consequence to a new given input sequence.

To improve the practical usability of the nMNSD as a classifier
tool, we will discuss two possibilities: (1) to regulate the impact
of each feature in the target summation for the determination
of the class (i.e., feature relevance property), and (2) to
configure different nMNSDs to be used in amulticlass problem
where the number of branches is the number of features,
and the number of nMNSD structures used is the number
of classes.

• The trapezoid method, i.e., a reduced method to analyze
the recognition mechanism operated by the nMNSD in
response to a specific input sequence. This serves as design
support regarding the static behavior of the nMNSD, and
results necessary to represent its internal processing with
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FIGURE 1 | Multi-neuronal spike sequence detector (MNSD) structure hit by the parallel spike train ES1,ES2,ES3. The different sections of the structure are shown.

From left to right: input weight set, heterosynaptic weight set, output weight set; delay and target neuron are indicated with Di and T, respectively. Modified from Susi

et al. (2018).

FIGURE 2 | nMNSD hit by a parallel spike train.

a number of branches greater than 3, since in this case
the feature space is not trivially representable (more than
3 dimensions). We provide a visualization toolbox based
on this method, which allows the user to consciously
customize nMNSD-based classification systems for specific
classification problems.

Finally, we present 2 applications of the nMNSD. We
apply our extended method to a classification problem
previously faced with the classical MNSD from the same
authors, showing the new possibilities the nMNSD opens,
with associated improvement in classification performances.
Finally, we benchmark the nMNSD on the classification of
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handwritten digits from the MNIST database, obtaining state
of the art accuracies together with advantageous aspects in
terms of time- and energy-efficiency if compared to similar
classification methods.

The visualization toolbox, based on a dedicated nomogram (see
Appendix 1 in Supplementary Material), can be found at the
following weblink: www.github.com/LCCN/Frontiers2021.

2. MATERIALS AND METHODS

2.1. A Brief Resume on the LIFL Neuron
Model
The LIFL neuron model (Cardarilli et al., 2013; Susi et al.,
2018) is similar to the classical Leaky Integrate-and-Fire (LIF),
but it is characterized by the presence of the spike latency
neurocomputational feature (Izhikevich, 2004; Salerno et al.,
2011), a real neuron characteristic that has been extracted from
the Hodgkin–Huxley equations (Salerno et al., 2011). In a
nutshell, it consists of the neuron’s intrinsic potential-dependent
delay time between the overcoming of the “threshold” and the
actual spike generation, allowing the neuron to encode the
strength of the input in the spike times. The LIFL neuronmodel is
characterized by an internal state S that represents the membrane
potential of the biological counterpart. S conventionally ranges
from 0 (representing the resting value, S0) to a maximum value
Smax (at most∞), and a fixed threshold Sth, slightly greater than
1. The value of S with respect to Sth demarcates two different
working modes of the neuron:

• the passive mode, for S < Sth. Here, the evolution of
S during time is characterized by a spontaneous decay.
Although the equations of the LIFL neuron are compatible
with different decay types, we will consider here for simplicity
a linear subthreshold decay (asin Susi et al., 2018; Mattia and
Del Giudice, 2000). Accordingly, given a temporal distance
1t between two consecutive incoming spikes, S experiences a
decrease, such that:

Snew = Sold − Ld · 1t (1)

being Ld a non-negative quantity called decay parameter.
• the active mode, for S ≥ Sth. Pnce S crosses the value

Sth, the neuron is ready to fire; however, firing is not
instantaneous, but it occurs after a continuous-time delay, the
model equivalent of the spike latency feature of real neuron,
that we call time-to-fire and indicate with ttf :

ttf =
1

S− 1
(2)

The latter defines the relationship between S and ttf .
Here, the evolution of S is characterized by a

spontaneous growth:

Snew =
(Sold − 1)21t

1− (Sold − 1)1t
(3)

TABLE 1 | Recommended values for the nMNSD structure parameters (see the

reference paper Susi et al., 2018).

Parameter Value / Condition

Neuron parameters Identical for all neurons:

S0 = 0

Ld ≤ 0.15

Sth = 1.04 (*)

ES amplitudes AESi = 1.00 (**)

Input weights (starting value) wDi ,ESi ≃ 1.08 (***)

Target weights
n
∑

i=1

w
T,Di

≥ Sth

STDP parameters A+ = −A− ≤ 0.01; τ+ = τ− ≃ [2− 10]

Heterosynaptic weights wDi ,Di+1 = wDi+1 ,D1
≃ 0 (****)

Connection delays 0 (instantaneous)

(*) Able to ensure a value of ttfmax sufficiently high to differentiate the input patterns

(ttfmax Di = 25 ms). (**) Giving the same weight for all the input spikes is a simplifying but

not unrealistic assumption, since spike amplitude has been observed to change mostly

as function of the firing rate of the spiking neuron’s activity (Stratton et al., 2012), which

in our experiments can be considered very low and quite constant. (***) Chosen to let Di
generate a spike around the center of the latency range (i.e., ttf (1.08) = ttfmax Di /2 = 12.5

ms), then obtain a large variation margin for the weight adjustments during learning. (****)

Lateral contributions are considered weak.

Obviously, in the case of a transition from passive to active mode,
Equation (1) is applied (Equation 3 if vice versa, although we
will not consider this case since inhibitory contributions are not
envisaged in this work).

The firing threshold is written as:

Sth = 1+ d (4)

where d is a positive value called threshold constant, which fixes a
bound for the maximum value of ttf . According to Equation (2),
when S = Sth, ttf is maximum, and equals to:

ttfmax =
1

d
(5)

ttfmax represents the upper bound of the time-to-fire and is a
measure of the finite maximum spike latency of the biological
counterpart (FitzHugh, 1955).

Simple Dirac delta functions (representing the action
potentials) are exchanged between neurons in form of pulses or
pulse trains.

2.2. Pattern Recognition in a Trained
nMNSD
The nMNSD is an extension of the MNSD to an arbitrary
number of branches (Figure 2). This gives the possibility to face
classification problems characterized by an arbitrary number of
features, n.

We give in this section a summary of the static behavior
of an nMNSD structure (i.e., as multi-neuronal spike pattern
detector, disregarding the action of the STDP) and evaluate how
the structure will react with regard to a specific input parallel
pattern, in accord to the structure’s input weight set.

Assumed the same amplitude AESi = 1 for each single
external input spike ESi (see Table 1), a parallel spike train of
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FIGURE 3 | Representation of the spike train shown in Figure 2 on the

entryway of the structure: absolute spike times (tES1, tES2,..., tESn) and relative

intervals (1tES1,2,1tES2,3, ...,1tESn−1,n). Note that the time axis is reversed

since we are representing the parallel spike train in motion toward right.

order n is characterized by a vector of n external absolute spike
times of consecutive branches 〈tES1 , tES2 , ..., tESi , ..., tESn〉 (positive
values), one for each component spike. In order to make our
procedure independent of the initial time offset, and for ease
representation, in some parts of this document the parallel spike
train can be equivalently defined by the vector of n − 1 intervals
between spike events of consecutive branches, i.e., relative
intervals 〈1tES1,2 ,1tES2,3 , ...,1tESn−1,n〉 (which components can
assume positive or negative values) (see Figure 3).

When the single external input spike goes through the delay
layer, the corresponding input weight attenuates/amplifies the
pulses accordingly (Figure 4). Hypothesizing the delay neuron
Di is in the resting condition SDi = S0 = 0 (where S0 is the
resting potential, see Table 1); after the reception of the spike, the
following value will be reached:

SDi = AESi · wDi ,ESi
(6)

if the following condition is satisfied for the internal state of Di:

SDi ≥ Sth (7)

the neuron will produce a spike. It will be done after its time to
fire, ttfDi , evoked by the internal state reached by the neuron Di

in according to Equation (2).
Through the latency the LIFL neuron has the extraordinary

ability to perform a strength-to-delay transformation, but in the
event that all the input weights had the same value and with the
assumptions above, the delay neurons would introduce the same
lag to each single input spike. In contrast, different weights give
rise to different delays: the higher the weight wDi ,ESi

, the greater
the input to the delay neuron (Equation 6) and the lower the delay
involved in the spike generation.

Considering an nMNSD of n branches, according to its input
weight set it presents a preferential parallel train (PPT) with
respect to the activation of its target, which acts as readout
neuron generating a spike in case of recognition. Considering the
structure at rest, the arrival of a specific input parallel pattern
should produce to its target the same response irrespectively
to when it arrives. For this reason, the structure’s PPT is
defined as a set of preferential relative intervals for each
couple of adjacent branches, i.e., the vector of n − 1 values
〈1tES1,2 ,1tES2,3 , ...,1tESn−1,n〉, instead of absolute ones. The PPT
depends on its input weight set, which reflects how the structure
has evolved during the previous learning. Considering all the
connections instantaneous (see Table 1) as in the reference work
of Susi et al. (2018), the only delays present in the structure
are those introduced by the latency feature. Therefore, as a
consequence to the introduction of a multi-neuronal pattern to
the structure, two different responses are possible:

• The structure is not able to detect the specific input multi-
neuronal spike sequence; this is because the delays produced
by the input weight set, applied to the current input, do not
result in a synchronous target summation;

• The input weight set of the structure generates a set of delays
that, in combination with the relative intervals of the current
input pattern, verify the simultaneity condition at the target,
making the target spike, then revealing the detection of the
specific input train.

The simultaneity condition at the target occurs when the
characteristic intervals of the input multi-neuronal spike
sequence is coincident (or quasi-coincident) with the PPT of the
structure. The more the input characteristic set of intervals fits
the structure’s PPT, the more the maximum target summation
peak Sp,M (i.e., the maximum S achieved by the target during the
summation) will be higher (see Figure 4).

Although the input weight set mediates the mapping of the
input pattern in the feature space, the output weight set allows to
define the boundaries of the classes. Those 2 weight sets reflect
on the positioning and on the shape of the classes in the feature
space, respectively (see section 2.6). The PPT consists of a line in
the n-dimensional temporal features space, and the output weight
set modulates the confidence intervals for a parallel spike train to
be recognized with respect to the PPT of the structure. The output
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FIGURE 4 | Representation of the same spike train shown in Figures 2, 3 passing through the delay layer and related impact on the internal state of the delay

neurons Di and target neuron T. (A) Internal neuron representation (SDi ) of the absolute spike times (tinD1
, tinD2

,..., tinDn ) and relative intervals

(1tinD1,2
,1tinD2,3

, ...,1tinDn−1,n
) of the parallel spike train. In this case, the target will not produce a spike because the simultaneity condition at the target is not reached

(relative intervals of the input are not coincident with the PPT of the structure); (B) we show the response of a structure with a different PPT, to the same parallel input

train, which summation tends to the simultaneity condition. Consequently, such pattern is detected, and then the spike is generated. It happens after a proper

time-to-fire ttfT . To show the summation process to the reader, the diagram of the internal state of the target neuron is zoomed for ease of illustration. Note that the

temporal values in this internal representation are symmetrical with respect to Figures 2, 3 since we are representing here the Cartesian temporal axis of times and

not a “photography” of the parallel spike train entering the structure.

weights are chosen so that their sum (i.e., the target activity level)
is greater or equals to Sth:

n
∑

i=1

wT,Di
≥ Sth (8)

i.e., in order to allow the target spike when the favorable
“simultaneity condition” is verified. The easier choice for the
output weights is to set them to the same value (wT,D1

=

wT,D2
= ... = wT,Di

), so that the features have equal weight
in the target summation. Alternatively, we can differentiate the
degree of importance of each feature in determining a class
by giving different output weights to each of the branches
(feature relevance).

2.3. How the Structure Adapts to New
Incoming Patterns
When STDP is active, the structure is ready to learn a new parallel

spike train. In this way, one nMNSD is able to identify one
class, shaping its boundaries in the feature space according to the

examples presented to its input during the training. We define in

this section how the structure with STDP activated behaves when

a parallel spike train is presented to its input (dynamic behavior).
The adaptive core of the structure resides in the interplay

of spike latency and plasticity: the delay ttfi that characterizes
the neuronal pathway i is due to the spike latency of the delay
neuron wDi ,ESi , which in turn is modulated by the neighboring
branch(es) through heterosynaptic STDP (an in-depth analysis of
such interaction is shown in Susi et al., 2018) when the plasticity
is active. In facts, in this case the weight wDi ,ESi is instantaneously
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influenced in response to a new input parallel spike in the
following way:

• Influence of Di+1 on Di



















1w(Di,ESi) = A+e
−

1t outDi+1,Di
τ+ , for 1t outDi+1 ,Di > 0

1w(Di,ESi) = 0, for 1t outDi+1 ,Di = 0

1w(Di,ESi) = A−e
1t outDi+1,Di

τ− , for 1t outDi+1 ,Di < 0

(9)
• Influence of Di−1 on Di



















1w(Di,ESi) = A+e
−

1t outDi−1,Di
τ+ , for 1t outDi−1 ,Di > 0

1w(Di,ESi) = 0, for 1t outDi−1,Di = 0

1w(Di,ESi) = A−e
1t outDi−1,Di

τ− , for 1t outDi−1 ,Di < 0

(10)

As extension of the MNSD, we apply these equations to all delay
neurons. Note that, for the first and last branches of the structure,
we apply only eq.9 or eq.10, respectively, since they have only
one neighbor.

2.4. Neuron and Structure Settings
The neuron model used and most of the nMNSD settings
presented in this work are based on the reference paper (Susi
et al., 2018) and summarized in Table 1.

Importantly, as in Susi et al. (2018), we make two additional
assumptions: (1) every time a new parallel input pattern arrives to
the structure, all the neurons are at the resting potential S0, and
(2) we consider the STDP constants sufficiently small to avoid
interaction among subsequent input sequences. These make
possible to analyze the effect of each parallel input to the nMNSD
structure separately, both for static and dynamic behaviors.

2.5. The Trapezoid Method
The introduction of a new input pattern to the nMNSD structure
may make T spike. In the affirmative, the spike will be generated
after an interval depending on the ttf s introduced by delay
neurons and target neuron. Then, a multiple-input single-output
transfer function is associated to each nMNSD.

The trapezoid method provides an intuitive representation
of the internal mechanism of the structure that allows us to
geometrically decompose such transfer function. Looking at
the decomposed version of the structure response, we can
instantaneously know if a new parallel input train will make
the nMNSD target spike, or how we can modify the nMNSD
to make it happen. Using a dedicated 2-dimensional nomogram
(see Appendix 1 in Supplementary Material), this geometrical
method makes possible to evaluate the impact of an input
pattern on the ST of a trained nMNSD of any dimensionality,
directly at the input of the structure, without having to execute
intermediate steps. This new representation of the detection
process provides us with a visual feedback to easily customize the
structure’s settings to better fit the characteristics of the problem
we are facing (e.g., degree of importance of single features in
the class definition, compensation of expected feature variance,
and so on).

FIGURE 5 | Decomposition of the area subtended by the internal state of the

target neuron shown in Figure 4A in terms of trapezoids. Considering the

arrival of a generic contribution to the target neuron (e.g., the orange one in A),

its advent (at the time ta) will cause an immediate increase of the value of ST
equals to the target weight associated to the afferent contribution. Its

contribution on the ST can be considered an additive constant, until the decay

due to the previous contribution is exhausted (interval [ta, tb ], i.e., rectangle

part). After this, its contribution will start to decrease linearly (with slope Ld )

until the resting potential is reached (interval [tb, tc], i.e., triangle part).

Themethod envisages as first step to represent all the structure
parameters that define its static behavior (as neuron parameters,
PPT, and feature relevances), as well as the input arrivals to the
target, at the input of the structure through n right trapezoids,
lying each one on a semi-plane with a real horizontal axis
characterized by reversed times (increasing values toward the left,
since we are portraying the parallel spike train on the entryway of
the structure, see Figure 3). This method allows us to evaluate
in a differentiated manner the contribution that each single i-th
component of the current input parallel spike train (i.e., ESi)
will produce on the ST . The possibility to analyze the nMNSD
operation and to optimize the recognition using the simplified
visual feedback given by the trapezoids lays the groundwork for
the design of stratified nMNSD-based classification systems.

We will present in this section the rationale underlying the
trapezoid decomposition, and how it can be obtained. Then, we
will show the iter envisaged by the trapezoid method to execute
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the summation directly at the input of the structure, in two
different versions: graphical method and analytical method.

2.5.1. How the Trapezoids Are Drawn?
The trapezoids are geometrical entities that allow us to easily
decompose the integration process that takes place into the
LIFL in the underthreshold range, as shown in Figure 5. Each
trapezoid incorporates information of both the branch of an
nMNSD structure (neuronal parameters and input and output
weights) and the parallel input that is going through the structure.

Indeed, the generic trapezoid associated to the branch i is
composed of a rectangle (on the left side) whose base recti
depends on the current input, adjacent to a right triangle (on the
right side) whose base trii depends on the structure parameters.
The height of the ith trapezoid equals to the value of the
corresponding ith output weight wT,Di . The abscissa (time point)
of the left limit of the ith trapezoid, vi, is related to the input
weights of the delay neurons. Taken as a whole, the vi set
represents the PPT of the structure.

Like the PPT of the structure, the trapezoids are not
constrained to a fixed time point, since they should act at any
time, i.e., irrespectively of when the parallel spike train is entering
to the network (as noted in section 2.2). Then, without loss of
generality, we represent the left extremity of the first trapezoid
v1 as placed to the fictive value c and relate the abscissae of
the left sides of all the other trapezoids to this value, in the
following manner:

〈v1, v2, ..., vi, ..., vn〉 = (11a)

= 〈c, c+ 1tES1,2 , c+ 1tES1,3 , ..., c+ 1tES1,n〉 = (11b)

= 〈c, c+ 1tES1,2 , c+ 1tES1,2 + 1tES2,3 , ..., c+ 1tES1,2 + 1tES2,3

+...+ 1tESn−1,n〉 (11c)

where:

1tESi,j =
1

wDj ESj − 1
−

1

wDi ESi − 1
(12)

(see Appendix 2 in Supplementary Material). Note that using
Equation (11a) and (11c), we can relate the abscissae of the
trapezoids to the PPT of the structure, in terms of preferential
relative intervals 〈1tES1,2 ,1tES2,3 , ...,1tESn−1,n〉. In this way, we
are operating a geometrical transformation to represent the ST
diagram to the input of the nMNSD, taking in account the effect
the ESs will undergo once they cross the structure.

We introduce the concept of crossing order
〈ref1, ref2, ..., refk, ..., refn〉, i.e., the set of integer numbers
which indicates the sequence of the branch indices which spikes
will progressively arrive to the target neuron (to give an example,
〈3, 2, 4, 1〉 in Figure 5). To decompose the target summation in
trapezoids, the first geometrical object to be drawn is the one
associated to the branch ref1, i.e., the branch which contribution
will arrive for first to the target. It will lack of the rectangle part,
consisting then on a simple right triangle. It has a slope equals to

the underthreshold decay of T (i.e., Ld), as all the other triangles
of the chart, so that:

trirefk =
wT,Drefk

Ld
(13)

To draw the set of rectangles, we have to take in account the
arrival order of the contributions to the target. Considering
Figure 5, we note that the length of the rectangle associated to
a generic branch is given by the interval between the arrival of
its own contribution to the target and the end of the previously
arrived trapezoid/triangle (i.e., ta and tb respectively, if we
consider the orange trapezoid in Figure 5). Considering the
correlate of such temporal distance at the input of the structure
(transformed by the eq.12), we obtain the set of rectangle lengths
by iterating the following formula, for k = 2, 3, ..., n:

rectrefk = rectrefk−1
+ trirefk−1

− (vrefk−1
− vrefk + tESrefk

− tESrefk−1
)

(14)
where, obviously, rectrefk−1

= 0 when we compute rectref2 . If
the interval between two arrivals is long enough to allow ST
to fully discharge, then the related trapezoid will lack of the
rectangle part, as the first trapezoid. To obtain the complete
set of trapezoids, we have just to complement the trapezoids,
adding the triangles defined above at the right end of the
rectangles generated.

2.5.2. Iter Description
Now that we know how to draw the trapezoids on our chart, we
can go back to analyze the passage of the train in the structure
looking at the input of the structure only. We conceive the n
trapezoids placed on the abscissae 〈v1, v2, ..., vi, ..., vn〉, and the
current input parallel spike train, characterized by the absolute
times 〈tES1 , tES2 , ..., tESn〉. For ease of representation, we consider
the spike train in motion toward the structure (from left to right,
see Figure 6A, left), locked on their Cartesian references, as if
they too were moving toward the nMNSD.

Following this method, we developed an interactive
visualization and optimization system of nMNSD structures,
available at www.github.com/LCCN/Frontiers2021.

2.5.2.1. Graphical Method
From the parameters of the nMNSD, we are able to draw the
PPT of the structure on the trapezoid chart; once we know
the input parallel input pattern, we can complement the graph
with the related trapezoid set as described above. The method
envisages as preliminary step the detection of the crossing
order. We can alternatively visualize it as the sequence of the
branch indices which input spikes will progressively cross the
left side of their related trapezoid, during the entrance toward
the structure. The crossing event related to ESi allows us to
represent the spike contribution on the target neuron from
the branch i. Note that the crossing order does not reflect
the indices of the branches, which ESs ordinately arrive to the
related delay neuron, but the sequence of the target arrivals
evoked by the ESs (the one thing does not imply the other).
The crossing order can be graphically individuated by rigidly
translating the parallel input train toward the trapezoids, and
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FIGURE 6 | Target summation executed with the trapezoid method. (A) The PPT of a parallel spike train of order 4 (left) moving toward the preferential parallel train

(PPT) of the nMNSD settings; the two blocks are here represented separately for ease of understanding. Note that the time axis has to be considered reversed in both

the blocks (as in Figure 3), since we are portraying the parallel spike train in motion. Envisaging the parallel train sliding toward right we can notice that ESs will cross

the PPT of the structure with the following ES order (i.e., the following crossing order): 〈3, 2, 4, 1〉. In (B–E), we give a “stop-motion” representation of the target

summation executed with the trapezoid method, showing both the parallel spike train and the trapezoid set of the structure on the same chart (with related zoomed

representation of ST below). Except for the trapezoid associated to the first crossing step (which always lacks the rectangle part, as explained in the text), a generic

trapezoid has the rectangle length determined by the time difference between its arrival and the end of the trapezoid associated to the last contribution arrived to the

target; once the rectangle parts have been drawn, the triangle parts can consequently traced to the right of the rectangle parts to obtain the complete trapezoids.

Using the trapezoid method, the efficacies ei,refk to the state of the target neuron ST are directly noticeable on the input of the structure, since they are represented by

the heights of the intersections between the ES and the upper perimeter of the related trapezoid (colored dots). At this point, the summation can be easily

decomposed in the contribution of each branch. In the zoom below, the reader can ascertain for the first three crossing steps (ref1 = 3, ref2 = 2, ref3 = 4) that the

computation of the Sp through the trapezoid method is equivalent to the one obtained by the classical target summation at the target neuron.
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reporting the sequence of crossing (see Figures 6B–E). Each
crossing step of the ESi on the associated trapezoid (left extremity)
represents the arrival of the contribution from the branch of
order i to the target; each crossing step corresponds to a relative
maximum on the membrane potential of the target ST (i.e.,
a summation peak Sp). Since ST depends in general also on
the past arrivals, taking in account a generic crossing step refk,
we can represent the related Sp,refk as the sum of the residual
contributions given by each target arrival. Such contributions are
called target efficacies (indicated as eESi,refk

) and are represented

by the heights of the intersections of the prolongations of each ES
of the train with the related trapezoid. Note that a set of target
efficacies 〈eES1,refk

, eES2,refk
, ..., eESn,refn 〉 (and consequently a Sp) can

be calculated for each one of the n crossing steps. Obviously,
since the value refk is the branch number which related spike
arrives k− th to T, when we consider the crossing step associated
to ESi, its target efficacy is represented by the full wT,Di (i.e.,
eESi,refk

= wT,Drefk
when refk = i). That said, for each crossing

step, Sp,refk can be calculated by summing up the ei,refk related to
all the parallel spike train components. For a complete parallel
spike train, we call Sp,M the maximum among all the Sps. If
in almost one of these steps, the value Sp,refk is greater than
Sth, then the target neuron will produce a spike, signaling the
detection of the input pattern by the nMNSD structure. The
process is illustrated graphically in Figure 6, and analytically in
Supplementary Table 1 of the Appendix 2.

2.5.3. Will the Target Produce a Spike? And When?

Beyond the Behavior of an Isolated nMNSD
As already shown in section 2.2, a spike will be produced by
the target neuron only if, at least for one of the crossing events,
results that Sp,refk > Sth, signaling the recognition of the pattern.
Analytically speaking, each new incoming pattern will be able
to evoke an output spike on the target only if the following
condition is satisfied:

Sp,M = max(Sp,ref1 , Sp,ref2 , ..., Sp,refk , ..., Sp,refn ) ≥ Sth (15)

The spike will be generated after a proper time-to-fire ttfT
(Equation 2). To calculate this value, we have to discern among
two cases:

• Case 1: No ES of the parallel spike train will arrive to T during
it is in the active mode. In this case, the ttfT can be easily
calculated using Equation (2), considering Sp,M as S.

• Case 2: Some ES of the parallel spike train will arrive to
T during it is already in the active mode (see Figure 7).
Such case necessitates further attention; see (Susi et al., 2018,
Supplementary Material, Par.1).

In order to avoid overcomplicating the analysis, we study here
the first case, assured by imposing the following condition on the
output weights:

(

n
∑

i=1

wT,Di )−wT,Dj < Sth, for each j chosen between [1, n] (16)

FIGURE 7 | Peculiar case of target summation in which one ES arrives to T

while it is already in the active mode.

On the other hand, their sum should be at least equal to Sth, as
previously stated (see Equation 8). The time of spike generation
gives us a score of the goodness of the input, and it can be used
as further information to build more complex configurations of
nMNSD, as discussed in section 2.7.

2.6. Shape of the Hypervolume
Among the many architectural parameters of the nMNSD, we
can differentiate between those involved in the recognition of
a pattern and those involved in its subsequent signaling. As
indicated in section 2.3, the input weights represent the PPT of
the nMNSD, then they have to do with the actual recognition of
the input pattern. In the n-dimensional feature space, the PPT
of the nMNSD is represented by the line ζ , with slope of 45◦

with respect of each of the axes and passing through the point
determined by the following coordinates:

1

wD1,ES1 − 1
,

1

wD2 ,ES2 − 1
,

1

wD3 ,ES3 − 1
, ...,

1

wDn ,ESn − 1
(17)

(for an in-depth explanation, see Susi et al. (2018)). To
understand the signaling phase of a pattern, let us consider a
volume in the n-dimensional feature space (i.e., a hypervolume),
consisting of an augmentation of the PPT such that if the set of
arrival times of a pattern falls into it, the MNSD produces a spike.
Such augmentation represents the tolerance of the structure, i.e.,
the error margin the nMNSD admits from the PPT of the parallel
input to consider it recognized. To modify the hypervolume, we
can act on the target weights and Ld (of the target neuron):

• Target weights allow to introduce a selective tolerance with
respect to a single feature. This is useful when we have
fluctuations of the values of a determined involved feature;

• Ld modulates the tolerance of the structure with respect to
all its features: the higher (lower) the Ld, the more selective
(robust) the structure becomes to the jitter. If we have equals
wT,D1 , we have a hypercylinder as hypervolume, whose radius
depends on Ld.
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FIGURE 8 | Scheme of a layered nMNSD-based system.

2.7. Toward Complex nMNSD-Based
Classification Systems: Multiclass
Classification and Layering
The nMNSDs can be used for multiclass classification by
assigning an nMNSD to each class of the problem. The training
can be made separately for each nMNSD structure, paying
attention to sufficiently differentiate the domains of the classes, to
avoid that more than a target will fire for the same input, causing
indeterminacy of the belonging of the pattern to one of the two
classes. Since each structure is represented by its own trapezoid

set, the refinement of the hypervolumes associated to the classes
can be achieved by minimizing the intersection area between the
different trapezoid sets. In cases where the intersection of classes

is unavoidable, the evaluation of the ttfT can be informative since
an anticipated spike is often representative of a better fit with the

class represented by the structure that produced it.
Another configuration can be obtained by parallelizing the

nMNSD structures to analyze their output together. Each

nMNSD of the same layer will produce a spike on a certain

instant, which together will form a new parallel spike sequence.
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FIGURE 9 | Go/No-Go trials schematic representation. Trial’s exposition time for the stimuli was 100 ms, with a stimulus onset asynchrony (i.e., the time interval

between two trials) between 1,100 and 1,300 ms. The stimuli presented were blue and green circles and squares. Participant was instructed to press a button when a

blue square or a green circle appeared, and not to press for green squares and blue circles.

nMNSDs of subsequent layers will be gradually trained on the
parallel spike sequences evoked by previous levels. Note that in
each layer one should adapt the parallel patterns to fall within the
proper range of action (see Figure 8).

3. RESULTS

In order to show the improved usability of the nMNSD tool to
tackle pattern recognition problems with respect to the MNSD,
we test the structure on two specific datasets. First, we face
again the classification problem presented in Susi et al. (2018)
(section 3.2) concerning the recognition of No-Go patterns
from a patient executing the Go/No-Go paradigm, and finally
we benchmark the nMNSD on static inputs using the MNIST
dataset of handwritten digits to find pros and cons compared
to other SNN-based classification methods. The simulations are
performed using an event-driven implementation of the nMNSD
structures in Matlab2019b environment.

3.1. Go/No-Go Paradigm
The data of this first test concern a Go/No-Go paradigm
characterized by a 70/30 presentation ratio. The study is
ongoing and conducted at the Laboratory of Cognitive and
Computational Neuroscience of Madrid. It involves 67 healthy
and right-handed subjects (age range 13–17 years old), without
previous history of psychiatric or neurological conditions,
neither psychopharmacological treatment nor drug intake. High-
density magnetoencephalography (MEG) signals were obtained
from 306 channels (102 pairs of planar gradiometers and 102
magnetometers) with an Elekta Neuromag Vectorview system
situated in a magnetically and electrically shielded room. Only
the 102 Magnetometers were used to carry out the analysis.

The MEG data from the subject with the highest performance
in both Go and No-Go conditions have been chosen for
further analysis (we selected the best performer to minimize

TABLE 2 | Go/No-Go task.

Total Correct Accuracy Accuracy Averaged

inhibitions inhibitions inhibitions response reaction time

103 101 98.05% 100% 546.43 ms

Resume of the performance of the selected participant.

the risk of having unintentional or random responses in our
dataset). We finally considered for each trial the time interval
< 400ms after the stimulus presentation to exclude the premotor
response (Deecke et al., 1976; Ikeda et al., 2000). A schematic
representation of the task is given in Figure 9, and a resume of
the subject performance in Table 2.

We preliminarily selected for each of the two classes (No-
Go and Go trials) the networks of informative magnetometers,
evaluating the patterns of occurrence of absolute maxima in
the reference time window. We evaluated their discriminative
power by computing their intra-class stability and inter-
class independence. In Figure 10, the processing pipeline
performed for each of the classes is illustrated. On the
bases of previous studies (Amirali et al., 2018), we quantified
stability and discriminative power of the magnetometers using
different versions of the time series (broadband unfiltered time-
series, alpha-filtered time series, and theta-filtered time series),
obtaining better results with the original broadband time series.
To differentiate the two classes, we finally chosen the eight
magnetometers indicated with the IDs listed in Table 3.

The nMNSD has been trained (75 trials for each class) and
then tested (20 trials for each class) to recognize No-Go patterns
using the instants corresponding to the maximum amplitudes in
the time window of the premotor response. We repeated a whole
training cycle (learning + validation) varying the parameters Ld
[0.005, 0.08], A+/− [0.001, 0.04] and τ+/− [5, 8] to find the
optimal nMNSD settings (which we call best learners). Using an
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FIGURE 10 | Processing pipeline for the selection of the eight informative magnetometers. Considering the time series during the window of interest (in yellow), we

executed the following steps first for the No-Go trials and then for the Go trials: (A) detected the maximum peak on each MEG channel, for each of the trials; (B) we

computed the time difference considering each combination of magnetometers, and extracted mean and standard deviation of the time difference on each pair of

MEG sensors along the trials; (C) we selected the couples of sensors starting from those characterized by the lowest standard deviations and a mean ≥ 10ms.

Inter-class discriminative power has been then guaranteed by comparing the 2 sets of sensor couples selected for the 2 classes, and removing possible pairs of

sensors duplicated in the 2 classes if they presented the same mean.

TABLE 3 | List of the IDs of the selected MEG magnetometers representative of

the two classes: No-Go and Go.

Magnetometer ID: 0231 0241 0911 0921 1521 1541 1631 1911

Intel(R) Core(TM) i5-8250U CPU, 8 GB RAM, each complete
training cycle lasted an average of 10 ms, and the recognition
of a single No-Go pattern lasted only 0.1 ms. The simulations
individuated a rich area with a satisfactory trade-off between
average Accuracy, Precision, and Recall (up to 0.75, 0.76, and
0.72, respectively).

In Figure 11, we represent the classification performance
obtained with the different settings of the trained nMNSD, and in
Figure 12 the representation on the trapezoid chart of the trained
No-Go structure, when crossed with a No-Go trial and then with
a Go trial.

Beside the fact that this represents an improvement with
respect to the recognition performances achieved in our previous
work, we presented a newmethodology, able to take into account
a greater number of features, and the representation of the
trained structure in the trapezoid chart. Importantly, since we
analyzed the time series during the premotor response (< 400ms
while average response of the subject happened at 546.4 ms),
and the delay of our system is negligible, our method allows to
perform the classification before the action is made from the
subject. This opens up interesting scenarios for the action control
in critical decisions.

In addition to the visualization of the nMNSD settings with
respect to a given parallel spike train, the realized toolbox leaves
room for the improvement of the tuning of the structure through
the positions of the trapezoids and allows the user to analyze
the feature relevances to differentiate the impacts evoked by the

different features of the problem. Obviously, this method can
be extended to other types of problems, even in areas other
than neuroscience.

3.2. MNIST Database
In this second test, we adapted the nMNSD structure to classify
2D static inputs using the grayscale images of MNIST database
(LeCunn et al., 1998). The original images are composed of 28
× 28 pixels and each pixel spans the range [0–255]. We created
two additional subsampled versions of the images by grouping
neighboring pixels in fields. Images are encoded in the input layer
through the time-to-first-spike of the assigned neurons, using the
following intensity-to-latency relation:

ti =
Imax − Ii

Imax
· 25 (18)

where Imax is the maximum value of intensity of a pixel/field,
Ii the actual value of intensity of the pixel/field, and 25 ms of
simulated time is the maximum latency encoded (corresponding
to an “unwritten” pixel/field ). This does not need any of the
preprocessing steps commonly used in SNNs (e.g., Gabor filters).
We repeated a whole training cycle (learning + validation)
varying the parameters Ld, A+/− and τ+/− in the same ranges
cited in section 3.1 to find the optimal nMNSD settings (i.e., the
parameters of the best learners).

We implemented three versions of the nMNSD network (i.e.,
A, B, and C), illustrated in Figure 13. While in configuration
A we simply attributed each pixel of the original image to one
different input neuron of the nMNSD, in configurations B and
C we grouped the branches in adjacent fields composed of 4 ×

4 and 7 × 7 pixel each, respectively, and assigned to them one
different input neuron of the nMNSD, using the mean value
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FIGURE 11 | Accuracy, Precision, and Recall obtained with the trained nMNSD (No-Go structure) around the optimal parameters. Each of the colored point

represents the performance of the nMNSD trained with the parameters indicated in the axes.

FIGURE 12 | Representation on the trapezoid chart of the No-Go structure after the training, when crossed by 2 parallel spike trains. Left: The No-Go structure is

stimulated with a No-Go trial (correctly recognized). Right: The No-Go structure is stimulated with a Go trial (that is not recognized by the structure).

of intensity of the field and coded this number to the input
neurons using Equation (18). Heterosynaptic lateral connections
are activated between adjacent neurons during learning and
disabled during test.

We tested the nMNSD considering the two strategies one-
versus-all (OvA) and one-versus-one (OvO).

For the OvA, the recognition system is composed of one
nMNSD structure, which is trained to detect a digit vs. the
complementary ones. We considered the digit “1” for simplicity,
since it is the one with the greater number of examples:
nLEARNING=6742, nTEST=1134. For each combination of the
parameters Ld, A+/−, and τ+/− explored, we executed both
training and test with balanced quantities of examples for
preferred and non-preferred classes (for learning: 6742 images
for digit “1” and as many images among the digits [0, 2 − 9],
considering the first 60000 trials of the MNIST dataset; for test:
1134 images for digit “1,” and as many among the remaining
trials for the other digits, considering the last 10000 trials of the
dataset). Once chosen the structure parameters and the input
weights (best learners), we optimized the output weights using
the fminsearch algorithm (based on the Nelder–Mead search
method Nelder and Mead, 1965; Lagarias et al., 1998), obtaining
an average improvement of 5% in accuracy, arriving to values
of 79, 82, and 93% for the A, B, C topologies, respectively. The
results are shown in Table 4.

For the OvO, the recognition system is here composed of two
parallel 4 × 4 nMNSD structures of type C, each one trained

to recognize one digit. We executed the training considering
5421 images per class. Then we optimized the output weights,
and finally tested the network using 837 images per class. To
resolve the cases in which more than 1 target produces a spike
during the recognition, we evaluated two different strategies: (1)
we considered recognizing the digit associated to the target which
produces a spike for first; (2) we used 5 redundancy nMNSDs for
each class and provided each target with a bundle of “muting”
connections that aim to inhibit the complementary final target
during its latency period. The topology for this latter variant,
which we call OvO enhanced, is described in Figure 13E. In
this second case, the learning has been carried out initializing
input weights and internal states to random values to broaden
the differentiation between the redundancy modules. Both these
strategies increased the system performances; while the first
strategy results faster to train, the second needs an additional
supervised step (for the inhibitory neurons), but leads to better
results. The latter structure achieved an accuracy of 95%.

The learning times for each training cycle (using the same
computer specified in section 3.1) showed significant variations
with respect to the topology used. The results are shown in
Table 5. Differently, the classification time for each presented
pattern do not varies substantially with respect to the topology
used and is equal to 27± 8µs.

Regarding the OvA configuration, the grouping operation
leads to a drastic reduction of the learning times and to an
increase of accuracy. Regarding the OvO configuration, the
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FIGURE 13 | Description of the different network topologies tested. In (A), the nMNSD is fed with the original image (28 × 28 pixels); in (B), the pixels are grouped in

49 (7 × 7) fields; in (C), the pixels are grouped in 16 (4 × 4) fields. one-versus-one (OvO): (D) Original configuration and (E) enhanced version (with inhibitory bundles

in blue).

TABLE 4 | Comparison of one-versus-all (OvA) performance obtained with the

three structures implemented.

Configuration Learning time Accuracy

(for training cycle)

A 300s 0.79

B 1.35s 0.82

C 0.4s 0.93

TABLE 5 | Comparison of one-versus-one (OvO) performances obtained with the

two methodologies implemented (best accuracies).

Configuration Learning + optimization times Accuracy

(for training cycle)

D [0.4+ 5]s 0.91

E (OvO enhanced) [0.45+ 6.5]s 0.95

enhanced version reported the best results. The values of accuracy
are notable considering the very simple network configuration
(17 neurons and 32 connections for the OvA-C, 28 neurons and
180 connections for the OvO-E).

Compared to existing character recognition systems based on
SNN, the nMNSD showed a state of the art level accuracy. At
the same time, the system is composed of a very limited number
of neurons and synapses if compared to today’s SNN-based
recognition systems (see Kheradpisheh andMasquelier, 2020) for
a useful report) and the recognition process consists of only one
spike per neuron. Taken together, these characteristics testify the
proneness of the nMNSD to time- and energy-efficiency, two of
the most desirable features in electronic systems (see Göltz et al.,
2020).

4. DISCUSSIONS AND CONCLUSIONS

We presented the nMNSD structure, which is a generalization
of the MNSD to any number of inputs. After the explication of
the structure operation, we discussed some aspects to improve
the practical usability of the nMNSD as classifier tool. In
addition, we have illustrated the trapezoid method that is a
reduced method to analyze the recognition mechanism operated
by the nMNSD in response to a specific input sequence.
This method is useful to represent the internal processing
mechanism of a specific nMNSD, especially when the number
of branches is greater than three, i.e., when the feature space
becomes not trivially representable. A visualization toolbox
based on this method is available at www.github.com/LCCN/
Frontiers2021.

The first application showed in this paper regards the
classification of brain signals. We applied the nMNSD to a
problem previously faced with the classical MNSD from the same
authors, showing the improvement in classification performances
achieved with the nMNSD structure with respect to the simple
MNSD, due to the possibility of encoding a greater number of
features, and the support in the “neural design” brought by the
visualization tool realized. Finally, we tested the performance of
the nMNSD on the MNIST dataset. Regarding this application,
we developed different versions of the nMNSD, including one
based on a redundancy layer, which showed the best performance
in terms of accuracy, at the cost of a greater number of spikes
in the network, which would results in greater power dissipation
in hardware implementations. Nevertheless, considering that the
encoding strategy of the nMNSD is based on single spikes and
not on spike-rate, the dissipated power would still be low and
the impact is minimal, so the benefits of this change far outweigh
the negatives.
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Among the most important highlights on the presented
method, there are:

• The possible use of the information given by the latency
of the target neuron in case of indetermination in a
multiclass scenario,

• The possibility to encode the impact of each feature in the
target summation for the determination of a class (i.e., feature
relevance property),

• The configuration of different nMNSDs to be used in a
multiclass problem.

Recent trend in sensor technologies are pointed to resource-
efficient algorithms for high-speed learning and online
recognition, to be implemented directly on the sensors
(Kasetty et al., 2008; Iacoviello et al., 2015; Cardarilli et al.,
2020). Our results show that the nMNSD proficuously taken in
consideration for pattern recognition applications requires low
power consumption and low training times.The simplicity and
low computational cost of this methodology suggest a large-
scale implementation for real-time learning and recognition
applications in several areas.
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