
Frontiers in Oncology | www.frontiersin.org

Edited by:
Matiullah Khan,

AIMST University, Malaysia

Reviewed by:
Collene Jeter,

University of Texas MD Anderson
Cancer Center, United States

Bikul Das,
Indian Institute of Technology

Guwahati, India

*Correspondence:
Ting Ye

yeting1103@163.com

†These authors have contributed
equally to this work and

share first authorship

Specialty section:
This article was submitted to

Cancer Molecular Targets
and Therapeutics,

a section of the journal
Frontiers in Oncology

Received: 10 June 2021
Accepted: 27 July 2021

Published: 12 August 2021

Citation:
Xie D, Pei Q, Li J, Wan X and Ye T

(2021) Emerging Role of E2F
Family in Cancer Stem Cells.

Front. Oncol. 11:723137.
doi: 10.3389/fonc.2021.723137

REVIEW
published: 12 August 2021

doi: 10.3389/fonc.2021.723137
Emerging Role of E2F Family
in Cancer Stem Cells
Dan Xie†, Qin Pei†, Jingyuan Li , Xue Wan and Ting Ye*

Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Sichuan, China

The E2F family of transcription factors (E2Fs) consist of eight genes in mammals. These
genes encode ten proteins that are usually classified as transcriptional activators or
transcriptional repressors. E2Fs are important for many cellular processes, from their
canonical role in cell cycle regulation to other roles in angiogenesis, the DNA damage
response and apoptosis. A growing body of evidence demonstrates that cancer stem
cells (CSCs) are key players in tumor development, metastasis, drug resistance and
recurrence. This review focuses on the role of E2Fs in CSCs and notes that many signals
can regulate the activities of E2Fs, which in turn can transcriptionally regulate many
different targets to contribute to various biological characteristics of CSCs, such as
proliferation, self-renewal, metastasis, and drug resistance. Therefore, E2Fs may be
promising biomarkers and therapeutic targets associated with CSCs pathologies.
Finally, exploring therapeutic strategies for E2Fs may result in disruption of CSCs,
which may prevent tumor growth, metastasis, and drug resistance.
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INTRODUCTION

The study of the E2F family began in 1987 and E2Fs were initially identified as activators of the
adenovirus gene E2 promoter that can induce host cell proliferation (1, 2). The E2F family of
transcription factors (E2Fs) have been recognized for nearly 30 years. A total of 8 genes have been
found, and 10 protein products encoded by these genes form a core transcription axis crucial for
regulating cell cycle progression, apoptosis, differentiation, DNA damage repair, metabolism, and
angiogenesis (3–7). According to initial reporter gene detection and evaluation of their expression
patterns during the cell cycle, E2Fs have been classified as transcriptional activators (E2F1-3) or
transcriptional repressors (E2F4-8) (Figure 1), and are thus predicted to play a dual role in human
cancers (8, 9). E2F activators are predicted to be oncogenic, while E2F repressors are predicted to
have tumor suppressor functions. However, due to the complexity of their structure and function, it
is still quite challenging to study the role of E2Fs in cancer.

Cancer stem cells (CSCs, also called tumor-initiating cells) are a small subpopulation of cancer
cells that possess self-renewal capacity and lead to the heterogeneous lineages of cancer cells that
constitute the tumor, and they are largely responsible for tumor growth and progression (10). CSCs
were first identified in acute myeloid leukemia (AML) and have since been purified from diverse
types of solid malignancies, such as breast cancer (11), liver cancer (12), lung cancer (13), colon
cancer (14), prostate cancer (15), ovarian cancer (16) and brain cancer (17). The CSC model
provides a satisfactory explanation for the origin of complex tumors and intratumoral
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heterogeneity. Only a few CSCs with self-renewal and
differentiation potential can initiate tumor formation and
produce intratumoral heterogeneity (18). The CSC model has
been well established for cancer research, and accumulated
evidence has demonstrated that a high recurrence rate and
high mortality rate in cancers are intimately related to the
biological properties of CSCs (19, 20).

In cancer literature, the role of E2Fs in CSCs is widely
regarded as an activator gene. Up-regulation of E2Fs is
reported to be involved in proliferation promotion (21),
maintenance and acquisition of self-renewal (22, 23), invasion
and metastatic progression (24) and resistance to chemotherapy
and radiotherapy (25) in many CSCs. However, the unexpected
positive effect of repressive E2Fs on stem cell attributes of CSCs
could potentially be a consequence of repression of negative
regulators such as miRNAs (26). The discrepancies between
these findings and those on E2Fs as a CSCs promoter or
suppressor have not been thoroughly investigated. In addition,
whether E2Fs may regulate the CSCs as it does in normal stem
cells has not been clearly elucidated (27). In summary, this
review has provided new evidence demonstrating the biological
roles of E2Fs in CSCs and its underlying mechanisms, which
Frontiers in Oncology | www.frontiersin.org 2
opens up a new perspective for biomarkers or therapeutic targets
for cancer.
E2Fs: STRUCTURE AND FUNCTIONS

Currently, there are 8 E2F genes (called E2F1-8) that encode 10
proteins in mammalian cells (Figure 1). All proteins encoded by
E2Fs contain one or more highly conserved DNA binding
domains (DBDs), which regulate promoter expression by
targeting transcription (28). Among E2F genes, the E2F3 and
E2F7 loci can undergo two alternative splicing events to encode
four protein isoforms: E2F3a, E2F3b, E2F7a, and E2F7b (29–31).
The E2F family can be broadly divided into two categories,
typical E2Fs (E2F1-6) and atypical E2Fs (E2F7-8), based on their
unique structural characteristics (32, 33). Canonical E2F1-6
members possess a DBD upstream of a dimerization partner
(DP) binding domain composed of a leucine zipper (LZ) and a
marker box (MB) domain (33–35). Unlike E2F6, E2F1-5 have a
transactivation domain in the C-terminus and contain a binding
region for pocket proteins. Therefore, E2F1-5 are widely
regulated by the pocket proteins (also called “retinoblastoma
FIGURE 1 | The E2F family of transcription factors. Based predominantly on the results of in vitro studies, E2Fs are generally divided into transcriptional activators
(E2F1-3) and transcriptional repressors (E2F4-8). E2F family members E2F1–E2F6 contain a distinctive winged-helix DNA binding domain (DBD) and a dimerization
partner (DP) binding domain composed of a leucine zipper (LZ) and a marker box (MB) domain to bind DNA. In addition, E2F1-5 has a pocket protein (RB, p107 and
p130)-binding domain in the transactivation domain; the minimum site is shown in light purple (RB). E2F1-3 also have a nuclear localization sequence (NLS) and a
Cyclin A-binding site, while E2F4-5 have a nuclear export signal (NES). E2F7-8 have two tandem DBDs but lack dimerization and transactivation domains and do not
bind to DP or pocket proteins.
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family proteins”) RB, p107 and p130 (36). In addition, E2F1-3
have a nuclear localization signal (NLS) and a cyclin A binding
site in the N-terminus to ensure their translocation to the
nucleus to regulate cell cycle activity (37, 38). E2F4-5 have
bipartite nuclear export signals (NESs) that mediate their
cytoplasmic translocation (39, 40). However, atypical E2F7 and
E2F8 have two distinct DBDs but lack DP binding domains,
pocket protein binding regions, and transcriptional activation
domains (41, 42). Consequently, atypical E2F7-8 bind to DNA as
homodimers or heterodimers via the DBD to regulate gene
transcription (43). Owing to their structural differences
(Figure 1), E2Fs are destined to perform different functions in
the cells.

Based on their functional properties, E2Fs are generally
subdivided into two categories: transcriptional activators
(E2F1-3) and repressors (E2F4-8) (29). The transcriptional
activity of E2F1-3a is dependent on cell cycle regulatory and
their binding partners, which include DPs and pocket proteins.
Pocket proteins (RB/p107/p130) exhibit varying degrees of
binding specificity for E2F subunits. For example, E2F1-3a
preferentially bind to RB (28, 44). Generally, when RB is
hypophosphorylated, it can hinder the transcriptional activity
of the E2F-DP heterodimer by masking the transcription
activation domains of E2F1-3a (3, 35). During cell cycle
progression from G1 to S phase, RB is phosphorylated by
activated cyclin-dependent kinases (CDKs), resulting in its
dissociation from the RB-E2F complex and the unmasking of
the E2F1-3a transcriptional activation domain (45, 46). E2F3b
acts as both a transcriptional activator and repressor protein due
to its unique transcriptional program and expression patterns
(47). E2F3b remains constitutively expressed throughout the cell
cycle, similar to the E2F4-5 repressors (35, 46, 48). During cell
cycle progression in G0 phase, E2F3b-5 interact with one of the
three RB/p107/p130 proteins, subsequently recruiting
corepressor complexes to alter the local chromatin structure of
E2F target genes and inducing transcriptional repression (46, 49,
50). E2F6-8 are considered repressors that are independent of
pocket proteins, and their primary function is to modulate cell
cycle progression from S to G2 phase. E2F6 can suppress
transcription by recruiting chromatin remodeling complexes
(51), while E2F7-8 can directly modulate gene transcription
(33, 52). E2Fs are critical regulators of the cell cycle, and they
regulate every phase of the cell cycle by controlling the
transcription of numerous target genes involved in DNA
replication and cell cycle progression.
CSCs: BIOLOGICAL CHARACTERISTICS

Tumor initiation, development, metastasis, recurrence and
acquisition of therapeutic resistance in numerous different
human cancers has been attributed to the properties of CSCs,
which include proliferation potential, self-renewal capacity,
differentiation potential, high metastatic capacity, and drug
resistance (20, 53). Compared with normal stem cells, CSCs,
with their abnormal expression of cell cycle-related regulatory
Frontiers in Oncology | www.frontiersin.org 3
factors and dysregulation of negative feedback mechanisms, are
often able to proliferate extensively, potentially indefinitely
(54, 55).

A prominent feature of CSCs is their extraordinary self-
renewal ability, a unique stem-cell associated cell division event
maintaining the undifferentiated state and long-term
proliferation potential of at least one daughter cell, which is
the direct cause of tumorigenesis (10). CSCs can divide
symmetrically producing two CSCs that are undifferentiated
(amplification of renewing CSCs) or asymmetrically producing
one undifferentiated CSC and one lineage-restricted and partially
differentiated daughter cell excessively increases cell growth and
eventually leads to together driving heterogeneous tumor
formation (19, 56). Regardless of the degree of differentiation
of a given tumor, the undifferentiated and self-renewing CSC
subset provides for the long term proliferative potential driving
tumor development, tumor maintenance and metastasis, and are
thus widely considered the key link to tumorigenesis (57).
Therefore, a further understanding the regulatory mechanism
of CSC self-renewal is vital to preventing tumorigenesis, and it
can also provide clear targets for cancer treatment.

Along with their self-renewal ability, CSCs also have
differentiation potential. CSCs can differentiate into a series of
distinct cell types present within the tumor, which constitute the
bulk of the tumor (58). It should be noted, however, that CSC
differentiation into non-stem tumor cells (non-CSCs) is not a
one-way pathway but can be reversible or plastic (59). For
example, tumor cells can also dedifferentiate and acquire stem
cell properties in response to specific stimuli (56, 60). In
summary, CSC populations are dynamic populations with high
cellular plasticity. In heterogeneous tumor cell populations, cells
can undergo phenotypic switching between CSCs and tumor
cells phenotype, a phenomenon that is essential for tumor
progression and recurrence (61, 62).

A high metastatic potential is another key trait of CSCs. In vivo,
CSC populations in tumors preferentially metastasize, and single-
cell analysis has shown that early metastatic cells have unique
stemness gene expression patterns (63, 64). Epithelial‐to‐
mesenchymal transition (EMT) is the basis for cell invasion and
metastasis. It is currently clear that EMT signaling, which enhances
the metastatic potential of CSCs, and CSC phenotypes are tightly
connected (65, 66). These studies have shown that the metastatic
potential of CSCs is far higher than that of ordinary tumor cells and
plays a crucial role in tumor metastasis and development.

Furthermore, drug resistance is regarded as an important
feature of CSCs. CSCs display high resistance to chemotherapy
and radiotherapy. Many mechanisms have been proposed for
CSC resistance, such as expression of multidrug resistance
proteins, enhancement of the DNA repair capacity, inhibition
of cell death-related pathways, apoptosis evasion, cell cycle
promotion and metabolic alteration (67). Additionally, the
hypoxia microenvironment is also a key component of CSC
maintenance and acquisition of drug resistance, especially in the
enhancement of drug resistance mechanisms (68, 69). Because of
their therapeutic resistance, CSCs are considered to be the root of
treatment failure and tumor recurrence.
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A continually increasing number of studies have researched E2Fs
in CSCs and have found that E2Fs are widely involved in the
regulation of the biological characteristics of CSCs, such as their
proliferation, self-renewal,metastasis, anddrug resistance (Figure2).
ROLE OF E2Fs IN THE BIOLOGICAL
BEHAVIORS OF CANCER STEM CELLS

E2Fs Roles in Proliferation and Apoptosis
of Cancer Stem Cells
E2Fs are critical regulators of genes required for cell cycle
progression and play an integral role in the control of cell
proliferation. Previous studies have suggested that E2Fs are
required to control cell proliferation differently in carcinogenic
environments than in normal cells (29). As shown in recent
studies, the proliferative potential of CSCs seems to be strongly
correlated with cell cycle regulation by E2Fs. The transcriptional
activators E2F1-3 regulate cell proliferation by activating genes
essential for G1/S-phase progression in CSCs (Figure 2A).
ENPP1 (ectonucleotide pyrophosphatase/phosphodiesterase 1)
has been proved to induce the stemness features of cancer cells
(70, 71). Bageritz et al (72) also discovered that E-NPP1 could
facilitate glioblastoma CSC proliferation by controlling cell cycle
progression. And E-NPP1-deficient glioblastoma CSCs led to a
decrease in the transcriptional function of E2F1, and classical E2F1
target genes facilitating G1/S transition were downregulated,
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resulting in the accumulation of cells in G1 phase and inhibition
of their proliferation. Similarly, E2F1 plays a pivotal role in
regulating the proliferation status of chronic myeloid leukemia
(CML) stem/progenitor cells (SPCs). In terms of cell cycle
regulation, the E2F1 signaling pathway was found to be
deregulated in CML SPCs, and inhibition of E2F1 led to cell cycle
arrest and induced blockade of proliferation (21). Moreover, the
dissociation of E2F1 from the RB protein was found to restore its
transcriptional activity, which is required for cell cycle progression
from G1 to S phase (73). In glioblastoma CSCs, the bromodomain
inhibitor JQ1was found to cause cell cycle arrest and suppress CSC
proliferation by preventing the release of E2F1 from the RB/E2F1
complex (74). Additionally, glioblastoma CSCs display the
dependence of HELLS (helicase, lymphoid-specific) to maintain
proliferation. Both E2F3a and E2F3b were found to interact with
HELLS, thereby increasing the expression of cell cycle progression-
related genes to maintain glioblastoma CSC proliferation, while
proliferation was impaired after E2F3 gene knockdown (75).
Remarkably, although the function of E2F repressors is generally
opposite that of E2F activators in the regulation of the cell cycle, the
effects of E2F repressors are inconsistent with the predicted
inhibitory effect on proliferation. In fact, current experimental
evidence supports the role of E2F repressors in promoting cell
cycle progression and proliferation of CSCs. For example, high
levels of E2F7 detected in liver CSC populations were found to be
vital for themaintenanceofCSCproliferation viaE2F7activationof
AKT1-cyclin D1 signaling and downstream cell cycle mediators to
promote cell cycle progression and proliferation (26) (Figure 2A).
A B

DC

FIGURE 2 | Roles of E2Fs in cancer stem cell (CSC) biological characteristics. Tumor cells are heterogeneous, including immortal cancer stem cells. CSCs usually
express high levels of E2F transcription factors and are characterized by (A) enhanced proliferation or induction of apoptosis, (B) acquisition and maintenance of self‐
renewal capability, (C) enhanced invasion and metastasis potential, (D) regulation of drug or radiation resistance. CAPE, caffeic acid phenethyl ester; ID1, inhibitor of
differentiation 1; NAD+, nicotinamide adenine dinucleotide; CTCs, circulating tumor cells; NAMPT, nicotinamide phosphoribosyl transferase.
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The unexpected positive effect of repressive E2Fs on stem cell
attributes of CSCs, such as proliferation by modulation of the cell
cycle could potentially be a consequence of repression of negative
regulators such as miRNAs (see below). However, E2F1 is also an
effective activator of apoptosis (34), whichmay lead to the opposite
effect of E2F1 on proliferation of CSCs. As demonstrated by El-
Khattouti et al (76), the apoptosis of CD133 (+) melanoma
subpopulation cells induced by the anticancer drug caffeic acid
phenethyl ester (CAPE) requires the participation of E2F1.
Functional analysis of E2F1 in the CD133(+) melanoma
subpopulation demonstrated that overexpression of E2F1
induced both degradation of the antiapoptotic protein Mcl-1 and
activation of the ASK1/JNK and p38 pathways, which are involved
in regulating the localization of Bax to mitochondria to trigger
apoptosis (76) (Figure 2A). Overall, E2Fs mainly regulate the
proliferation of CSCs in a cell cycle-dependent manner, and E2Fs
are seem tonecessary factors in the control ofCSCproliferation. But
E2F1 can promote the apoptosis of CSCs, whether this is attributed
to the CSC-type specific or other mechanisms is worth
further study.

E2Fs in the Maintenance and Acquisition
of Cancer Stem Cell Self-Renewal
Self-renewal is the process by which cells divide while
maintaining an undifferentiated state. This process requires
maintenance of stem cell transcription factor expression,
activation of self-renewal signaling pathways and strict control
of cell metabolism (77–79). Accumulating evidence suggests the
substantial engagement of distinct E2F members in each of the
abovementioned self‐renewal programs and the contributions of
E2Fs to stemness acquisition and maintenance of the self-
renewal ability of CSCs. Several studies have confirmed that
E2F1 can directly transcriptionally activate the stem cell
transcription factors NANOG, KLF4, SOX2 and SCF to act as
a regulator of CSC self‐renewal (Figure 2B). For example, using
liver tumor-initiating stem-like cells (TICs), Chen et al (80)
demonstrated that E2F1 transcriptionally activated NANOG
expression, which in turn inhibited oxidative phosphorylation
(OXPHOS) and activated fatty acid oxidation (FAO) through
metabolic reprogramming, maintaining the TIC self-renewal
ability. In ovarian CSCs, E2F1 acts as an upstream transcription
factor to activate KLF4 expression and participates in EIF5A2-
mediated modulation of CSC self-renewal properties (81). In
addition, YAP1 is known to be a major mediator of Hippo
signaling pathway and plays an important role in CSC self-
renewal (82). Schaal et al (83) proved that E2F1 transcriptionally
activates the Sox2 promoter via YAP1 mediated in response to the
signaling events caused by the binding of nicotine to a7 nAChR,
which enhances the self-renewal of lungCSCs. In the same context,
E2F1-3a was also found to induce SCF expression at the
transcriptional level under nicotine exposure. Research on the
underlying mechanism has mainly involved E2F1. When
the binding of nicotine to nAChRs initiates a signaling cascade, it
results in the induction of E2F1-mediated SCF promoter activation
and stimulates c-Kit expressed on stem-like cells, facilitating the
self-renewal of lung cancer side population cells (84). Additionally,
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the NOTCH andWNT/b-catenin signaling pathways are essential
for the self-renewal of CSCs (57). Limited studies have
demonstrated regulation of the NOTCH and b‐catenin pathways
by E2Fs to promote the acquisition of self-renewal capability. In
prostate cancer cells, this involvement of MUC1-C (mucin 1 C-
terminal transmembrane subunit) in lineage plasticity is associated
with induction the CSCs state and self-renewal capacity (85, 86). A
recent study confirmed that MUC1-C could directly bind to E2F1
activated the BAF remodeling complex, induced NOTCH1
signaling pathway and promoted NANOG expression, which in
turn led to the promotion of CSCs stemness (86). An additional
study reported that TREX1 (three prime repair exonuclease 1)
negatively regulates the self-renewal of osteosarcoma CSCs. With
respect to underlyingmechanisms, TREX1 suppression allowed the
activation of b-catenin signaling in the dependence of E2F4, thus
possibly enhancing the self-renewal ability of osteosarcoma
CSCs by upregulating OCT4 (87) (Figure 2B). Intriguingly, a
recent finding suggests crossta lk among E2F2, the
NAD+ biosynthesis pathway and CSC self‐renewal. Gujar et al
(25) found that NAD+ metabolism governs glioblastoma CSC
self-renewal via the NAMPT-E2F2-ID axis. NAMPT is the rate-
limiting enzyme in the NAD salvage pathway, and E2F2 acts
downstream of NAMPT and controls ID1 gene transcription to
drive glioblastoma CSC self-renewal. E2F2 is required for the link
NAD+ metabolism and the self-renewal transcriptional program in
glioblastoma CSCs (Figure 2B).

Recent studies have highlighted that E2Fs promote CSC self‐
renewal by enhancing the activity of stem cell transcription
factors, regulating self‐renewal signaling pathways, and
modulating cell metabolism. However, to unequivocally define
E2Fs as regulators of CSC self‐renewal, further studies are
needed to clarify that E2Fs are required for the regulation of
CSC self‐renewal.

The Roles of E2Fs in Cancer
Stem Cell Metastasis
Metastasis is the process by which malignant tumor cells travel
from the primary site through lymphatic vessels, blood vessels, or
body cavities and spread to other sites (88). In metastasis, CSCs
show more invasive and metastatic phenotypes than non-stem
tumor cells and play the lead role (89). Because CSCs have the
ability to initiate tumors and a high metastatic capacity, they are
considered to be the cells responsible for repopulating metastatic
tumor (89, 90). In recent years, emerging research evidence has
documented that some circulating tumor cells (CTCs) are CSC-
like cells with strong metastatic potential that can drive
macroscopic tumor growth in distant tissues (91–95).
Interestingly, in a mouse model of metastatic breast cancer, the
lung colonization capacity of CTCs and the numbers of
metastatic lesions in the lung were strikingly reduced in mice
on both the E2F1 and E2F2 knockout backgrounds (24, 96)
(Figure 2C). Moreover, E2F1 loss also caused loss of VEGFA
expression and tumor angiogenesis defects (24). CSCs are mostly
located around blood vessels and rely on the microvasculature
for metastasis (97, 98). These findings raise the possibility that
cell invasiveness and tumor angiogenesis regulated by the activity
August 2021 | Volume 11 | Article 723137
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of E2F1/2 might be effectively involved in the metastasis of
CSC-like cells, thus facilitating tumor metastasis. Moreover, a
recent study by Teng et al. (99) found that upregulation of E2F7
resulted in increased activation of the VEGFR-2 signaling
pathway and promoted metastasis, invasion, and angiogenesis
in hepatocellular carcinoma (HCC). Concomitantly, high
expression of E2F7 in HCC stem cells (26) provides the
potential for E2F7 to enhance CSC metastasis.

EMT is closely related to the migration and invasion of CSCs.
Of note, EMT combines two of the most important attributes to
facilitate metastasis: invasiveness and stemness (89, 100). To the
best of our knowledge, E2F1-8 extensively activate the EMT
program in a variety of cancers, leading to the acquisition of a
very invasive and metastatic phenotype (101–106), which may
further result in the acquisition of a metastatic CSC
phenotype (Figure 2C).

To date, the exact mechanism of several E2Fs in the
regulation of CSC metastasis is still unclear, although their
involvement seems essential. Further research is necessary to
understand how E2F-dependent regulation of EMT and
angiogenesis are interconnected in CSC metastasis.

E2Fs Regulate the Drug Resistance of
Cancer Stem Cells
CSCs are the main culprit of resistance to chemotherapy and
radiotherapy. The mechanisms underlying drug resistance
involves in efficiently inducing drug efflux through ATP-
binding cassette (ABC) transporters (including MDR1, MRP1,
and ABCG2), activating DNA repair programs, enhancing
autophagy, and/or inhibiting apoptotic signals to avoid death (67,
107). In a variety of human cancers, the resistance mechanism of
ABCG2 protein overexpression in CSCs has been used as an
effective functional mechanism to identify and isolate CSCs (19).
E2F1 was further reported to drive chemotherapeutic drug
resistance in lung and breast cancer cells via activation of ABCG2
expression (108).This observationdemonstrates new scenarios that
E2F1 may participate in ABCG2-mediated regulation of CSC
resistance. Additionally, an increasing amount of evidence shows
that tumor cells under hypoxic conditions are induced to transform
into CSCs phenotype and mediate tumor radiotherapy or
chemotherapy resistance (68). Meanwhile, many cancer
literatures have investigated the close link between E2Fs and
hypoxia. For example, E2F1 can transactivate the RAD51
promoter under hypoxia to facilitate homologous recombination
repair and drug resistance of prostate cancer cells (109). E2F4 was
reported to repress BRCA1 expressionwithhypoxia-induced (110).
Concomitantly, DNA repair gene BRCA1 is a critical tumor
suppressor that helps CSCs acquire drug resistance under hypoxic
conditions (111). And E2F1 and E2F3 can mediate autophagy
activation of cancer cells with hypoxia (112, 113). Moreover,
autophagy caused by hypoxia commonly results in enhancing
CSCs chemoresistance (114, 115). Thus, this set of observations
indicate the possibilities thatE2Fs could induce theDNArepair and
autophagy enhancement through hypoxia regulation, thereby
increasing CSC drug resistance. Other studies have also suggested
that E2F2 mediates the radioresistance of glioblastoma CSCs (25).
Frontiers in Oncology | www.frontiersin.org 6
The NAMPT-E2F2-ID1 pathway was found to be upregulated in
glioblastoma CSCs after radiation and represented a protective
response to radiation (Figure 2D).

In summary, these studies, together with the limited research
focus on E2Fs and CSC resistance, accentuate the necessity to
redirect our attention to the study of E2Fs, because these proteins
perform unique transcriptional functions to mediate resistance
mechanisms in CSCs.

E2F-Related miRNAs in Regulation of
Cancer Stem Cells
MicroRNAs (miRNAs) are small noncoding RNAs that function
as posttranscriptional regulators. Previous works have described
relationships between the expression of miRNAs and E2Fs. E2F
activity can be regulated by miRNAs; in contrast, miRNAs
themselves are targets of E2F proteins (116). Subsequent
studies found that this feedback relationship plays a pivotal
role in CSCs (Table 1). Regarding E2F1, oncogenic miR-20b-
5p was found to increase the proliferation of breast CSCs by
upregulating E2F1 protein expression (117). Concomitantly,
E2F1 was found to act as a downstream target of miR-185-3p and
promote CSC stemness properties through the LINC00511/miR-
185-3p/E2F1/Nanog axis in breast cancer (118). Additionally,
regulation of the E2F1 pathway by miRNAs is a novel strategy for
combating CSCs. For example, hsa-mir183/EGR1–mediated
upregulation of E2F1 is required for CML SPC survival and
proliferation. Downstream of this event, inhibition of E2F1 was
found to reduce the proliferation of CML SPCs and induce p53-
mediated apoptosis, but healthy SPCs were not affected by
inhibition of the E2F1 pathway (21). The researches above
indicated that E2F1 seems to be a positive regulator of CSC-traits.
However, E2F1 can also negatively regulate the characteristics of
CSC. In gastric CSCs, upregulated miRNA-20a was found to
contribute to the self-renewal and proliferation of CSCs by
targeting the inhibition of E2F1 protein expression and
subsequently activating Wnt/b-catenin signaling (119, 120).
Taken together, E2F1-mediated regulation promotes the
properties of breast cancer and CML CSCs, but has an inhibitory
effect on the characteristics of gastric CSCs. And targeting blockage
of E2F1 anticipated is expected to be a potential therapeutic
applicable to breast cancer and CML. However, whether the
promotion and inhibition of E2F1-mediated CSCs regulatory
activities are tumor-type specific or miRNAs regulation, which
requires further evidences to predict outcome.

A variety of miRNAs regulate the biological characteristics of
CSCs by directly targeting E2F2 (Table 1). For instance, miR‐
125b was found to suppress the proliferation of CD133-positive
glioblastoma CSCs by direct downregulation of E2F2 (121).
Elevated Let-7b also repressed E2F2 expression in glioblastoma
CSCs, resulting in reductions in tumorsphere growth and CSC
populations (122). In triple-negative breast cancer (TNBC), miR-
4319 was found to negatively regulate the self-renewal and
metastasis of CSCs through targeted inhibition of E2F2 (123).
Concomitantly, overexpression of miR-638 also inhibited the
self-renewal, proliferation, and invasion abilities of breast CSCs
by suppressing E2F2 (124). Moreover, E2F2 expression was
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shown to inversely correlate with miR-99 expression and directly
with elevated level of vimentin in lung cancer biopsies. By
inhibiting E2F2, miR-99a repressed the EMT process,
accompanied by suppression of stemness features, consequently
decreasing the CSC population (125). Collectively, targeting E2F2 is
expected to become a therapeutic target for a variety of CSCs.

Fewer studies have beendevoted to studying the role ofmiRNAs
related to the remaining E2Fs (E2F3-E2F8) in CSCs (Table 1). For
example, miR-449b was found to inhibit the proliferation of
SW1116 colon CSCs through downregulation of E2F3 expression
(126). miR128-1 was found to suppress the proliferation and
tumorigenicity of glioblastoma CSCs by targeting E2F3 (127).
Furthermore, E2F7 was found to be the direct target of miRNA-
302a/d.miRNA-302a/d negatively regulates the self-renewal ability
and cell cycle entry pathway of liver CSCs throughdirect repression
of the target gene E2F7 and its downstream AKT/b-catenin/
CCND1 signaling pathway (26).

On the other hand, E2Fs play a role in CSCs by regulating the
transcription and maturation of various miRNAs (Table 1).
Recent research findings have suggested that E2F6 functions as
a competing endogenous RNA (ceRNA) for miR‐193a.
Upregulation of E2F6 mRNA expression, in turn, was found to
upregulate the stemness marker c-Kit through E2F6-mediated
silencing of miR‐193a and to promote ovarian cancer stemness
and tumorigenesis (22, 128). In colon CSCs, E2F7 was found to
transcriptionally inhibit miR-199b expression to promote USP47
expression, thereby increasing colon CSC stemness and
accelerating the occurrence of colon cancer (23). In addition,
E2F7 silencing was shown to decrease the production of
ALDH1+ cells and repress antagonistic effects of ALDH1+ cells
on 5-fluorouracil (5-FU) treatment.

The above findings show that E2Fs and miRNAs regulate one
another and play important roles in the proliferation, self-
renewal, metastasis, and drug resistance of CSCs. However,
there are still some E2Fs (E2F4, E2F5 and E2F8) that are
Frontiers in Oncology | www.frontiersin.org 7
relatively infrequently studied in CSCs, and the related
miRNAs have not been studied, which may be the direction of
future research.
E2Fs ARE NOVEL BIOMARKERS AND
THERAPEUTIC TARGETS ASSOCIATED
WITH CSCs

In recent studies, according to published bioinformatics papers,
E2Fs have been found to be dysregulated in most tumors and can
be considered prognostic and diagnostic biomarkers for cancer
as well as potential therapeutic targets (129–136). As
demonstrated previously, E2Fs are widely involved in the
regulation of the biological characteristics of CSCs and play an
important role in the occurrence, progression, metastasis and
drug resistance of cancer, suggesting that they might be novel
cancer biomarkers and therapeutic targets for CSC-associated.
Indeed, using the logic model of core circuits, Khan et al (102)
identified several EMT receptor proteins that, in combination
with E2F1 upregulation, could be regarded as more reliable
biomarkers for predicting the malignant progression of bladder
cancer and breast cancer. In invasive bladder cancer and breast
cancer, the survival times of patients with low expression of E2F1
and EMT receptor protein signatures were found to be
approximately twice as long as those of patients with high
expression (102). Similarly, Lee et al. (137) found that high
expression of the E2F1-EZH2-SUZ12 signature reflected the
invasion and CSC-like characteristics of bladder cancer and
predicted poor prognosis of patients. In CD133(+) cells
isolated from human astrocytomas, the expression of E2F2 was
found to be upregulated and associated with the transformation
of human astrocytes. Therefore, it was suggested that E2F2 be
used as a therapeutic target for astrocytoma eradication (138).
TABLE 1 | Roles of E2F-related miRNAs in regulation of cancer stem cells.

Cancer stem cell type E2F with upregulated
expression

Related miRNAs Effects on CSC properties Ref. No.

Induction Suppression

Breast CSCs E2F1 miR-20b-5p Proliferation (117, 118)
miR-185-3p Stemness

Gastric CSCs E2F1 miR-20a Self-renewal Proliferation (119, 120)
CML SPCs E2F1 miR-183 Proliferation Survival (21)
Glioblastoma CSCs E2F2 miR‐125b Proliferation (121, 122)

Let-7b
TNBC CSCs E2F2 miR-4319 Self-renewal Metastasis (123)
Breast CSCs E2F2 miR-638 Self-renewal (124)

Proliferation
Invasion

Lung CSCs E2F2 miR-99 EMT (125)
Stemness

Colon CSCs E2F3 miR-449b Proliferation (126)
Glioblastoma CSCs E2F3 miR128-1 Proliferation (127)
Ovarian CSCs E2F6 miR‐193a Stemness (22, 128)
Liver CSCs E2F7 miR-302a/d Self-renewal (26)

Proliferation
Colon CSCs E2F7 miR-199b Stemness (23)

5-FU resistance
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In high-grade muscle-invasive bladder cancer (MIBC), E2F3 is
often highly expressed in the 6p22 amplification region, similar
to the stem-like signature. E2F3 is epigenetically regulated and
might be a potential therapeutic target (139, 140). In addition,
E2F7 is highly expressed in HCC and colon cancer and can
promote stemness in these cancers, suggesting that E2F7 may be
a novel therapeutic target for HCC and colon cancer (23, 26).
There are few studies on other E2F family members (E2F4, E2F5,
E2F6, E2F8) in CSCs, but these E2Fs also have diagnostic and
prognostic value and are therapeutic targets in different cancers.
The E2F4 activity level can be used as an indicator of the survival
and prognosis of patients with breast cancer and prostate cancer.
Patients with negative E2F4 activity scores tend to survive, while
upregulation of E2F4 activity is related to poor prognosis (141,
142). The E2F5 status significantly improves the diagnostic
accuracy in epithelial ovarian cancer (OEC), and the presence
of CA125 or E2F5 increases the sensitivity of OEC detection to
97.9% and the specificity to 72.5% (143). Additionally, E2F5 was
identified as an independent prognostic factor in esophageal
squamous cell carcinoma; the 5-year survival rate of the E2F5-
positive group was 39.3%, which was significantly lower than
that of the E2F5-negative group (83.8%) (144). In glioblastoma,
research by Huang et al (145) showed that E2F6 is a potential
therapeutic target for combating temozolomide (TMZ)
resistance and that the progression-free survival (PFS) times of
TMZ-treated patients with high levels of E2F6 were significantly
shorter. Finally, E2F8 was identified as a novel therapeutic target
for controlling the progression of lung cancer and liver cancer
(43, 146). High E2F8 expression was found to be associated with
poor RFS in patients with ER+ breast cancer (147). The above
studies showed that E2Fs, either alone or in combination with
other proteins or markers, can be used as diagnostic and
prognostic biomarkers or therapeutic targets for cancer in a
tumor-type specific manner.
CONCLUSIONS AND FUTURE
PERSPECTIVES

In summary, E2Fs are major players in regulating the biological
characteristics of CSCs. E2Fs regulate the proliferation, self-
renewal, metastasis, and drug resistance of CSCs via distinct
mechanisms and can be considered stemness regulators in
Frontiers in Oncology | www.frontiersin.org 8
tumors. Therefore, E2Fs play integral roles in tumor growth,
progression, metastasis and anticancer drug resistance. Notably,
E2Fs are highly expressed in most solid tumors and are closely
related to malignant progression and poor prognosis. A large
number of studies have suggested that E2Fs can be used as new
diagnostic and prognostic biomarkers and are potential
therapeutic targets for cancer. However, there are still some
problems that need to be solved. For example, do E2F
transcriptional repressors promote the proliferation of CSCs?
What are the regulation roles of E2Fs involved in CSCs
apoptosis? How do E2Fs regulate EMT and tumor angiogenesis
to affectCSCmetastasis?Most importantly, there is no specific drug
targeting E2Fs, a limitation that needs further exploration. Future
research focused on answering the above questions may help us to
better understand the roles of E2Fs inCSCs andmaybe a key step in
combating CSCs.
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