
ARTICLE

Received 19 Jan 2017 | Accepted 25 Apr 2017 | Published 9 Jun 2017

A two-dimensional Dirac fermion microscope
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The electron microscope has been a powerful, highly versatile workhorse in the fields of

material and surface science, micro and nanotechnology, biology and geology, for nearly 80

years. The advent of two-dimensional materials opens new possibilities for realizing an

analogy to electron microscopy in the solid state. Here we provide a perspective view on how

a two-dimensional (2D) Dirac fermion-based microscope can be realistically implemented

and operated, using graphene as a vacuum chamber for ballistic electrons. We use semi-

classical simulations to propose concrete architectures and design rules of 2D electron guns,

deflectors, tunable lenses and various detectors. The simulations show how simple objects

can be imaged with well-controlled and collimated in-plane beams consisting of relativistic

charge carriers. Finally, we discuss the potential of such microscopes for investigating edges,

terminations and defects, as well as interfaces, including external nanoscale structures such

as adsorbed molecules, nanoparticles or quantum dots.
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G
raphene has proven to be an ideal host for spectacular
mesoscopic effects, in particular after the introduction of
hexagonal boron-nitride encapsulation1–3 and efficient

cleaning methods4–7, which reduces scattering rates towards the
theoretical limits as mainly defined by electron–phonon2,5,8,9 and
electron–electron10,11 interactions. At low temperatures,
encapsulated graphene with mean free paths of up to 28 mm
has been reported12, whereas the phase coherence length of
several micrometres can be reached13,14.

Efforts have mainly been devoted to explore the Dirac fermion
counterpart of conventional mesoscopic phenomena, occurring
in finite effective mass electronic systems at cryogenic tempera-
tures: integer9,15 and fractional16 quantum Hall effect, weak
localization17,18, Fabry–Perot oscillations13, commensurability
oscillations19–21, universal conductance fluctuations22,23,
Aharonov–Bohm oscillations24,25, magnetic focusing13,26,27 and
quantized conductance28,29. Here, several factors set graphene
apart from conventional two-dimensional (2D) systems. First, the
linear gapless dispersion of graphene30 gives rise to qualitatively
different behaviours, such as Klein tunnelling31,32 through
potential barriers and Berry phase9,15 in magnetic fields. Klein
tunnelling allows Dirac fermions to penetrate high and wide
barriers with zero reflection, which makes scattering at energy
barriers resemble the transmission of light across an interface
with an effective refractive index that can be tuned to negative
values. Simply put, a single p–n junction constitutes an electron
lens capable of focusing a beam of electrons, which was
predicted for Dirac fermions by Veselago33, shown to apply
to graphene by Katsnelson et al.31 and Cheianov et al.32, and
observed experimentally by numerous groups6,13,27,34,35. Second,
in contrast to a 2D electron gas at the buried interface of GaAs
and GaAlAs semiconductor crystals, graphene can be considered
an open 2D electron gas, exhibiting highly tunable properties that
strongly depend on its environment, as observed in Moiré
superlattices20 for graphene on hexagonal boron nitride
and trigonal warping of the energy bands in bilayer graphene36.
Third, momentum relaxation mean free paths may reach
up to micrometre scale at room temperature2,3,12,14,37, hinting
that ballistic transport could lead to new opportunities for
electronics38,39 and optoelectronics40,41. It was recently shown
that the electron–electron scattering length, ‘ee, at elevated
(room) temperature can be significantly smaller than the elastic
mean free path, ‘mfp, as well as typical device dimensions, W, for
ultraclean samples. It has been pointed out that high-temperature
transport resembles viscous flow and may be understood in terms
of hydrodynamics, see for example, refs 10,42. Some microscopic
manifestations of ballistic transport such as magnetic focusing26

and negative differential resistance43, however, have been shown
to survive at room temperatures. In the following, we exclusively
focus on cryogenic temperatures, where both electron–electron
and electron–phonon scattering processes are strongly
suppressed, and where an upper limit for the mean free
path is yet to be determined. With the steadily improving
graphene device quality and the numerous confirmations that
graphene is capable of supporting transport in the mesoscopic
regime ð‘mfp4L � lF; lfÞ2,6,12,19,26,34,35,44,45, we find that
complex instruments that utilize relativistic charge carriers for
practical purposes has become realistic.

An ordinary scanning electron microscope (SEM) is an
extreme, yet familiar application of ballistic electron transport,
which since its early incarnations more than 50 years ago has
been a cornerstone of micro- and nanotechnology, surface and
material science, as well as many other branches within natural
sciences. The electron microscope is based on four functions:
emission, focusing, deflection and detection of a focused beam of
ballistic electrons in a vacuum chamber, with the aim of analysing

the shape, structure and chemistry of crystals, surfaces and small
objects. The operation and individual components of an electron
microscope in fact possess a striking number of similarities
with state-of-the-art Dirac electron optics devices6,19,26,34,46

and we note that the essential components and functions
needed to realize such an instrument have been demonstrated
experimentally. In particular, two essential electron optics
components were very recently proposed: the absorptive
pinhole collimator by Barnard et al.47 and the parabolic lens by
Liu et al.48.

We examine here such an apparatus: a 2D electron microscope,
based on the combination of elementary electron-optics
components in a graphene device, which we in the following
refer to as a Dirac fermion microscope (DFM). In this
hypothetical intstrument, Dirac quasiparticles move in straight
trajectories within 2D graphene rather than within a three-
dimensional vacuum chamber. Electron beams may be focused
onto intrinsic features such as grain boundaries, edges and
defects, interfaces, contacts and edge terminations, and extrinsic
nanoscale structures such as adsorbed molecules, nanoparticles,
quantum dots and plasmonic superstructures to study their
properties through their interaction with the electron system.
Semiclassical ballistic calculations are effective in describing the
overall magnetotransport characteristics in the mesoscopic limit49

and are used to compare concrete architectures and designs suited
for different types of target objects and applications.

Results
Anatomy of the DFM. It is instructive to revisit the conventional
SEM and its components (see Fig. 1a). In an electron gun,
electrons are extracted from a metal by thermal or field emission,
and collimated and accelerated by electrical fields and apertures.
The electron beam is then focused into a small spot on the target
surface by tunable electrostatic or magnetic lenses, which can be
scanned across the surface by another set of magnetic or
electrostatic deflectors. A detector located nearby captures
either backscattered or secondary electrons returning from the
irradiated surface, allowing an image to be generated.

In the following we consider how these four tasks may be
carried out with a graphene device, using an arrangement such as
illustrated in Fig. 1b. The 2D vacuum chamber is provided by
graphene itself; at sufficiently low temperatures, the mean free
path can be at least several tens of micrometres2,12. As the
lithographic resolution offered by high-end electron beam
lithography can be of order 0.01 mm, there are nearly four
orders of magnitude difference between the dimensions of the
components and the characteristic transport lengths, such as the
Fermi wavelength, which is lFE2p1/2n� 1/2E35 nm at a carrier
density of n¼ 1012 cm� 2, typical numbers for ballistic graphene
devices. The 2D analogy of an electron gun can be realized by
combining the functionality of basic components such as ballistic
point contacts, apertures47, Veselago lenses32,34 and superlattice
collimators50,51. Focusing of Dirac fermions can be carried by
p–n junctions, where the carrier density can be controlled by
electrostatic gates independently in the p- and n-doped regions.
For the deflection of the beam, a perpendicular magnetic field
provides a highly predictable means of controlling electron
motion, as demonstrated in magnetic focusing13,26,35,44,47,52 and
snake states6,45. Detection can be done by large catch-all
electrodes or by arrays of smaller electrodes to provide position
or angular-resolved measurements34. Figure 1c shows a trajectory
density plot (arbitrary scale) in the proposed DFM calculated
by a semiclassical Monte Carlo simulator (see Methods). The
trajectory density corresponds roughly to the current density, as
the Dirac fermions have a constant velocity. The electron gun is

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15783

2 NATURE COMMUNICATIONS | 8:15783 | DOI: 10.1038/ncomms15783 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


here a point injection contact and a grounded aperture47, and the
lens is a symmetric, linear p–n junction.

Graphene as a 2D vacuum chamber. The vacuum chamber must
provide an unobscured path for the electron beam, with a low
presence of scatterers and with sidewalls of the microscope
removed out of the beam path. Most graphene electron optics
devices published in literature, such as Hall bar or van der Pauw
geometries, have sidewalls within a distance of lmfp from the
current pathways. In the ballistic limit, reflecting walls may add a
non-trivial background to the conductance signal of interest,
which may become more complex in coherent conditions (see, for
example, ref. 53, Fig. 4), analogous to reverberation and standing
acoustic waves in a poorly dampened room. This may lead to a
conductance background in the vein of weak localization,
conductance fluctuations, Fabry–Perot oscillations and
Aharonov–Bohm oscillations. If the confining potential has
strong geometric symmetries, the conductance fluctuations can
exhibit pronounced regular features. We suggest that a graphene
vacuum chamber should be designed either with semi-infinite
sidewalls, that is, L � ‘mfp; ‘f such that the electron momentum
and phase are fully randomized before the carriers return, or by
diffusive walls, that is, with non-specular reflection to suppress
unwanted ballistic and coherent reflections. Recently, electrically

grounded electrodes were shown to act as walls that remove
carriers from the vacuum chamber and prevent them from
returning to the main path of the beam47.

Sidewalls are themselves relevant as objects of study with a
DFM, given their importance for ballistic transport and devices
depending thereof. Magnetic focusing of Dirac fermions has
already been used to characterize the edge roughness and
scattering properties of lithographically defined graphene
edges46,47. An intriguing possibility is to probe pristine
microcleaved edges; these offer near-zero structural disorder
with either armchair or zig-zag structure that have been predicted
to exhibit distinctly different scattering properties54.

Electron guns. The electron gun is the component, or collection
of components, which together generate a collimated, intense
beam of electrons. In graphene devices, electrons are directly
injected by metal–graphene contacts6,12,35,52, or by ballistic
graphene contacts where the metal–graphene contact region is
located outside the main device area34,46. Although both these
contact types are suitable, they result in point-like injection, as the
task of focusing an electron beam to achieve a narrow diameter at
the target area is greatly simplified if the electrons are injected
from a point-like source, in analogy with light and electron optics.
In analogy with classical wave mechanics, a point contact will
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Figure 1 | Conventional SEM versus DFM. (a) Illustration of a SEM with the electrons travelling in straight lines inside a vacuum column, from the emitter,

through an aperture and a set of lenses that focus the electrons into a sharp beam at the surface. A deflection lens directs the electrons to a specific spot on

the surface, from which they scatter back and are measured by a detector. (b) The 2D equivalent is a graphene device, where a narrow metal contact or an

opening plays the role of the electron emitter, while a p–n junction provides guiding/lensing of the electron trajectories. A back electrode (2) collects

electrons that are not intercepted by a target. Backscattered electrons are picked up by side electrodes (3 and 4), allowing an image to be formed by

measuring the transmission current. (c) Trajectory or current density from ballistic Monte Carlo simulation of a DFM, where carriers are injected from a

point-like emitter contact (1), collimated by an aperture and focused by a symmetric p–n junction electron lens. Part of the beam is reflected from the p–n

junction as indicated. The electron beam is seen to backscatter from one of the three targets, giving rise to a current flowing between electrodes 1 and 3,

instead of 1 and 2.
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have a wide distribution of injection angles47, with the special
case of a rectangular, ballistic contact having a cos y
distribution55. Although size effects such as conductance
quantization28,29, Fabry–Perot-like interferences and sidewall
roughness in the electron emitter may alter the angular
distributions, we consider here the mesoscopic limit, where
coherence and diffraction effects do not mask the overall
behaviour56. For electron optics as for any type of optics,
apertures provide straightforward means of reducing the angular
spread of the beam, which was recently demonstrated
experimentally by Barnard et al.47. The authors showed that a
metal contact aperture connected to electrical ground can be used
to obtain a significant reduction of the beam divergence in a
graphene device, while at the same time removing stray electrons
from the device.

Electron lenses and focusing. Klein tunnelling has been
extensively described in literature, for example, refs 31–33, as well
as comprehensively reviewed by Allain and Fuchs57. Here we
outline just a few particularly relevant features. Klein tunnelling is
the suppression of backscattering due to pseudospin conservation
for an electron impinging on a potential step or barrier so that it
will be transmitted with unity probability as illustrated in Fig. 2a.
Although the transmission is unity for incident angle yi¼ 0,
the angular transmission function depends on the width w of
the potential step compared with the electron wavelength,
translating into an effective smoothness a¼ kFw of the step. For
a hard, symmetric potential step, ki¼ kr and ao1, the angular
distribution57 is given by T(yi)¼ cos2yi. For a carrier density
of n¼ 1012 cm� 2, which we use throughout the simulations,
the Fermi wavelength is lFE35 nm, whereas the effective

smoothness a is unity for a width of w¼ 5.6 nm. Analytical
expressions for the optical properties of potential steps and
barriers in the sharp and soft limits are known for a number of
situations57, and we use here Cayssols39,57 interpolation formula
that connects the two regimes, see Fig. 2b. As illustrated in Fig. 2c,
the incident and refracted angles, yi and yr, follow the Snell–
Descartes law:

ki sin yi ¼ � kr sin yr ð1Þ

where ki and kr are the Fermi wavenumbers corresponding to the
carrier densities in the two regions, ni and nr, and the
effective negative refractive index is given by � (ni/nr)1/2. The
transmission probability is unity for perpendicular incident angle,
sin yi¼ 0, and the case of reflection gives yr¼p� yi, as illustrated
in Fig. 2c. Although p–n junctions constitute electron lenses
capable of focusing a beam of electrons in graphene, steep and
smooth p–n junctions behave very differently and should serve
different purposes in the 2D electron microscope (see Fig. 1a).
The steep p–n junction provides high transmissivity with a broad
angular acceptance window and is well suited for electron lensing,
where reflection is best kept at a minimum. A smooth p–n
junction has a strong tendency to filter oblique angles, which can
be used to collimate beams51 as well as for electron guides and
mirrors52.

Such a p–n junction can be formed by electrostatic gating, such
as the split bottom gates6,58 or top gates34, or by chemical gating,
where metal islands deposited directly on top of the graphene
provide the charge transfer necessary to induce potential steps or
barriers59. For electrostatic gates, the width of the p–n junction
can be controlled by the thickness of the dielectric spacer between
the graphene and the gate34, which suggests that an architecture
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Figure 2 | Electron gun and optics. (a) Illustration of two Dirac cones offset by a potential step of height V0. The width of the potential step is w. Carriers

moving from the left (n-type) to the right (p-type) perpendicular to the step, but cannot be backscattered due to conservation of pseudospin. (b) The

transmission through a potential step depends strongly on a¼ kFw, with large w exhibiting a larger chance of reflection at oblique angles. The analytical

angular distributions57 from sharp to soft (w¼40 nm at n¼ 1012 cm� 2) p–n junctions, with intermediate curves calculated by Cayssols interpolation

curve77 for a¼0.44–244 are shown. (c) Electrons impinging on a p–n junction at an angle yi with respect to the normal, are transmitted/refracted

according to Snell–Descartes law, or specularly reflected. (d) An aperture limiting the angular distribution. (e) A p–n junction lens with a parabolic shape

and the point contact positioned in the focus, will co-align the transmitted trajectories. (f) A combination of an aperture and a parabolic lens produces an

electron beam with a long focal length.
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that supports both reflective/filtering and transmission/lensing
components could be realized with two top and bottom dielectric
layers of different thickness.

Until now, little has been done to explore the possibilities and
properties of curved p–n junctions for electron optics, perhaps
due to the fact that the linear p-n junction itself is perfectly
capable of focusing a Dirac electron beam33. In the language of
optics, the linear Veselago lens suffers from significant aberration
for non-zero magnetic fields, which makes it a less suitable
starting point for a scanning beam microscope based on magnetic
deflection. Inspired by parabolic mirrors that convert divergent
rays from a source placed at the focus point into parallel rays, we
employ the same principle to collimate and manipulate the
electron beam as illustrated in Fig. 2e. A symmetric, parabolic
p–n junction with the point contact placed in the focal point
constitutes a parabolic electron gun with perfect collimation of
transmitted electrons yr¼ 0 for all yi according to equation (1) as
well as reflection of trajectories with yr¼ �p. The parabolic p–n
junction greatly reduces the angular spread and increases the
focal depth of the electron beam, ultimately offering a possibility
of maintaining a parallel, focused beam across large scanning
fields with much reduced aberration. Recent work by Richter and
colleagues48 solves the real-space Greens function in a tight-
binding framework to analyse the detailed properties of the
parabolic p–n junction. They predict that a parabolic p–n
junction is capable of co-aligning a beam of Dirac fermions, and
that such a beam can be deflected by a weak magnetic field
without losing the collimation.

Deflection. A perpendicular magnetic field provides a means of
deflecting the path of ballistic electrons in a way that is
predictable and easy to control, as demonstrated for magnetic
focusing in large number of experiments in both III–V and
graphene mesoscopic systems44,46,47,49,52,54. The cyclotron radius
is given by Rc¼ :kFe� 1B� 1. It follows from kF¼ (pn)1/2 that the
cyclotron radius scales with n1/2, whereas the cyclotron motion
changes direction by reversal of either B or carrier polarity, that
is, from n- to p-doped regions. In magnetic focusing, wide
distributions of injected electrons lead to trajectories with
pronounced caustics, which result in an oscillatory conductance
with maxima at the point where the caustics intersect with
the extraction point contact. In analogy with conventional optics,
the width and shape of the caustic beam should indeed depend on
the sidewalls and could therefore be used to extract information
of the sidewall roughness47 and electrostatic potential near
edges46. As only certain discrete reflection points are being
probed at each geometrically resonant magnetic field, imaging of
the edge as such cannot be carried out, unless an array
of contacts34 is used to provide spatial or angular resolution.
Although magnetic focusing is normally carried out at
intermediate magnetic fields, RcrL, where L represents the
characteristic dimensions of the sample, we consider in this work
exclusively the low magnetic field limit, that is, RccL, where only
slight bending of the electron beam is used to scan the focused
beam spot across a feature; this situation closely mimics the image
formation in a SEM. An example of how this could be done is
shown in Supplementary Fig. 2.

Detectors and image formation. The simplest detector consists
of a point contact. Imaging requires the extraction of the spatial
distribution of some characteristic property, following an
interaction between the sample and the probe, which in this case
is a beam of Dirac fermions. Although it is tempting to use an
array of electrodes to pick up spatial information, similar to
the charge coupled device sensor in a transmission electron

microscope, we consider a simpler scenario here that bear some
resemblance to the architecture of a SEM, see Fig. 1. We find that
two large catch-all contacts (left and right) are sufficient to
generate images that discern between sizes, shapes and
orientations of obstacles with sizes comparable to or above the
beam diameter. The back-plane is an absorptive electrode, which
can be used to catch the carriers similar to a Faraday cup,
allowing the beam current to be measured as in a conventional
SEM. The images are constructed from the transmission between
source and detector/drain electrodes as a function of magnetic
field, which is the number of electrons arriving at the detector
electrode, divided by the number of electrons emitted by the
source. The transmission includes the ballistic contact resistance
of the electron gun, which depends greatly on the exact gun
configuration. However, as in a conventional microscope, only
the relative intensity variations matter; hence, contrast and
brightness adjustments are needed to achieve a useful image.
Transmission values and trajectory (current) densities are
therefore arbitrary scale.

Scanning DFM microscopy with single emitter. We have
performed extensive Monte Carlo trajectory simulations to
compare different microscope configurations and have analysed
the behaviour of the microscope components and simulated
the image formation in scanning DFM (see Methods for details).
The lens components we combine, to obtain control of the shape,
angle, divergence and position of the beam, are the grounded
aperture (absorptive pinhole collimator)47, the parabolic p–n
junction for co-aligning the electron trajectories and the linear
Veselago lens32 for refocusing a divergent beam. The beam profile
and angular distributions, as well as linearity of beam position
with respect to magnetic field are shown in Supplementary Fig. 1.

In Fig. 3, we compare simulated images of the three microscope
configurations. The target consists of three antidots; two circular
shapes of different diameter and a triangular shape. Figure 3a–c
show the overlaid trajectory density as well as the transmission
between source 1 and either drain 2 (the backplane electrode) or
drains 3 or 4 (detector electrodes), with two magnetic fields for
each microscope configuration. Owing to the constant carrier
velocity, nFE106 m s� 1, the trajectory density is directly
proportional to the semiclassical (non-coherent) current density.
Figure 3d,e show the transmission T12, T13 and T14 as a function
of the magnetic B-field, between injection electrode 1 and the
three drain electrodes 2, 3 and 4, respectively. As the magnetic
field sweeps the electron beam across the target, shape-specific
features appear in the magneto-transmissions T13 and T14, which
in the following will be referred to as transmission images. The
spherical scatterers generate two peaks of equal height and shape,
spaced roughly by the projected width of the circular potential.
The triangle gives rise to a narrow peak from the leftmost
corner and a broader peak or plateau corresponding to the flat,
right-hand side. Although these features are recognizable in all
three configurations, they are more sharply defined for Fig. 3b
compared with Fig. 3a, which is distorted by the broader
angular distribution of incoming electrons, and Fig. 3c, which is
characterized by a long focal length, but also a wider beam
diameter. The relative transmission for Fig. 3b and to a lesser
extent Fig. 3c is decreasing with magnetic field, as large field
magnitudes cause the electron trajectories to intersect the p–n
junction at higher angles, thereby reducing the transmission
probability. The Supplementary Note 4 shows the imaging
process for two different aperture sizes, with only minor
difference in image quality.

In general terms, a symmetric Veselago lens creates a mirror
image of the point-like source, which is distorted by varying the
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carrier density on one side32, or by a finite magnetic field. Owing
to the pronounced caustics resulting from Dirac fermions passing
a linear Veselago lens, it is still possible to generate an image with
a high spatial resolution. Moreover, the caustic beam spot
position is nearly perfectly linear in magnetic field, see
Supplementary Fig. 1. This situation can be augmented by
introducing other lens components. An aperture will limit the
angular spread by blocking most of the diverging beam, whereas a
parabolic lens reduces the angular spread by co-aligning the
beams. The combination can give a beam with exceedingly low
angular spread and therefore very long focal depth.

Another strategy to provide spatial image resolution is to use
arrays of collector electrodes. This approach could be useful for

imaging by magnetic focusing, where the reflection point can be
swept across an edge, whereas the collector array picks up the
backscattered electrons. An example of such a magnetic focusing-
based imaging of edge roughness using five electrodes is shown in
Supplementary Fig. 2 and Supplementary Movie 5.

Imaging of Veselago dots. A different type of scattering potential
is the closed p-n junction, which we here term a Veselago dot
(VD). Gutierrez et al.60 found that few-nanometre graphene p–n
junctions formed in continuous graphene on copper due to local
variations in surface interactions and surface potential showed the
signatures of distinct quantum states corresponding to periodic
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Figure 3 | Imaging with Dirac fermions. Current density maps of three DFM microscope configurations, (a) Veselago, (b) Pinhole/Veselago and

(c) Pinhole/Parabolic lens. In each case, the current density for two different magnetic fields are overlaid, indicated with black and red dots in panels below.

Colour scales ranging from 0% (zero current density) to 100% (high current density) are used to visualize zones with different carrier polarity p and n.

(d–f) The dashed black curves show the transmissions from electrode 1 to the back electrode 2, whereas red and blue curves represent carriers exiting at the

right (3) and left (4) electrodes, respectively, as also indicated in a. The magnetic field axis is intentionally reversed to correctly align the red and black dots in

f with the simulated electron beams in c. The transmission images from the three target objects are distinctly different, with the spherical objects leading to

relatively symmetric peaks and the triangular object giving rise to a sharp transmission peak from reflection at the left corner of the triangle, and a broader

peak or plateau corresponding to reflection from the flat, right-hand side of the triangle. Of the three selected configurations, the configuration a exhibits the

largest aberration and image distortions, configuration b the sharpest features due to highly focused beam, whereas c maintains a constant transmission

current across the image field. The three configurations are analysed with respect to beam profile, angular distribution and linearity with respect to the

magnetic field in Supplementary Note 1 and Supplementary Fig. 1. The imaging is showing during operation in Supplementary Movie 1.
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polygonal trajectories inside the potential. Caridad et al.59 formed
arrays of VD by depositing metal dots directly on graphene to
locally pin the electrostatic potential, leading to sharp, circular
p–n junctions by tuning of the back gate to the opposite polarity.
The VD-like behaviour was corroborated by measurement of
Mie-like scattering of the electron waves on tilted arrays of VD
with respect to the current direction. VD are lens-like potentials
that can reflect, trap and re-emit electrons depending on their
incident angle, width and height of energy barrier and serves a
double role as interesting objects of study, as well as potentially
useful and simple electron optics components with naturally hard
p–n junctions and no need for a gate dielectric.

Figure 4 shows simulated current density plots for three
different spherical potentials: p–n junctions with w¼ 2.5 nm and
w¼ 40 nm, as well as a fully reflective disc-shaped potential. At
certain magnetic fields, the focused beam leads to pronounced,

internal scattering patterns and narrow emission jets at the
reflection points, which can be thought of as classical counter-
parts of jets in optical cavities61. For glancing incident angles, the
w¼ 40 nm VD reflects all trajectories, whereas for the w¼ 2.5 nm
VD, high-order polynomial closed trajectories appear inside the
boundary. The caustic emission jets lead to local transmission
maxima (red dots) at the electrode opposing the main reflection
direction (blue dots). These distinct signatures of the scattering
profile depends strongly on the width w, shape and height of VD,
and can be used to analyse the properties of p–n junctions down
to very small widths59. Supplementary Movie 2 shows the
development of current density corresponding to Fig. 4.

Scanning DFM microscopy with multiple emitters. For a
coherent electron system, such as high-quality graphene at
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the jet is much weaker.
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cryogenic temperatures22,62,63, classical periodic orbits are
directly related to bound quantum states and can be used to
predict the energy level spectrum64 and transport properties65,66.
For an open or semi-open quantum billiard62—a constant
confinement potential with hard or soft sidewalls—electrons are
injected via point contacts at the edge of the potential, which
makes stable periodic orbits classically inaccessible without
scattering66. The injection point contact itself will scatter any
polygonal orbit on the first roundtrip. For the VD, the situation is
entirely different; the semitransparent p–n junction will indeed
allow carriers to be injected directly into a periodic orbit, as
shown in Fig. 4.

In Fig. 5a, we introduce a microscope configuration that
mimics the nearly parallel electron beam of a conventional SEM,
allowing the beam to pass through the target area without
changing focus or angle. The aperture is placed at the focus of the
parabolic lens and the single emitter is replaced by an array of N
point emitters. The beam will be aligned parallel to the centre axis
by passage across the parabolic p–n junction and the slight
divergent beam can optionally be refocused using a symmetric
Veselago lens, as in Fig. 3a. The result is a narrow beam that can
be moved in coarse steps between N positions, corresponding to
the N emitter electrodes. The beam position can be further fine-
tuned by the magnetic field, leading to seamless coverage of the
image plane, as indicated with the dashed line. Full-range
scanning requires stitching of the regions defined by the selected
emitter electrodes by fine-tuning of the magnetic field. Together,
the emitter array, the aperture and the parabolic lens constitute a
composite electron optics electron gun with a low aberration,
near-parallel beam and a large scan range.

Figure 5b depicts the transmission image profile of circular and
triangular reflective targets similar to those imaged in Fig. 3, with
the T12, T13 and T14 curves shown both before (dashed lines) and
after (full lines) compensation for the unavoidable current
decrease at large offsets, where the collimated beam intersects
the parabolic lens at oblique angles.

The lower panel shows the position of the beam at the
electrode depending on emitter electrode and magnetic field
between ca. � 1 and 1 mT, with the white marker indicating the
sequence of emitter position (1–9) and B-field used to achieve a
continuous scan. This strategy is similar to the separate deflector
systems for coarse and fine alignment in an electron beam
lithography system, where small regions are stitched together into
large continuous regions, to avoid large beam deflections and
image distortions. After correction, the transmission image of the
circular potential is symmetric, whereas the image of the
triangular potential shows a pronounced flat part (red curve),
corresponding to the flat part of the triangle, facing right.

Figure 5c shows a wide-angle distribution of trajectories being
co-aligned by a parabolic lens and directed at a circular p–n
junction with w¼ 2.5 nm. A clear pattern of caustics is visible,
which agrees exactly with those predicted by differential geometry
(see Supplementary Note 2 and Supplementary Fig. 3). In
Fig. 5d,e, a focused beam is directed at the injection points for the
triangular and square polygonal closed orbits60, leading to strong
caustic resonances and collimated emission jets at the corners.

Figure 6 shows transmission images of 200 nm-wide VD
structures, with effective width of the p-n junction ranging from
w¼ 2.5 nm to w¼ 40 nm (see Fig. 2b). Figure 6a shows current
density for four selected magnetic fields, indicated with arrows on
the transmission image (Fig. 5b). Although the forward
transmission peak in the coefficient T12 (black curve) due to
Mie-like scattering59,67 is relatively insensitive to w, T13 (red
curve) and T14 (blue curve) show distinct features related to the
intensity of the caustic jets, with a clear dependence on w. This
shows that the spatial mapping can indeed provide detailed

information of the nanoscopic properties of the scattering
potentials.

In Supplementary Note 3 we discuss how a DFM may be
fabricated using van der Waals assembly37. In Supplementary
Fig. 5 we show that the transmission images are robust towards
increasing the aperture size, which can be advantageous to reduce
diffraction effects for low carrier densities, large Fermi wavelength
and narrow apertures47. Supplementary Movie 3 illustrates
current density variations during imaging of two different VDs
and a reflecting disc, and Supplementary Movie 4 shows imaging
and caustic jets of a large VD using multiple emitter Dirac
fermion microscopy.

Discussion
We have described a class of devices that through control and
scanning of a beam of relativistic carriers allows a form of in-plane
scanning microscopy in two dimensions, and show examples of
how imaging of different types of objects could be carried out and
how different beam profiles and behaviour can result from the
interplay of the electron optics components. Obviously, these can
be combined in far more ways than shown here.

There are several issues that should be addressed. First, the
question of whether the graphene can provide the disorder free
vacuum chamber at low temperatures. As of now, the highest
reported elastic mean free path in graphene is 28 mm12; however,
so far no fundamental upper limit has been reported. It appears
that the cleanliness of the interfaces, quality of the materials and
strain inhomogeneities are the limiting factors, as the intrinsic
electron–phonon scattering processes freeze out at cryogenic
temperatures. For III–V heterostructures, mean free paths in
excess of 100 mm have been reported68. The mean free paths in
cryogenic graphene could be even longer.

One potential problem with narrow beams that are guided
across long distances by small magnetic fields, is that the
sensitivity to weak disorder potentials and variations in the
carrier density could lead to signal noise and beam broadening
effects. Even with ballistic mean free paths extending beyond the
sample size, the beam may still follow irregular paths, as reported
in III–V heterostructure 2D electron gas by Jura et al.69. Second,
it is pertinent to consider whether the state of the art of device
fabrication can deliver the precision and reliability to make actual
electron optics instruments feasible. Although strain
inhomogeneities and interfacial contamination present some of
the more challenging issues for van der Waals heterostructure
assembly37, the field is developing rapidly. The key techniques for
high-quality van der Waals heterostructure assembly1,2,37,70, edge
contacts2 and patterned layers37,71 were introduced and
developed just a few years ago, and there is a significant effort
in developing methods for scaling up the processes that presently
rely on exfoliated materials. A suggestion for a possible
fabrication scheme based on published techniques can be found
in Supplementary Note 4.

Third, we consider the question regarding how quantum
coherence will influence the operation of the microscope, beyond
setting a limit for the image resolution in the tens of nanometre
through diffraction effects. Coherence will for instance influence
the angular distribution of electron beams passing through
narrow apertures47, leading to a broader beam according to the
Huygens principle34. This can, however, be countered by
increasing of the aperture size and the carrier density to reduce
the Fermi wavelength. Our semiclassical simulations indicate that
the image formation is robust towards increasing the aperture
size, as we show in Supplementary Fig. 6. As pointed out above,
our simulations represent the mesoscopic limit, where electron
currents are well approximated by classical trajectories/ray
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tracing35,56. Upscaling of the lateral dimensions as a route to
diminish diffraction and coherence effects will benefit directly
from continued development of sample quality2,12. One exception
is the scattering of Dirac fermion beams on small objects, where
quantum coherence effects may cause significant deviations from
the transmission signatures found from our semiclassical
trajectory simulations. In Supplementary Note 3 we show maps

of the atomistic bond current from atomistic tight-binding
calculations, for collimated Dirac fermion beams generated by
parabolic lenses and narrow apertures. Three cases are presented,
to illustrate the main concepts of this work: a caustic pattern
corresponding to Fig. 5c, a triangular closed orbit in a circular
p–n junction with jet currents corresponding to Fig. 5e and
scanning of a focused beam using the magnetic field across a
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Figure 5 | DFM with multiple emitters and coaligned beam. (a) Illustration of the coaligned scanning DFM, where an array of emission electrodes and a
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position. (b) Transmission from emitter to electrode 2 (bottom), electrode 3 (right) and electrode 4 (left) before (dashed) and after (full lines) correction

for emission current variations of the nine emitters. The lower panel shows the switching between emitter electrode (9,8,7,y,1) and magnetic field (y axis)

needed to produce a continuous coaligned scan. (c) Parallel beam of electrons scattering on a circular p–n junction (w¼ 2.5 nm), producing the well-known

caustic pattern of trajectories in a circular potential (see Supplementary Note 2). (d,e) Injection of current directly into square and triangular closed orbits.

The carriers are transmitted out at the three corners, producing well-collimated jets. Colour scales ranging from 0% (zero current density) to 100% (high

current density) are used to visualize zones (p1, n1, p2, n2) with different carrier polarity in c–e. The inset in e shows the bond current results from an

atomistic transport calculation of a graphene VD with a similar ratio between diameter and lF as used in the semiclassical simulation, resulting in a current

density resembling the triangular closed orbit and a current jet emission pattern qualitatively in agreement with the semiclassical simulation. The quantum

transport calculations are detailed in Supplementary Note 3.
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small circular VD, as in Figs 4 and 6. As expected, the simulations
show that current density of structures which are large compared
to the Fermi wavelength, reasonably resembles the classical
calculations, but also that quantum coherence leads to bond
current patterns with a richer emission and reflection structure,
which may be utilized to extract more detailed information of
targets than possible with semiclassical calculations.

In that sense, we anticipate that quantum coherence is indeed
an opportunity for developing more advanced functionality of the
DFM. With phase-coherent beams, interferometric and even
holographic microscopy could give new insight in conductance
fluctuations and weak localization, as now individual or sets of
trajectories can be selected without the need for permanent wires,
instead of ensemble averaged.

Along the same lines, we envision utilizing spin and valley
degrees of freedom of graphene’s charge carriers. For example,
the long spin-life times in graphene72,73 may enable the use of
spin-polarized electron beams to study magnetic edge
terminations, magnetic molecules or local proximity-induced
spin–orbit interaction. For this, ferromagnetic contacts can
provide for spin-polarized injection and detection. A step
further one could also imagine to make use of point contact-
based spin and valley filters74 for increasing the functionality of
the DFM. An interesting target for a spin polarized DFM would
be strained nanobubbles75 that exhibit huge pseudomagnetic
fields and can act as spin filters and beam splitters76. Focused
beams could possibly also be used to investigate interactions
between layers in more complex, multilayered heterostructures71.
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Although the image resolution of a DFM can never rival those of
established electron or scanning probe microscopies, the DFM
could provide new insight in the details of microscopic scattering
processes67 and interactions with the environment, disorder,
adsorbed molecules, quantum dots, which are crucial for sensing,
electrons and optoelectronics applications.

In a broader perspective, the DFM embodies a wireless electron
transport measurement system, where carriers can be injected,
directed and focused onto objects of interest to perform a form of
transport measurements without edge scattering, inflexibility and
limitations of a permanent, hardwired physical wires.

Methods
Semiclassical and quantum calculations. The Monte Carlo simulations use a
variable time step Verlet numerical integration algorithm, with optional disorder
and possibility of mixing numerical potential energy maps with coordinate-based,
analytical geometrical boundaries to generate complex scattering landscapes. The
target objects in Figs 3 and 5b are modelled as nearly hard-walled potentials
obtained by convoluting a step potential with a Gaussian function of o10 nm. In
the simulation, the point contacts emit trajectories with uniform angular dis-
tribution (corresponding to a metallic contact), however, to optimize the calcula-
tion speed in certain configurations the distribution is artificially narrowed before
passage through an aperture, see, for example, Fig. 5d. This only affects the
computation time, as less time is spent on trajectories that will anyway hit the
absorptive walls of the aperture enclosure. The transmissions between the elec-
trodes are calculated by dividing the number of exiting trajectories with the
number of emitted trajectories; we do not take into account the variations in
ballistic contact resistance for the different electron gun configurations, as the
relative change in transmission with position or magnetic field is sufficient for
image generation. The p–n junctions are modelled using the Cayssol approxima-
tion formula77 with width w¼ 10 nm, unless stated otherwise, with the carrier
density kept fixed at 1012 cm� 2, for both p- and n-doped regions; these are typical
values for electrostatically gated graphene. Although the simulation was carried out
in 4 mm� 2 mm or 4.5 mm� 1 mm area in all simulations, the dimensions of our
proposed devices can immediately be scaled up. Increasing all dimensions by a
factor of S will yield identical results by corresponding scaling of the cyclotron
radius, that is, by changing the magnetic field or the carrier density by a factor of
S� 1 or S1/2, respectively. In a practical device, scaling the system up will reduce
issues with diffraction, that is, through narrow apertures47, but makes higher
demands with respect to the mean free path and presence of small angle-scattering
effects69; for fabrication of a real device, this is an important trade-off and a strong
motivation to push device quality in a similar manner as for III–V 2D electron
systems68. Atomistic tight-binding calculations were performed to examine the
scattering of focused, collimated Dirac fermion beams on circular p–n junctions
and provide a basis for comparison with the semiclassical calculations. The
methodology and results of these calculations are described in Supplementary Note
3 and Supplementary Fig. 4.

Data availability. All relevant data as well as the computer code for the
semiclassical Monte Carlo simulations are available from the authors.
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