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ABSTRACT RNA viruses, such as hepatitis C virus (HCV), influenza virus, and SARS-
CoV-2, are notorious for their ability to evolve rapidly under selection in novel envi-
ronments. It is known that the high mutation rate of RNA viruses can generate huge
genetic diversity to facilitate viral adaptation. However, less attention has been paid
to the underlying fitness landscape that represents the selection forces on viral
genomes, especially under different selection conditions. Here, we systematically
quantified the distribution of fitness effects of about 1,600 single amino acid substi-
tutions in the drug-targeted region of NS5A protein of HCV. We found that the ma-
jority of nonsynonymous substitutions incur large fitness costs, suggesting that
NS5A protein is highly optimized. The replication fitness of viruses is correlated with
the pattern of sequence conservation in nature, and viral evolution is constrained by
the need to maintain protein stability. We characterized the adaptive potential of
HCV by subjecting the mutant viruses to selection by the antiviral drug daclatasvir
at multiple concentrations. Both the relative fitness values and the number of benefi-
cial mutations were found to increase with the increasing concentrations of daclatas-
vir. The changes in the spectrum of beneficial mutations in NS5A protein can be
explained by a pharmacodynamics model describing viral fitness as a function of
drug concentration. Overall, our results show that the distribution of fitness effects
of mutations is modulated by both the constraints on the biophysical properties of
proteins (i.e., selection pressure for protein stability) and the level of environmental
stress (i.e., selection pressure for drug resistance).

IMPORTANCE Many viruses adapt rapidly to novel selection pressures, such as antivi-
ral drugs. Understanding how pathogens evolve under drug selection is critical for
the success of antiviral therapy against human pathogens. By combining deep
sequencing with selection experiments in cell culture, we have quantified the distri-
bution of fitness effects of mutations in hepatitis C virus (HCV) NS5A protein. Our
results indicate that the majority of single amino acid substitutions in NS5A protein
incur large fitness costs. Simulation of protein stability suggests viral evolution is
constrained by the need to maintain protein stability. By subjecting the mutant
viruses to selection under an antiviral drug, we find that the adaptive potential of vi-
ral proteins in a novel environment is modulated by the level of environmental
stress, which can be explained by a pharmacodynamics model. Our comprehensive
characterization of the fitness landscapes of NS5A can potentially guide the design
of effective strategies to limit viral evolution.
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In our evolutionary battles with microbial pathogens, RNA viruses are among the
most formidable foes. HIV-1 and hepatitis C virus (HCV) acquire drug resistance in

patients under antiviral therapies. Influenza virus, Ebola virus, and SARS-CoV2 cross the
species barrier to infect human hosts. Understanding the evolution of RNA viruses is
therefore of paramount importance for developing antivirals and vaccines and assess-
ing the risk of future emergence events (1–3). Comprehensive characterization of viral
fitness landscapes, and the principles underpinning them, will provide us with a map
of evolutionary pathways accessible to viruses and guide our design of effective strat-
egies to limit antiviral resistance, immune escape, and cross-species transmission (4–6).

Although the concept of fitness landscapes has been around for a long time (7),
their properties in real biological systems are still under active investigation. Previous
empirical studies of fitness landscapes have been constrained by limited sampling of
sequence space. In a typical study, mutants are generated by site-directed mutagene-
sis and assayed for growth rate individually. We and others have recently utilized a
high-throughput technique, often referred to as “deep mutational scanning” or “quan-
titative high-resolution genetics,” to profile the fitness effect of mutations by integrat-
ing deep sequencing with selection experiments in vitro or in vivo (8–14). This applica-
tion of next-generation sequencing has raised the exciting prospect of large-scale
fitness measurements (15–18) and a revolution in our understanding of molecular evo-
lution (19).

The distribution of fitness effects (DFE) of mutations is a fundamental entity in
genetics and reveals the local structure of a fitness landscape (12, 20–29). Deleterious
mutations are usually abundant and impose severe constraints on the accessibility of
fitness landscapes. In contrast, beneficial mutations are rare and provide the raw mate-
rials of adaptation. Quantifying the DFE of viruses is crucial for understanding how
these pathogens evolve to acquire drug resistance and surmount other evolutionary
challenges.

Previously, most empirical studies of the DFE have been performed in a single, static
environment (20, 21). A central challenge is to characterize the DFE, and its determi-
nants, in fluctuating or heterogeneous environments where evolution typically occurs
(e.g., fluctuating drug concentrations or a gradient across space). More attention has
been paid to this area recently. For bacteria, the fitness effects of mutations at different
drug concentrations, or under physical and chemical stress, have been studied (30–32).
One study has demonstrated that drug concentration modulates the shape of the DFE
and determines the evolvability under new environments (33). In another study, the
implications of differing drug concentrations on the adaptive landscape have been
examined in the context of resistance evolution (34). For viruses, the fitness effects of
mutations have been measured across different hosts (35–37). The shape of the DFE of
viruses was inferred from experimentally passaged populations (38) and from patient
data (39), but not quantified systematically. Combining quantitative high-resolution
genetics with different selection conditions will provide a more comprehensive investi-
gation of the DFE under varying levels of positive selection.

In this study, we profile the DFE of ;1,600 single amino acid substitutions in a
drug-targeted viral protein by coupling a selection experiment of a mutant library and
deep sequencing. We show that the replication fitness of virus mutants is correlated
with the pattern of conservation in patient-derived HCV sequences, suggesting that
amino acid sites with high fitness costs are often highly conserved. Combined with
simulations of protein stability, we confirm that protein stability is a major determinant
of the deleterious effect of mutants and imposes a strong constraint to viral evolution.
Furthermore, we examine the changes in DFE under varying levels of environmental
stress by tuning the concentration of an antiviral drug. The distribution of beneficial
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fitness effects of mutations shifts with the increase of environmental stress, in accord-
ance with theoretical predictions (40).

RESULTS
Profiling the fitness landscape of the drug-interacting domain of HCV NS5A

protein. The system used in our study is hepatitis C virus (HCV; genotype 2a. J6/JFH1
chimera), a positive-sense single-stranded RNA virus with a genome of ;9.6 kb. HCV
has been studied extensively in the past 2 decades in patients and in the laboratory
and provides an excellent model system to study viral evolution. Previously, we con-
structed a saturation mutagenesis library with all single amino acid substitutions in do-
main IA (amino acids 18 to 103) of HCV NS5A protein (11). This domain is the target of
several directly acting antiviral drugs, including the potent HCV NS5A inhibitor dacla-
tasvir (DCV) (41). Here, we utilized the same plasmid library to further study the DFE of
mutations and examine its adaptive potential under various drug selection pressures
through a series of new selection experiments. We observed 2,520 nonsynonymous
mutations in the plasmid library, as well as 105 synonymous mutations. After transfec-
tion to reconstitute mutant viruses, we performed selection in an HCV cell culture sys-
tem (42, 43). The relative fitness (RF) of a mutant virus was calculated based on the
changes in frequency of the mutant virus and the wild-type virus after one round of
selection in cell culture (Fig. S1A). In our selection experiment, we grew 5 small subli-
braries (;500 mutants each) separately to reduce the noise in fitness measurements
(see Materials and Methods). The fitness data reported in this study are highly corre-
lated with the previously reported independent experiment (Fig. S1B and C) (11).

Our experiment provides a comprehensive profiling of the fitness effect of single
amino acid substitutions (1,565 out of 1,634 possible substitutions, after filtering out
low-frequency mutants in the plasmid library). We grouped together nonsynonymous
mutations leading to the same amino acid substitution (Data set S1). As expected, the
fitness effects of synonymous mutations were nearly neutral, while most nonsynony-
mous mutations were deleterious (Fig. 1A and B). The RF of all mutations is shown with
the heatmap in Fig. 1C. We found that the majority of single amino acid mutations had
fitness costs, and more than half of them were found to be significantly deleterious, or
“lethal” (shown at –8 for Fig. 1A; Materials and Methods). The fraction of lethal muta-
tions is 59.5% (932/1,565) for single amino acid substitutions and 95.1% (77/81) for
nonsense mutations with known RF. As NS5A is essential for viral replication, the non-
sense mutations should be detrimental. The four nonsense mutations (4/81) that were
not identified to be lethal in our profile may due to an experimental artifact that is in-
evitable in high-throughput genetic screening studies (14, 44). The low tolerance of
nonsynonymous mutations in HCV NS5A, which is an essential protein for viral replica-
tion, is consistent with previous small-scale mutagenesis studies of RNA viruses (45).
Our data support the view that RNA viruses are very sensitive to the effect of deleteri-
ous mutations, possibly due to the compactness of their genomes (46, 47).

Using the distribution of fitness effects of synonymous mutations as a benchmark
for neutrality, we identified that only 2.4% (37/1,565) of single amino acid mutations
are beneficial (Materials and Methods). The estimated fraction of beneficial mutations
is consistent with previous small-scale mutagenesis studies of viruses, including bacte-
riophages, vesicular stomatitis virus, etc. (20, 45, 48, 49). Our results indicate that HCV
NS5A protein is under strong purifying selection, suggesting that viral proteins are
highly optimized in their natural conditions.

Deleterious mutations as evolutionary constraints. Mutations that severely
reduce replication fitness impose constraints on the evolution of viruses and are less
likely to contribute to adaptation through gain of function. We analyzed the sequence
diversity of HCV sequences identified in patients from the HCV sequence database of
Los Alamos National Lab and the European HCV Database (euHCVdb) (Materials and
Methods). To avoid biases toward specific genotypes, we included ;2,600 sequences
from all HCV genotypes in analysis. The sequence diversity at each site was highly cor-
related with the replication fitness (the mean fitness of observed mutants at each site)
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measured in our study (Fig. 2A; Spearman’s r = 0.81, P=1.75� 10221). The amino acid
sites with high fitness costs were often highly conserved, such as residues 32, 33, 39,
57, 59, 60, 76, 88, 91, 94, et al. We also calculated the frequency of natural occurrence
for all mutations and noticed that the majority of mutations with a frequency of .0.1
were relatively neutral in replication fitness (Fig. 2B). Conversely, mutations that do not
occur in nature (frequency of 0) may not be lethal for replication fitness, pointing to
the potential limited sampling of natural sequences.

To understand the biophysical basis of mutational effects (50), we took advantage
of the available structural information. The crystal structure of NS5A domain I is avail-
able, excluding the amphipathic helix at the N terminus (51, 52). We calculated the rel-
ative solvent accessibility of all residues and found that the fitness effects of deleteri-
ous mutations at buried sites (i.e., with lower solvent accessibility) were more
pronounced than those at surface-exposed sites (Fig. 2C, Fig. S2A) (53). Residues with
average fitness of ,0.2 showed a lower relative solvent accessibility (Fig. S2B).
Moreover, we performed simulations of protein stability for individual mutants using
PyRosetta (Materials and Methods) (54, 55). A mutation with DDG of.0, i.e., shifting
the free energy difference to favor the unfolded state, is expected to destabilize the

FIG 1 Distribution of fitness effects (DFE) of single amino acid substitutions in domain IA of HCV NS5A protein without drug selection. (A) DFE of single
amino acid substitutions. The x axis shows the log transformed relative fitness. Lethal mutations are shown at –8. A zoom-in view shows the nonlethal
portion of substitutions. (B) DFE of synonymous substitutions, which is centered at 0 for log transformed relative fitness. (C) The Heatmap shows the
relative fitness of all mutations. Lethal mutations are shown in dark blue (relative fitness = 0). Mutations that were filtered due to low frequency in the
plasmid library (unknown relative fitness) are shown in black.
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FIG 2 Mutations with deleterious fitness effects reveal constraints of protein evolution. (A) The pattern of sequence conservation observed in patient
sequences is highly correlated with the replication fitness measured in cell culture. The blue line shows the average relative fitness for each residue
considering all mutations; the orange line shows the Shannon entropy. (B) The Scatterplot shows the frequency of natural occurrence and the log
transformed relative fitness for individual mutants. (C) Mutations at amino acid sites with lower solvent accessibility tend to incur larger fitness costs. The
relative solvent accessibility for each residue is significantly correlated with median relative fitness (Spearman’s r = 0.56, P= 3.4� 1027). (D) Mutations at
amino acid sites with larger effects on destabilizing protein stability (predicted DDG. 0) tend to reduce the viral replication fitness. Changes in folding free
energy DDG (Rosetta energy unit) of the NS5A monomer were predicted by PyRosetta (PDB: 3FQM). The median predicted DDG at each amino acid site is
shown. The median fitness of observed mutants at each amino acid site is shown. In panels C and D, red lines represent the fits by linear regression and
are only used to guide the eye.
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protein. Three protein structures were utilized. First, we performed protein stability
prediction based on the 3FQM structure, which has the closest reference sequence to
the NS5A sequence we used in our experiments but still differs by 20 amino acid sub-
stitutions. At the residue level, we found mutations that decreased protein stability
(median predicted DDG change for each residue) led to reduced viral fitness (the
median and mean fitness of observed mutants at each site, P = 7.7� 1028 and P =
2.3� 1026, respectively; Fig. 2D, Fig. S2C). For example, mutations at a stretch of
highly conserved residues (F88 to N91) that run through the core of NS5A protein
tended to destabilize the protein and significantly reduced the viral fitness.
Mutations that increase DDG beyond a threshold (;5 Rosetta energy units) were
mostly lethal. This is consistent with the threshold robustness model, which predicts
that proteins become unfolded after using up the stability margin (15, 56, 57). The
negative correlation between protein stability and viral fitness was confirmed by pre-
dicting DDG using a different Protein Data Bank (PDB) model (4CL1; Fig. S2D to F).
Although the sequence of 3FQM and 4CL1 has 29 amino acid differences (83.4%
identity), the protein structures are highly similar to each other, and the predicted
DDGs are highly consistent among residues (Fig. S2D and E). Furthermore, we per-
formed homology structural modeling using SWISS-MODEL (58) and predicted the
protein structure based on the NS5A sequence we used in the experiments (Fig. S2G
to I). With the same amino acid sequence, the predicted structure allowed us to com-
pare DDG and viral fitness for each individual mutant. Consistent with the result at
the residue level (Fig. S2H), the negative correlation and the protein stability thresh-
old exist for all the mutants (Fig. S2I). We also note that mutations can be deleterious
because they impair protein function rather than destabilize the protein, so the cor-
relation between protein stability and fitness is not expected to be perfect. The level
of correlation between DDG and fitness that we observed is similar to that from pre-
vious studies of other proteins (13, 30, 59).

Adaptive potential as a function of environmental stress. Beneficial mutations
are the raw materials of protein evolution (20). We aimed to study the role of environ-
mental stress in modulating the adaptive potential of drug-targeted viral proteins. In
an independent study (11), the mutant library of HCV NS5A protein was selected under
a single drug concentration ([DCV] = 20 pM) to profile the effects of mutations on drug
resistance. In this study, we selected the mutant library at 10, 40, and 100 pM of DCV.
The drug concentrations were chosen based on the in vitro 50% inhibitory concentra-
tion (IC50) of wild-type HCV virus (;20 pM) to represent different levels of environmen-
tal stress (mild, intermediate, and strong).

By tuning the concentration of DCV, we observed a change in the DFE (Table S1),
particularly of beneficial mutations (Fig. 3A). At higher drug concentrations, we
observed an increase in the total number of beneficial mutations (Fig. 3B, Table S2).
Furthermore, the cumulative distribution function (CDF) of beneficial mutations also
shows an increase in the median and maximum relative fitness (Fig. 3C). We further
tested whether the shape of this distribution changed under drug selection. Previous
empirical studies supported the hypothesis that the DFE of beneficial mutations is ex-
ponential or bounded on the right (40, 45, 48, 60–69). Following a maximum likelihood
approach, we fit the DFE of beneficial mutations to the generalized Pareto distribution
(Fig. S3; Materials and Methods). The fitted distribution is described by two parameters,
a scale parameter (t ) and a shape parameter (κ) that determines the behavior of the
distribution’s tail. Using a likelihood-ratio test (70), we found that our data are consist-
ent with the null hypothesis that the DFE of beneficial mutations is exponential (κ = 0)
(Table S2).

Furthermore, we used a maximum-likelihood approach to fit a displaced-gamma
distribution to the DFE to estimate the distance to the phenotypic optimum in Fisher’s
geometric model (FGM) (71, 72) (Fig. S4). The displaced-gamma distribution has the
shape of a negative gamma distribution, shifted by a parameter s0 that indicates the
distance of the initial genotype (i.e., wild type) to the optimum (Materials and
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Methods). Estimated distances to the phenotypic optimum under different conditions
are summarized in Table S3. In accordance with theoretical expectations, we found
that the distance to the phenotypic optimum increased as the level of environmental
stress increased (i.e., increasing drug concentration).

A pharmacodynamics model explains the shift of DFE with increased drug
concentration. Our results show that the adaptive potential of proteins is modulated
by the strength of environmental stress. To explain the changing spectra of beneficial
mutations upon drug treatment, we employed a pharmacodynamics model describing
viral fitness as a function of drug concentration (i.e., phenotype-fitness mapping)
(Fig. 4A).

FIG 3 The spectrum of beneficial mutations changes under increasing environmental stress imposed by the antiviral drug daclatasvir. (A)
DFE of single amino acid substitutions in domain IA of HCV NS5A protein under increasing environmental stress by daclatasvir. The black line
indicates the threshold used for classifying beneficial mutations (Materials and Methods). (B) The number of beneficial mutations as a
function of environmental stress imposed by daclatasvir. (C) The cumulative distribution function (CDF) of the fitness effect of beneficial
mutations. The dashed black line indicates the threshold used for classifying beneficial mutations.
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FIG 4 The adaptive potential under drug selection is determined by the effects of mutations on replication fitness and drug resistance. (A) Hypothetical
dose response curves of the wild-type (WT) virus and a drug-resistant mutant virus. The blue and red lines represent the absolute fitness of WT virus and
drug-resistant mutant virus, respectively. The yellow dashed line represents the relative fitness of the mutant virus to WT virus. The absolute fitness
decreases with drug concentration [drug] following f ¼ f0

IC50
IC501½drug�, where f0 is the fitness without drug selection and IC50 is the half inhibitory

concentration. Compared to the wild-type virus, the hypothetical drug-resistant mutant carries a fitness cost (smaller f0) but is less sensitive to drug
inhibition (larger IC50). The relative fitness of the drug-resistant mutant is expected to increase with drug concentration. When drug concentration ! 1,

(Continued on next page)
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f ¼ f0
IC50

IC501½drug�

where f0 is the fitness without drug selection and IC50 is the half inhibitory concen-
tration. The absolute fitness f decreases with drug concentration ([drug]). In this model,
the fitness of each mutant under drug selection is contributed by two traits, the fitness
without drug selection (f0) and the effect on drug resistance (IC50). We define the drug
resistance score (W) of a mutant as the ratio of the relative fitness under drug selection
to that without drug selection.

Wmut; drug½ �¼ fmut
�
fwt

� �
=f0mut

�
f0wt

Based on the above pharmacodynamics model, W is proportional to the IC50 of the
mutant. To examine the accuracy of W using an experimentally validated dose
response curve, we utilized a set of mutants previously constructed by site-directed
mutagenesis (Fig. S5) (11). The drug dose response curves were experimentally meas-
ured for each individual mutant. We found that the effects of mutations on drug resist-
ance (W) estimated from the fitness data were generally consistent with estimates
based on the measured dose response curves (Fig. 4B and Fig. S6; Materials and
Methods), suggesting that the drug resistance score W is accurate and can be used to
estimate IC50. Thus, we estimated the IC50 value of all profiled mutations (Fig. 4C). We
found that residues 28, 31, 92, and 93 are enriched with drug resistance mutations
with high IC50 values, consistent with a previous experimental study (11). These posi-
tions were also reported to be hot spots for DCV drug resistance in multiple HCV geno-
types (73–75).

This pharmacodynamics model can help explain the change of DFE with the
increase of drug concentration. The mutations that reduce a protein’s binding affinity
to drug molecules (i.e., less inhibited by the drug) may come with a fitness cost (i.e.,
smaller f0 than the wild type). Among all the nonlethal single amino acid substitutions
profiled in our HCV NS5A protein library, we found that roughly half of the mutations
increased resistance to DCV (i.e., improved new function) at the expense of replication
fitness without drug (Fig. 4D; Spearman’s r = –0.13, P=8.3� 1024). This group of re-
sistance mutations (lower-right section in Fig. 4D) can become beneficial when the
environmental stress imposed by the antiviral drug is strong, leading to an increase in
the proportion of beneficial mutations at higher drug concentrations. Moreover, as the
wild-type virus moves further away from the phenotypic optimum, the relative fitness
of the drug-resistant mutant is expected to increase with environmental stress (Fig. 4A,
dashed line). Indeed, we found that the relative fitness of validated drug-resistant
mutants increased at higher drug concentration (Fig. 4E).

DISCUSSION

Site-directed mutagenesis and experimental evolution are traditional approaches to
examine the DFE (76–79). Both methods provide pivotal insights into the shape of the
DFE, yet with limitations. The site-directed mutagenesis approach requires fitness
assays for each individual mutant and can only provide a sparse sampling of

FIG 4 Legend (Continued)
the RFmut[drug] ! f0 MutIC50(mut)IC50(mut)/f0 WT IC50(WT). In the hypothetical curve, we set f0 WT = 1, IC50(WT) = 1; f0 Mut = 0.2, IC50(Mut) = 10. Then RFmut[drug] would
approach 0.2 · 10 = 2 when drug concentration ! 1. The hypothetical curves explain the increase of beneficial mutations upon drug treatment. (B) The
drug resistance score W estimated from validation experiments of individual mutants is consistent with the estimates based on the pharmacodynamics
modeling of the screening result (Pearson correlation = 0.71, P = 1.1� 1024). As the experiment collected virus at 48 h postinfection while the screening
cultured for 144 h, the ratio between log(Wexperimental validation) and log(W

fitness profiling) is expected to be 48 h/144 h = 0.33 under exponential growth. The
fitted linear curve (red line) gives a ratio of 0.34, which is consistent with the expectation. (C) The heatmap shows the predicted IC50 value of all mutants.
Lethal mutations are marked with black. (D) The effects of mutations on replication fitness (i.e., fitness without drug) and drug resistance score W at [DCV] =
40 pM are shown by the scatterplot. (E) Relative fitness of the validated drug-resistant and drug-sensitive mutants (Fig. S5) as a function of [DCV]. With the
increase of drug concentration, the relative fitness of the drug-resistant mutant is increased.
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mutations. In experimental evolution, the sampling of sequence space via de novo
mutations is biased toward large-effect beneficial mutations, as they are more likely to
fix in the population. In contrast, the deep mutational scanning approach (9), which
utilizes high-throughput sequencing to simultaneously assay the fitness or phenotype
of a library of mutants, allows for unbiased and large-scale sampling of fitness land-
scapes and thus is ideal for studying the characteristics of empirical DFE. The downside
of this high-throughput approach is that the fitness measurements can be noisy, espe-
cially for large mutant libraries (80). In our experiment, we divided the mutant library
into smaller sublibraries (;500 mutants) in selection experiments. We compared the
data to an independent experiment and found that the fitness estimates were largely
reproducible (Fig. S2). We also showed that the observed change in the DFE under dif-
ferent conditions was consistent with validation experiments (Fig. 3). Since this study is
focused on the properties of the entire distribution of mutations rather than the effects
of specific mutations, our findings on the general patterns of DFE are robust to the
errors in fitness estimates. Our study quantified the fitness effects of single amino acid
substitutions in the drug-targeted region of an essential viral protein. In general, the
empirical DFE of HCV NS5A was consistent with previous findings that viral proteins
were highly optimized in the natural condition and very sensitive to the effects of dele-
terious mutations.

One crucial point is that DFE will vary as a function of the environment (33, 35, 81).
In the study by Stiffler, the level of environmental stress is controlled by ampicillin con-
centration (33). Because TEM-1’s function is to degrade ampicillin, deleterious muta-
tions that impair the enzyme function (“loss-of-function”) would become more delete-
rious at higher dose of ampicillin. In our system, we expect that the function of HCV
NS5A protein for viral replication and drug resistance to daclatasvir are two relatively
independent traits; thus, the dose of daclatasvir should not alter the strength of purify-
ing selection on maintaining protein stability and viral replication. Indeed, we do not
find much difference on the deleterious side of DFE across different environments.
Instead, we have observed significant changes on the beneficial side of DFE as a func-
tion of the drug dose. Because HCV NS5A protein is not well adapted in the novel envi-
ronment of daclatasvir selection, the effect of drug resistance mutations (“gain-of-func-
tion”) becomes more beneficial at higher drug dose. Moreover, due to the pleiotropic
effect of mutations on drug resistance and replication fitness (Fig. 4), there is an
increasing supply of beneficial mutations at higher drug dose.

Although different systems have distinct protein-drug interactions that lead to dif-
ferent resistance profiles (82), the results in our study provide a general framework to
study the DFE of drug-targeted proteins. Future studies along this line will further our
understanding of how proteins evolve new functions under the constraint of maintain-
ing their original function (83), as exemplified in the evolution of resistance to directly
acting antiviral drugs (84). Quantifying the characteristics of the DFE of drug-targeted
proteins in different environments (e.g., varying levels of environmental stress or con-
flicting selection pressures) would allow us to assess repeatability in the outcomes of
viral evolution (85) and guide the design of therapies to minimize drug resistance (34).

MATERIALS ANDMETHODS
Mutagenesis. The mutant library of HCV NS5A protein domain IA (86 amino acids) was constructed

using saturation mutagenesis as previously described (11). In brief, the entire region was divided into
five sublibraries, each containing 17 to 18 amino acids (;500 mutants in each sublibrary). NNK (N: A/T/
C/G, K: T/G) was used to replace each amino acid. The oligos, each of which contains one random codon,
were synthesized by Integrated DNA Technologies (IDT). The mutated region was ligated to the flanking
constant regions, subcloned into the pFNX-HCV plasmid, and then transformed into bacteria. The pFNX-
HCV plasmid carrying the viral genome was synthesized in Ren Sun’s lab based on the chimeric
sequence of genotype 2a HCV strains J6/JFH1.

Cell culture. The human hepatoma cell line (Huh-7.5.1) was provided by Francis Chisari from the
Scripps Research Institute, La Jolla, California. The cells were cultured in T-75 tissue culture flasks
(Genesee Scientific) at 37°C with 5% CO2. The complete growth medium contained Dulbecco’s modified
Eagle’s medium (Corning Cellgro), 10% heat-inactivated fetal bovine serum (Omega Scientific), 10mM
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HEPES (Life Technologies), 1� minimal essential medium (MEM) nonessential amino acids solution (Life
Technologies) and 1� penicillin-streptomycin-glutamine (Life Technologies).

Selection of mutant viruses. The plasmid mutant library was transcribed in vitro using a T7
RiboMAX Express large scale RNA production system (Promega) and purified using a PureLink RNA mini-
kit (Life Technologies). Then, 10mg of in vitro transcribed RNA was used to transfect 4 million Huh-7.5.1
cells via electroporation using Bio-Rad Gene Pulser (246 V, 950mF). The supernatant was collected 6 days
posttransfection, and virus titer was determined by immunofluorescence assay. The viruses collected af-
ter transfection were used to infect ;2 million Huh-7.5.1 cells with an multiplicity of infection (MOI) of
around 0.1 to 0.2. The five sublibraries were passaged for selection separately. For the three different lev-
els of selection pressure, the growth medium was supplemented with 10 pM, 40 pM, and 100 pM HCV
NS5A inhibitor daclatasvir (BMS-790052), respectively. The supernatant was collected at 6 days
postinfection.

Preparation of Illumina sequencing samples. For each sample, viral RNA was extracted from
700ml supernatant collected after transfection and after selection using a QIAamp viral RNA minikit
(Qiagen). Extracted RNA was reverse transcribed into cDNA with a SuperScript III reverse transcriptase kit
(Life Technologies). The targeted region in NS5A (51 to 54 nucleotides [nt]) was PCR amplified using
KOD Hot Start DNA polymerase (Novagen). The Eppendorf thermocycler was set as follows: 2min at 95°
C; 25 to 35 three-step cycles of 20 s at 95°C, 15 s at 52 to 56°C (sublibrary 1, 52°C; 2, 52°C; 3, 52°C; 4, 56°
C; 5, 54°C), and 25s at 68°C; 1min at 68°C. The number of PCR cycles was chosen based on the copy
number of cDNA templates as determined by quantitative PCR (qPCR) (Bio-Rad). The PCR products were
purified using a PureLink PCR purification kit (Life Technologies) and prepared for Illumina HiSeq 2000
sequencing (paired-end, 100 bp) following 59-phosphorylation using T4 polynucleotide kinase (New
England BioLabs), 39 dA-tailing using a dA-tailing module (New England BioLabs), and TA ligation of the
adapter using T4 DNA ligase (Life Technologies). Each sample was tagged with unique 3-bp customized
barcodes, which were part of the adapter sequence and were sequenced as the first three nucleotides in
both the forward and reverse reads (59).

Analysis of Illumina sequencing data. The sequencing data were parsed using the SeqIO function
of BioPython. The reads from different samples were demultiplexed by the barcodes and mapped to the
entire mutated region in NS5A by allowing, at maximum, 5 mismatches with the reference genome (11).
Since both forward and reverse reads cover the whole amplicon, we used paired reads to correct for
sequencing errors. A mutation was called only if it was observed in both reads and the quality score at
the corresponding position was at least 30. Sequencing reads containing mutations not supposed to
appear in our single-codon mutant library were excluded from downstream analysis. The sequencing
depth for each sublibrary is at least ;105 and 2 orders of magnitude higher than the library complexity.

Calculation of relative fitness. For each condition of selection experiments (i.e., different concentra-
tion of daclatasvir [DCV]), the relative fitness (RF) of a mutant virus to the wild-type virus was calculated
by the relative changes in frequency after selection,

RFmutð½DCV�Þ ¼ f T¼2
mut

f T¼1
mut

 !
=

f T¼2
WT

f T¼1
WT

 !

where f T¼round
mut and f T¼round

WT is the frequency of the mutant virus and the wild-type virus at round 1
(after transfection) or round 2 (after infection). The fitness of wild-type virus is normalized to 1. The fit-
ness values estimated from one round (round 1 to round 2) have been shown to be highly consistent
with estimates based on round 0 to round 1 (Fig. S2) and estimates from multiple rounds of selection
(11). A mutant was labeled as “missing” if the mutant’s frequency in the plasmid library was less than
0.0005. A mutant was labeled as “lethal” if the mutant’s frequency after transfection was less than
0.0005 or its frequency after infection was 0 (RF = 0) (11).

The threshold for beneficial mutations was chosen as 2s silent, where 2s silent is the standard deviation
of the log transformed RF of synonymous mutations (Fig. 1). The fitness effects of nonsynonymous
mutations leading to the same amino acid substitution were averaged to estimate the fitness effect of
the given single amino acid substitution.

Fitting the distribution of fitness effects of beneficial mutations. The distribution of log trans-
formed RF of beneficial mutations was fitted to a generalized Pareto distribution following a maximum
likelihood approach (70):>):

Fðxjk ; tÞ ¼
12ð11k

t
xÞ2

1
�
k ; x$0; ifk . 0 ðFrechetÞ

12ð11k

t
xÞ2

1
�
k ; 0#x,2

t

k
; ifk , 0 ðWeibullÞ

12e2
x=t ; x$0; if k ¼ 0 ðGumbelÞ

8>>>><
>>>>:

Only mutations with RF higher than the beneficial threshold 2s silent were included in the distribution
of beneficial mutations. The RFs were normalized to the beneficial threshold. The shape parameter κ
determines the tail behavior of the distribution, which can be divided into three domains of attraction,
Gumbel domain (exponential tail, κ = 0), Weibull domain (truncated tail, κ , 0), and Fréchet domain
(heavy tail, κ . 0). For each selection condition, a likelihood ratio test was performed to evaluate
whether the null hypothesis κ = 0 (exponential distribution) can be rejected.
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Fitting the distribution of fitness effects to Fisher’s geometrical model. Fisher’s geometrical
model predicts that the distribution of fitness effects of mutations is distributed according to a negative
displaced gamma distribution (71, 72). This distribution has a shape parameter (a), a scale parameter
(b), and a displacement parameter (s0). We assume that RFs are measured with a normally distributed
measurement error with standard deviation s silent. Thus, the observed distribution of RFs is modeled as
the sum of a gamma and normally distributed random variable. We used the NormalGamma package in
R to numerically compute the normal-gamma density function (86). Maximum likelihood estimates of
the parameters of the negative displaced gamma distribution were obtained with L-BFGS-B optimization
implemented in the R function optim.

Inferring drug resistance from fitness data.We can quantify the drug resistance of each mutant in
the library by computing its fold change in relative fitness,

Wð½DCV�Þ ¼ RFmutð½DCV�Þ
RFmut

Here, RFmut is the relative fitness of a mutant under the natural condition (i.e., no drug). W is the fold
change in relative fitness and represents the level of drug resistance relative to the wild type. W. 1 indi-
cates drug resistance, and W, 1 indicates drug sensitivity.

This empirical measure of drug resistance can be directly linked to a simple pharmacodynamics
model (84), where the viral replicative fitness is modeled as a function of drug dose,

Wpredictð½DCV�Þ ¼ ICmut

½DCV�1ICmut

� �
=

ICwt

½DCV�1ICwt

� �

Here, IC denotes the half-inhibitory concentration. The Hill coefficient describing the sigmoidal
shape of the dose response curve is fixed to 1, as used in fitting the dose response curves of wild-type vi-
rus and validated mutant viruses. The drug resistance score W inferred from fitness data is consistent
with the drug resistance score Wpredict predicted from dose response curves of validated mutants
(Fig. S6).

Calculation of relative solvent accessibility. DSSP (https://swift.cmbi.umcn.nl/gv/dssp/DSSP_3
.html) was used to compute the solvent accessible surface area (SASA) (87) from the HCV NS5A protein
structure (PDB: 3FQM) (52). The SASA was then normalized to relative solvent accessibility (RSA) using
the empirical scale reported in reference 88.

Predictions of protein stability. Homology modeling based on our NS5A sequence was performed
using the SWISS-MODEL server (58) (https://swissmodel.expasy.org/).

The DDG (in Rosetta energy units) of HCV NS5A mutants was predicted using PyRosetta (version
PyRosetta4.conda.mac.python37.Release r242) as the difference in scores between the monomer struc-
ture of mutants (single amino acid mutations from sites 32 to 103) and the reference (PDB: 3FQM; 4CL1
or the homology model). The score is designed to capture the change in thermodynamic stability
caused by the mutation (DDG).

The PDB file of the NS5A dimer was cleaned and trimmed to a monomer (chain A). Next, all side
chains were repacked (sampling from the 2010 Dunbrack rotamer library [88]) and minimized for the ref-
erence structure using the “ddg_monomer” scoring function. After an amino acid mutation was intro-
duced, the mutated residue was repacked, followed by line minimization of the backbone and all side
chains (algorithm, “linmin”). This procedure was performed 10 times, and the predicted DDG of a mutant
structure is the average of all the scoring structures.

We note that predictions based on the NS5A monomer structure were only meant to provide a
crude profile of how mutations at each site may impact protein stability. Potential structural constraints
at the dimer interface have been ignored, which is further complicated by the observations of two differ-
ent NS5A dimer structures (51, 52).

Diversity of HCV sequences identified in patients. Aligned nucleotide sequences of HCV NS5A
protein were downloaded from the Los Alamos National Lab database (89) (all HCV genotypes, ;2,600
sequences total) and clipped to the region of interest (amino acids 18 to 103 of NS5A). Sequences that
caused gaps in the alignment of the H77 reference genome were manually removed. After translation to
amino acid sequences, sequences with ambiguous amino acids were removed (;2,300 amino acid
sequences after filtering). The sequence diversity at each amino acid site was quantified by Shannon en-
tropy. The frequency of amino acid on each site that differs from our NS5A sequence was calculated.

Data and reagent availability. All research materials are available upon request. Raw sequencing
data have been submitted to the NIH Sequence Read Archive (SRA) under BioProject number
PRJNA395730. All scripts have been deposited at https://github.com/leidai-evolution/DFE-HCV.

Ethics statement. The use of human cell lines and infectious agents in this paper is approved by the
Institutional Biosafety Committee at the University of California, Los Angeles (IBC no. 40.10.2-f).
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