
Heliyon 9 (2023) e21523

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

Research article

A novel approach for standardizing clinical laboratory categorical 
test results using machine learning and string distance similarity
Syed Ahmmed a, M. Rubaiyat Hossain Mondal a,∗, Md Raihan Mia b,d, 
Mohammad Adibuzzaman c, Abu Sayed Md. Latiful Hoque b, Sheikh Iqbal Ahamed d

a Institute of Information and Communication Technology, Bangladesh University of Engineering And Technology, Dhaka, Bangladesh
b Department of Computer Science And Engineering, Bangladesh University of Engineering And Technology, Dhaka, Bangladesh
c Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR, USA
d Department of Computer Science, Marquette University, Milwaukee, WI, USA

A R T I C L E I N F O A B S T R A C T

Keywords:

Standardization
Electronic health records
LOINC
SNOMED CT
Machine learning
String distance similarity
Data quality
Data science

Standardizing clinical laboratory test results is critical for conducting clinical data science 
research and analysis. However, standardized data processing tools and guidelines are inadequate. 
In this paper, a novel approach for standardizing categorical test results based on supervised 
machine learning and the Jaro-Winkler similarity algorithm is proposed. A supervised machine 
learning model is used in this approach for scalable categorization of the test results into 
predefined groups or clusters, while Jaro-Winkler similarity is used to map text terms into 
standard clinical terms within these corresponding groups. The proposed method is applied to 
75062 test results from two private hospitals in Bangladesh. The Support Vector Classification 
algorithm with a linear kernel has a classification accuracy of 98%, which is better than the 
Random Forest algorithm when categorizing test results. The experiment results show that Jaro-
Winkler similarity achieves a remarkable 99.93% success rate in the test result standardization 
for the majority of groups with manual validation. The proposed method outperforms previous 
studies that concentrated on standardizing test results using rule-based classifiers on a smaller 
number of groups and distance similarities such as Cosine similarity or Levenshtein distance. 
Furthermore, when applied to the publicly available MIMIC-III dataset, our approach also 
performs excellently. All these findings show that the proposed standardization technique can 
be very beneficial for clinical big data research, particularly for national clinical research data 
hubs in low- and middle-income countries.

1. Introduction

The use of electronic health records (EHRs) has increased significantly over the past few years. More and more evidence points 
out that generated data may make it easier to identify new medical evidence [1–3]. Additionally, it will improve patient outcomes 
and medical decision- making. By combining patient data from heterogeneous clinical data sources, EHRs also aid national or multi-
institutional health research initiatives. Although EHRs have many benefits, including the generation of large amounts of digitalized 
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Table 1

Example of categorical clinical laboratory test results.

Test Name Attribute Name Specimen Test Result

HIV Test Sensitivity Blood Non-reactive
Blood Type ABO Group Serum “AB”
Hepatitis B Surface Antigen Panel HBsAg Blood Positive
Hepatitis B Surface Antigen Panel HBsAg Blood ”Positive (+ve)”
Hepatitis B Surface Antigen Panel HBsAg Urine Positive
Liver Function Test Bilirubin Blood Yellowish
Liver Function Test Bilirubin Blood YELLOW
Liver Function Test Bilirubin Blood L Yellow
Stool Analysis Blood in the stool Stool Present
Stool Analysis Blood in the stool Stool Absent
Stool Analysis Blood in the stool Stool Absent
Blood Type Rh Factor Serum O
Blood Type Rh Factor Serum “0”
Blood Type Rh Factor serum “O”

medical data, the vast majority of this data is still not standardized. Several studies have pointed out that the lack of standardization in 
EHR data presents a challenge when using the data for research [4–6]. Standardization is especially important regarding categorical 
test results, which can be prone to variability and inconsistencies in data entry. The categorical test results are broken down into a 
few exemplary cases and presented in Table 1.

Categorical test results can have more noise and variation than numeric results. Medical laboratories have their own digital 
system for selecting the names of tests and results that appear on their menus, as well as the reference ranges for normal and 
abnormal results; sometimes, results are entered by typing manually. In particular, a system may employ local terminology which 
sometimes leads to incorrect synonyms and abbreviations. Many words were found to describe a positive result, such as “positive,” 
“positive +ve,” “Postive,” and “Posi”. Table 1 shows an instance where a test name “HBsAg” can have the same results denoted as 
“Positive”, “+”, “Positive (+ve)”. The Liver Function Bilirubin finding of the urine can be “yellowish,” “L yellow,” “YELLOW,” or 
“yellow”. A standardized dictionary can help with the problem of having to pay attention to how laboratory results are presented. 
Standard formats and identifiers for laboratory tests are provided by systems like the Logical Observation Identifiers Names and 
Codes (LOINC) [7] and Systematized Nomenclature of Medicine (SNOMED CT) [8].

Prior to initiating the exchange of clinical information across systems, it is essential to establish a standardized framework for 
clinical data in Bangladesh to ensure the successful integration of health research. With support from the Deutsche Gesellschaft 
für Internationale Zusammenarbeit (GIZ), the government adopted the District Health Information Software 2 (DHIS2), an open-
source program, in 2009 [9]. The implementation of DHIS2 in Bangladesh accelerated the prioritization of data standardization 
and interoperability in developing eHealth software and databases. Hospitals in the country typically use the Open Medical Record 
System (OpenMRS) for electronic medical record keeping. DHIS2 plays the role of aggregator of clinical data from different hospitals’ 
OpenMRS. However, as pointed out by Khan and Hoque [10], the clinical reports generated in these systems still lack international 
standardization and often make use of incorrect synonyms and abbreviations. Moreover, Mia et al. [11] compared the characteristics 
of existing health informatics systems in Bangladesh and discovered that these systems do not conform to international standards 
for interoperability. Even though a lot of EHRs are generated every day; public, private, and non-governmental organization (NGO) 
healthcare programs are still not connected to this infrastructure. This will likely lead to reports or results that are inconsistent.

In the literature, different ways and tools for standardizing clinical laboratory test results, particularly categorical test results were 
described. The Hauser et al. [12] team made and tested a tool to make sure that the results of lab tests in a large, multi-center clinical 
data warehouse were all the same. As part of the standardization process, typos were fixed, categorical results were normalized, 
inequalities were separated from numbers, and numbers written as words (like “million”) were turned into numbers. However, the 
study included fewer instances of categorical test results being reported in text. To automatically standardize categorical laboratory 
data, Kim et al. [13] attempted to filter out irrelevant information, organize the remaining data into meaningful groups, and map 
the results to commonly used concepts. To classify the findings, the researchers developed a rule-based algorithm. The methods 
proposed by the researchers aimed to establish a gold standard by performing well on their dataset. However, when applied to 
our new Bangladeshi dataset described later in Section 2.1, the same methods did not yield satisfactory results. The rule-based 
algorithm developed by the researchers could not classify many groups. Additionally, string similarity measurements, such as the 
Cosine similarity, showed insufficient outcomes when dealing with test data obtained from the ABO Blood test. The insufficiency 
became notably apparent while handling outcomes that contained positive signs (+) and a multitude of inconsistent variations, such 
as “(++)”, “++,” “(++++)”, and even variations like “+++” and “++-.” As a consequence, the performance was not satisfactory.

Despite these efforts, a comprehensive solution to the standardization problem is still elusive, especially when the process needs 
to be scaled up to involve many groups while maintaining perfect standardization. As a result, the issue of standardizing test results 
requires a solid data standardization protocol. In this study, we propose several techniques for transforming noisy, institution-specific 
test results into a standardized format. The main contributions of this paper are as follows:

• Application of a supervised machine learning (ML) model for scalable classification of categorical test results into predefined 
2
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• Implementation and evaluation of Jaro-Winkler similarity between the group’s categorical term with noisy result data and 
standard clinical terms from its predefined group. Jaro-Winkler similarity was evaluated as more accurate than Cosine Similarity 
or Levenshtein Distance for standardizing noisy clinical categorical data

• Execution of the indicated method to standardize categorical test results for a novel dataset from two private hospitals in 
Bangladesh

This paper is organized as follows: In the “Introduction” section, we examine a few research papers that discuss the significance 
of standardizing clinical laboratory test results for interoperability. We also discuss current research demonstrating how clinical 
laboratory test results are currently standardized, how they are designed, and what issues they have. We discuss and provide a 
workflow for standardizing the test result in the “Materials and Methods” section using insights from prior research and fresh 
methodologies to improve the robustness of the standardization process. The experimental results, as well as the model evaluation, 
analysis, and accuracy, are presented in the “Result” section. The main findings, limitations, and future suggestions are laid out in 
the “Discussion” section at the end of the paper. Finally, the paper provides concluding remarks.

2. Materials and methods

2.1. Dataset

This section provides an overview of the datasets used in the study. The source dataset was obtained from two of Bangladesh’s 
largest private hospitals, and this dataset collection is part of the development being done for the National Clinical Data Warehouse 
(NCDW) [11] of Bangladesh. However, the process of data integration raises new technical, semantic, and ethical concerns [14]. To 
address these issues, we obtained ethical clearance from the Bangladesh Medical Research Council (BMRC) to collect anonymous 
secondary data (Ref: BMRC/NREC/2019-2022/342). This enabled the integration of the data in a controlled manner and avoided 
any ethical problems. The study utilized a sizable dataset of health records, which included information from a large number of 
individuals and a significant number of records. From this dataset, we extracted 75062 categorical test results in text format.

To verify our algorithm’s generalizability, we extracted 5657 categorical test results from the publicly available MIMIC-III dataset 
[15] and employed the procedures to validate the research findings.

2.2. Procedures

The procedure we followed to standardize categorical test results can be broken down into the following steps. The first step was 
extraction and analysis, in which laboratory data was collected and analyzed for grouping. Grouping test results before comparing 
them with string distance similarity measures can improve performance by reducing irrelevant comparisons. Thus, identifying the 
test results in some groups and predefining the vocabulary for the groups can contribute to efficiency by avoiding comparing all 
test results to all standard terms. In the next step, prepossessing, the text is prepared and refined to be in an appropriate format for 
analysis. The manual labeling steps consider classifying their test results in order to create an automatic ML model for classifying 
the terms. Here, under every label name, the group has noisy terms from different institutions and standard terms from standard 
vocabulary from LOINC and SNOMED CT. Finally, standardization with the string distance similarity step eliminates noise and 
standardizes the results. Fig. 1 provides an overview of the entire standardization procedure.

2.3. Extraction and preprocess

This section describes the essential steps of data processing, in which unprocessed data from sources is prepared to be compatible 
with subsequent analysis using various prepossessing techniques. First, clinical laboratory data or reports, including the lab test 
identifier and the lab test result, were extracted from a database. The study gathered information from two institutions, each with its 
own sample size. The dataset was split into two categories: categorical data and numerical data. The focus of standardization efforts 
was mostly on categorical data, assuring consistent representation of outcomes such as “Positive”, “Negative”, or “Not Specified” 
as indicated in Table 2. Data cleansing and error detection techniques were used to find and rectify categorical anomalies, such 
as misspelled categories or non-standard abbreviations. Although the research did not consider numerical data, common examples 
include blood pressure readings (e.g., 120 80 mmHg), cholesterol levels (e.g., 200 mg/dL), or cell counts (e.g., 5.0 x 109 cells/L), 
which require standardized units and reference ranges for accurate interpretation.

Rows that did not qualify for standardization were removed, as were rows that contained implausible input errors. Regular 
expression (regex) patterns played a pivotal role in this process. To ensure precise categorization and mitigate potential classification 
challenges, specific symbols and signs were excluded from the test results through the utilization of regex patterns, which can 
effectively identify and isolate these unwanted characters. Certain symbols and signs were omitted from the test results to ensure 
precise categorization and to avoid potential classification difficulties. For reports related to LDL cholesterol and MPV, symbols such 
as the star sign (“*,” “**”), arbitrary dash (“-,” “–”), and superscript sign (“,” “»>”) were removed. Additionally, quotation marks (“”) 
and brackets (“()”) were replaced with spaces. These symbols and signs are usually the result of typographical or input errors and 
have no bearing on the test results. This step is critical for following processes like vectorizing the results for ML since it minimizes 
3
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Fig. 1. Workflow of standardization of clinical laboratory categorical test result.

2.4. Defining target labels with vocabulary groups

This section explains how the gold standard groups are defined from the standard vocabularies for the collected test results. Before 
developing the automated ML model for classification, a table consisting of eight vocabulary groups was established. According to 
the reference to the Kim et al. [13], in which the test results were divided into five groups, we add three additional groups and 
divide the test results into eight groups. This grouping aims to divide the test results into distinct groups so that string distance 
algorithms do not map themselves to other words when counting distances. Such grouping can improve the performance by reducing 
irrelevant comparisons and identifying similar strings. For instance, the map of “Positive” should not be “Present,” and the map of 
“Nil” should not be “not done.” Furthermore, grouping reduces the error of false standardization. Laboratory tests were grouped 
for this vocabulary group based on their “Test Name” and “Attribute Name”. A text mining technique was employed for extracting 
the specific rows. The dataset was imported into a data frame. Next, the rows were selected according to the presence of “test 
name” or matching string in result terms from the corresponding group lists such as “Physical Finding”, “Present Finding”, “Gender 
Finding”, etc. These rows allocated a group name as shown in Table 2. The selected rows were then labeled based on the name of the 
corresponding group. The data frames of selected rows with labels were combined for each group to generate a single, consolidated 
data frame of test results. The results terms from the source were queried against the LOINC and SNOMED CT vocabularies, which 
serve as the gold standard or international standard for standardizing clinical laboratory test results. LOINC and SNOMED are widely 
recognized as authoritative sources for defining standardized codes and terminology for medical concepts, including laboratory test 
results. By aligning the test results with these gold standard vocabularies, the selection of appropriate and consistent vocabulary 
terms for each group was ensured. This adherence to established standards enhances the accuracy, reliability, and interoperability 
of clinical laboratory data, facilitating effective communication and analysis in healthcare settings. In the second column of Table 2, 
the predefined vocabulary terms are displayed. In the third column, the corresponding “test name” is listed. This method facilitates 
the efficient categorization of a vast quantity of medical data and has the potential to be applied to other text analysis disciplines.

2.5. Assigning labels to terms using machine learning algorithms

In the last section, different target groups were identified manually by analyzing the whole dataset. This allowed the data to be 
put into eight groups. This section introduces a new method for labeling terms using ML algorithms that can considerably reduce 
4
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Table 2

Target labels with vocabulary groups.

Label Vocabulary Terms Example Test Name

Presence Finding
Positive, Negative, Moderately Positive,
Weakly Positive, Reactive, Non-Reactive

HIV Test, Dengue Test
Syphylis Test,Herpes Test etc.

from Different Virus test

Physical Finding

Amber, Blackish, Brown, Clear, Crystal Clear,
Dark Brown, Dark Straw, Deep Straw, Deep straw,
Greenish, Greyish White, Hazy, Greenish, Yellow,
Orange, Reddish, Straw, Turbid, Watery, Whitish,
Yellowish

Urine Analysis, Stool Analysis etc.

Blood Group Finding And Another Measure A, B, C, AB, O, +, ++, +++ Blood Group, Rh Type etc.

Mixed Finding
A Few, Few, Very Few, A Few, Normal, Present,
Absent, Occasional, Plenty, Trace, Nil

Urine Analysis etc.

Blood Component Finding
Fresh Frozen Plasma, Packed Red Blood Cells,

Platelet Apheresis,
Platelet Concentrate, Whole Blood,

Blood Component Test

Compatibility Finding Compatible, Incompatible Blood Compatibility Test

Gender Finding Female, Male Gender Status*

Non Specific Finding Not Done, Not Found, Not Specified Scrapping All Over The Dataset

*Note: The section titled “Example Test Name” provides examples of test names associated with each vocabulary group, but the list is not 
exhaustive. This column illustrates the test result that may be associated with each vocabulary group, rather than providing an exhaustive 
list of all tests.
*Gender status label is not a test name, but it is a way to figure out a person’s gender. In the same way, the Non-Specific Finding category 
does not refer to a specific test. Instead, it is a group for labels that do not fit into any other group.

data from the source is sent to the procedure and assigned a label (shown in Table 2) automatically. Fig. 2 shows the structure of the 
proposed paradigm for using ML to classify test result terms. A pandas DataFrame was populated with a labeled dataset consisting of 
test result data and their respective labels. In the DataFrame, the “result” column contains unclassified test results, while the “label” 
column contains the corresponding labels. TfidfVectorizer was employed to convert the test results’ data into numerical vectors. 
TfidfVectorizer is a popular text vectorization technique in ML that transforms a collection of unprocessed documents into a matrix 
of TF-IDF features, where TF stands for term frequency and IDF stands for inverse document frequency. The resulting matrix can then 
be utilized as input for ML models. Using the train test split function from scikit-learn [16], the dataset was then divided into training 
and testing sets. The performance of two popular machine learning algorithms, the Random Forest Classifier (RF) [17] and Support 
Vector Machine (SVM) Classifier [18], was evaluated. RF is a predictive technique that incorporates decision trees. It effectively 
manages noisy and high-dimensional data. It randomly selects features and trains each tree using a unique data sample. The trees 
independently predict the class label or group, and the mode of the predictions is taken as the final prediction. SVM looks for the 
optimal hyperplane for dividing groups. The method involves projecting the data into a higher dimensional space and then searching 
for the border between groups that produces the largest margin. For each model, the model was adapted to the training data, 
predictions were made using the testing data, and the accuracy score was calculated. The accuracy score served as the performance 
metric for evaluating the models, with a higher accuracy score indicating superior performance in accurately classifying text data 
into their respective categories. For evaluating the performance of the models, we also computed weighted F1 score, micro-averaged 
F1 score, and macro-average precision for every model in the labeled dataset [19]. To make it easier to understand how accurate the 
results were, the weighted F1 score and the micro-averaged F1 score were looked at. This is because accuracy with class imbalance 
can sometimes lead to too optimistic results. Jupyter Notebook was used to do all of the coding and analysis for this study [20].

2.6. Standardization with string distance similarity

This section describes the method for standardizing test results based on string distance similarity. After classifying all of the 
test results into different labels, a similarity score was calculated between test result from a group and each of the standard values 
of the group’s reference vocabulary. The measure of lexical and semantic similarity between two pieces of text determines how 
similar the texts are. Gomaa and Fahmy [21] suggested three methods for measuring similarity: string, corpus, and knowledge-
based. The corpus-based and knowledge-based approaches determine the similarity between two terms using information from large 
corpora or semantic networks. String-based approaches compare string sequences or character compositions for similarity. String-
based approaches evaluate the similarity of lexical features, so they cannot detect semantic similarities beyond trivial levels [22]. 
The text length of the lab test results used in this study was insufficient for semantic similarity extraction. As a consequence, string-
based lexical similarity was better for standardizing test results. Ristad and Yianilos [23] suggested a common approach to determine 
lexical similarity between two short strings. This study utilized the Jaro–Winkler distance, a well-known string distance similarity, 
to match two strings and calculate their similarity [24–26]. Comparing the applicability of Jaro-winkler distance, Cosine similarity, 
and Levenshtein distance [27], which are employed in [13], was another focus of this research. The Cosine of the angle between two 
5

vectors of two texts is used to calculate Cosine similarity. Levenshtein distance, on the other hand, determines the minimum number 
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Start

Load the dataset into ‘categorical test results’ and ‘labels’ lists

Convert the ‘categorical test_result’ into numerical vectors using ‘TfidfVectorizer’

Split the dataset into training and testing sets using ‘train_test_split’

Create a list of models to compare

RandomForestClassifier(max_depth=5) SVC(kernel=’linear’)

For each model in the list, fit the model to the training data

For each model in the list, make predictions on the test data using the fitted model

For each model in the list, compute the accuracy score of the predictions

Choose the best model for automatic labeling

End

Fig. 2. Flowchart of assigning labels to categorical test result using machine learning algorithms.

of operations required to transform one string into another. Equation (1) and (2) show how Jaro Winkler Similarity is utilized to 
measure the similarity between two strings [28].

𝑠𝑖𝑚𝑗 =
1
3

(
𝑚|𝑠1| + 𝑚|𝑠2| + 𝑚− 𝑡

𝑚

)
(1)

where 𝑚 is the number of matching characters. Two characters from 𝑠1 and 𝑠2 are considered matching if they are the same and not 
farther than 

⌊
max(|𝑠1|,|𝑠2|)

2

⌋
− 1 characters apart. |𝑠1| and |𝑠2| are the lengths of the first and second strings, respectively, and 𝑡 is the 

number of transpositions. 𝑡 is calculated as the number of matching (but different sequence order) characters divided by 2.

𝑠𝑖𝑚𝑤 = 𝑠𝑖𝑚𝑗 + 𝓁𝑝(1 − 𝑠𝑖𝑚𝑗 ) (2)

where 𝑠𝑖𝑚𝑗 is the Jaro similarity for strings 𝑠1 and 𝑠2, 𝓁 is the length of common prefix at the start of the string up to a maximum of 
4 characters, and 𝑝 is a constant scaling factor for how much the score is adjusted upwards for having common prefixes. 𝑝 should not 
exceed 0.25, otherwise the similarity could become larger than 1. The standard value for this constant in Winkler’s work is 𝑝 = 0.1.

The pseudocode in Algorithm 1 describes the similarity-scoring algorithm used to measure the lexical similarity between two 
strings within each data set. The algorithm accepts as input a sample list consisting of test results and a reference list of standard 
results from the vocabulary group. It then computes the Jaro-Winkler similarity score between each sample and each reference and 
stores the scores in a list. For each sample, the reference with the highest Jaro-Winkler similarity score is identified and added to a 
list. This precisely assigns each sample to the most comparable reference based on their Jaro-Winkler scores.

After calculating the similarity score between the terms and comparing the non-standardized term from the classified label to 
the most similar term from the standard data set, the algorithm returns the optimal match with the highest similarity score. The 
non-standardized term is then substituted for the closest term from the standard reference.

3. Results

3.1. Evaluation of machine learning models

Prior to standardization with string distance similarity, the test results were classified into eight predefined groups using super-
vised ML algorithms. This section describes the effectiveness of the models used to organize the test results. Two distinct algorithms 
were evaluated: RF with a maximum depth of 5 and SVM with a linear kernel.

The RF achieved an accuracy of 0.88 and a weighted average F1 score of 0.83, as shown in Table 3. It was found that the overall 
average F1 score was 0.47. The macro-average F1 score was 0.47. The macro-average precision and weighted-average precision were 
0.90 and 0.97, respectively. The weighted-average recall and macro-average recall, respectively, were 0.88 and 0.48. The SVM, on 
the other hand, obtained an accuracy of 0.98 and a weighted-average F1 score of 0.98, which is higher than that of RF. The macro-
average F1 score was 0.97. The weighted average precision and macro-average precision were, respectively, 0.99 and 0.96. The 
6

weighted-average recall and macro-average recall were, respectively, 0.98 and 0.99. The SVM with a linear kernel outperformed the 
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Algorithm 1: Standardize to vocabulary.
Input : Sample list and vocabulary list
Output : Dataframe with standardized samples and corresponding Jaro-Winkler similarity scores

1 standardize_to_vocabulary(𝑠𝑎𝑚𝑝𝑙𝑒_𝑙𝑖𝑠𝑡, 𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦_𝑙𝑖𝑠𝑡);
2 Function standardize_to_vocabulary(𝑠𝑎𝑚𝑝𝑙𝑒_𝑙𝑖𝑠𝑡, 𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦_𝑙𝑖𝑠𝑡):

3 𝑗𝑤_𝑠𝑐𝑜𝑟𝑒𝑠 ← JaroWinklerMeasures(𝑠𝑎𝑚𝑝𝑙𝑒_𝑙𝑖𝑠𝑡, 𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦_𝑙𝑖𝑠𝑡);
4 𝑟𝑒𝑠𝑢𝑙𝑡 ← [];
5 for 𝑠_𝑖𝑑𝑥, 𝑠𝑎𝑚𝑝𝑙𝑒 in enumerate(𝑠𝑎𝑚𝑝𝑙𝑒_𝑙𝑖𝑠𝑡) do

6 𝑚𝑎𝑥_𝑗𝑤_𝑠𝑐𝑜𝑟𝑒, 𝑚𝑎𝑥_𝑗𝑤_𝑖𝑑𝑥 ←max(𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑗𝑤_𝑠𝑐𝑜𝑟𝑒𝑠[𝑠_𝑖𝑑𝑥]), 𝑘𝑒𝑦 = 𝑙𝑎𝑚𝑏𝑑𝑎𝑥 ∶ 𝑥[1]); 𝑟𝑒𝑠𝑢𝑙𝑡.append([𝑠𝑎𝑚𝑝𝑙𝑒_𝑙𝑖𝑠𝑡[𝑠_𝑖𝑑𝑥], 𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦_𝑙𝑖𝑠𝑡[𝑚𝑎𝑥_𝑗𝑤_𝑖𝑑𝑥], 
𝑚𝑎𝑥_𝑗𝑤_𝑠𝑐𝑜𝑟𝑒]);

7 return DataFrame(𝑟𝑒𝑠𝑢𝑙𝑡, columns=[’Sample’, ’Standardized Sample’, ’Jaro-Winkler Score’]);

8 Function JaroWinklerMeasures:

9 𝑠𝑎𝑚𝑝𝑙𝑒_𝑙𝑖𝑠𝑡, 𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦_𝑙𝑖𝑠𝑡

10 initialize 𝑗𝑤_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠 as an empty list

11 for each 𝑠𝑎𝑚𝑝𝑙𝑒 in 𝑠𝑎𝑚𝑝𝑙𝑒_𝑙𝑖𝑠𝑡 do

12 initialize 𝑗𝑤_𝑟𝑜𝑤 as an empty list

13 for each 𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦 in 𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦_𝑙𝑖𝑠𝑡 do

14 𝑗𝑤_𝑠𝑐𝑜𝑟𝑒 ← jaro_Winkler (𝑠𝑎𝑚𝑝𝑙𝑒, 𝑣𝑜𝑐𝑎𝑏𝑢𝑙𝑎𝑟𝑦) append 𝑗𝑤_𝑠𝑐𝑜𝑟𝑒 to 𝑗𝑤_𝑟𝑜𝑤

15 append

16 𝑗𝑤_𝑟𝑜𝑤 to 𝑗𝑤_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠

17 return 𝑗𝑤_𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠

Table 3

Comparison of classification performance of machine learning models for test results categorization.

Model Name Parameter Accuracy Weighted Avg.
F1 score

Macro Avg.
F1 score

Weighted
Avg. Precision

Macro Avg.
Precision

Weighted
Avg. Recall

Macro Avg.
Recall

RF max depth = 5 0.88 0.83 0.47 0.90 0.97 0.88 0.48
SVM kernel =’linear’ 0.98 0.98 0.97 0.99 0.96 0.98 0.99

*Note: RF stands for Random Forest and SVM stands for Support Vector Machine.

Fig. 3. Comparison of confusion matrices for RF and SVM models for categorizing test results into different labels.

RF algorithm in terms of accuracy and all other performance metrics, according to our findings. Table 3 shows that SVM outperforms 
RF in this assignment.

Comparison of confusion matrices for RF and SVM models for categorizing categorical test results into various labels is depicted 
in Fig. 3. The confusion matrix for the RF model reveals a greater number of erroneous predictions than the confusion matrix for the 
SVM model. Specifically, the RF model made erroneous predictions across multiple categories, whereas the SVM model made errors 
only in the blood group finding category.

3.2. Overall accuracy of standardized textual test results in clinical laboratory findings

Comparing various string matching algorithms, Table 4 displays the standardized results of the test across multiple groups in the 
collected dataset. The table displays the number of instances and percentage of correctly standardized textual test results for each 
group. The second column of the table contrasts the ability of three distinct string matching algorithms, Jaro Winkler similarity, 
7

Cosine similarity, and Levenshtein distance, to standardize unique terms for each group. The results indicate that the “Presence 
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Table 4

Overall standardization results of test results across multiple groups of collected dataset by comparing different string distance similarity.

Group Label Standardization Status of Unique Term(%) Supported Data

Jaro Wink. Cos. Sim. Lev. Dist.

Presence Finding 21 of 21 (100%) 21 of 21(100%) 21 of 21(100%) 10728 (100%)
Physical Finding 29 of 29 (100%) 29 of 29 (100%) 29 of 29 (100%) 9493 (100%)
Blood Group Finding And Another Measure 23 of 35(65.71%) 15 of 35(42.85%) 23 of 35(65.71%) 4961 of 4961 (99.65%)
Mixed Finding 18 of 19 (94.73%) 18 of 19(94.73%) 18 of 19(94.73%) 29865 of 29867 (99.99%)
Blood Component Finding 14 of 14 (100%) 13 of 14(92.85%) 11 of 14 (78.57%) 1312 (100%)
Compatibility Finding 5 of 6 (83.33%) 6 of 6 (100%) 6 of 6 (100%) 1336 of 1337 (99.92%)
Gender Finding 4 of 4 (100%) 4 of 4 (100%) 4 of 4 (100%) 1466 (100%)
Non Specific Finding 9 of 9 (100%) 8 of 9(88.88%) 8 of 9(88.88%) 15900 (100%)

Total Correctly Standardize 92.97(%) 89.91% 90.98% 99.93%

*Note: Jaro Wink. stands for Jaro Winkler Similarity, Cos. Sim. Stands for Cosine Similarity and Lev. Dist. stands for Levenshtein distance.

Finding”, “Physical Finding”, “Blood Component Finding”, “Gender Finding”, and “Non-Specific Finding” group are standardized
successfully by Jaro Winkler similarity at a rate of 100%. Cosine similarity performs inadequately for “Blood Group Finding and 
Another Measure” because it misinterprets the “+” sign as an operator, rather than as part of the term, resulting in inaccurate 
similarity measurements, the standardization accuracy for this method is 42.85%, where another two have 65.71%. In contrast, the 
Levenshtein distance metric performs poorly for “Blood Component Finding” which contains lengthier terms than usual. This may be 
because the Levenshtein distance measure is based on the number of editing required to transform one term into another, and longer 
terms require more edits, which may not reflect the similarity between the terms accurately. So it showed 98.57% where Jaro-Winkler 
showed 100% and Cosine similarity showed 92.85%. For the standardizing of terms in unique counts, the Jaro Winkler showed a 
92.97% accuracy compared with Cosine Similarity (89.91%) and Levenshtein Distance (90.64%). In standardizing categorical test 
results, Jaro Winkler Similarity obtained higher success rates than Cosine Similarity and Levenshtein Distance. The last column of 
the table named “Supported Data” concludes by displaying the total number of categorical test results terms data standardized by 
each group with the percentage of data points when only Jaro-Winkler similarity is considered. The aggregate success rate of the 
standardization for overall categorical test results is 99.93%, which is remarkably high.

3.3. Dataset analysis and standardization status

The distribution of test results for each of the eight groups is provided in the current section; one group is shown in Table 3 (for 
more detailed information of the remaining 7 groups, see Table S1 to S7 in Supplementary Material - Additional Performance Results 
for the Collected Dataset). The source terms and their associated standardized terms, along with their proportion and count, are 
summarized in these tables. However, some rows have gray markings suggesting that these test results are not standardized properly.

It can be observed that most source terms from “Blood Group Finding And Another Measures” group have been appropriately 
standardized in Table 5, which comprises 4961 total terms together with their standardized terms from this approach. The greatest 
percentage is for “B” at 24.53% and the lowest for “Srock” at 0.02%. For instance, the ML model misgrouped the numerous source 
phrases such as “M”,”Q.N.S”, “Absent” “Incompatible (Minor)”, “Packed cell” etc., and produced false results. 17 text terms out of 
4961 in the group are not standardized.

In the “Mix Finding And Another Measure” group, the vast majority of the result terms (61.62%) were labeled as “Nil,” which 
is standardized itself. “Absent” (24.35%) and “Normal” (12.41%) are the next two most frequent terms. The remainder category 
contains less than 2% of all terms, such as “Trace”, “Few”, “Present”, “A Few”, and “Occasional”. Each one of them perfectly 
standardized to standard terms. Yet, it is incorrect to standardize “No microorganism found” as “Normal”. As can be seen, the entries 
“Present (++)” and “Present (+)” have been standardized to “Present.”

In the “Presence Finding” group, out of a total of 10,728 counts, 50.39% (5,406) are “Negative”, and 25.69% (2,756) are 
“Positive”. This technique standardizes a variety of modifications of negative and positive test results, such as “Negative (-ve)” 
to “Negative” and “Positive (+ve)” to “Positive”. Generally, the standardization procedure was successful in resolving the majority 
of source terms’ anomalies.

The “Physical Finding” group has a total of 9,493 terms. “Clear” and “Straw” are the two most frequently used standardized terms 
itself, making up 45.34% and 45.6% of the overall count, respectively. Once more, several anomalies can be found in the source text 
results. For example, the names “STRAW” and “L YELLOW” are standardized to “Straw” and “Yellow” respectively, although with 
significantly lower percentages of 0.25 and 0.11, respectively.

Totaling 1332 results, the “Blood Component Finding” group has 13 unique result terms. “Whole blood” comprises 44.34% (634) 
of all results, followed by “Packed Red Blood Cells (PRBC)” at 25.73% (368). CCP, STOCK Blood, and Pure Plasma are the least 
common types of results, accounting for only 0.35% (5) of all results. In this example, the Jaro-Winkler approach is well-suited for 
standardizing terms such as “FFP” and “PRBC” into more standard terms such as “Fresh Frozen Plasma” and “Packed Blood Cell”.

There are 6 distinct result terms in “Compatible Finding” group and they add up to 1337. “Compatible” terms make up 97.01% 
(1297) of all results, while “Incompatible” results make up 2.24% of all results (30). For this group, all terms from the source were 
8

standardized to the proper term.
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Table 5

Summary table of source terms and standardized terms for the Blood 
Group Finding And Another Measures.

Source Term Std. Term Percentage (%) Count

“B” B 24.53 1217
“O” O 23.22 1152
(+) + 18.63 924
“A” A 12.5 620
(++) ++ 7.4 367
“AB” AB 7.16 355
(+++) +++ 3.45 171
“B” B 0.6 30
“O” O 0.6 30
(++++) +++ 0.44 22
++ ++ 0.22 11
“A” A 0.22 11
+++ +++ 0.16 8
+ + 0.14 7
“AB” AB 0.12 6
++++ +++ 0.1 5
M A 0.06 3
Q.N.S A 0.06 3
Packed cell A 0.04 2
B B 0.04 2
Redish A 0.02 1
RED A 0.02 1
RCC A 0.02 1
O O 0.02 1
M/F A 0.02 1
Cloudy A 0.02 1
InCompatible(Minor) A 0.02 1
F A 0.02 1
Ansent A 0.02 1
AB AB 0.02 1
“A” A 0.02 1
“B”: B 0.02 1
“O”’ O 0.02 1
“A” A 0.02 1
Srock A 0.02 1
Total Count 4961

The terms in the “Gender Finding” group are male, female, and variants of male’s spelling. The breakdown is 85.81% “Male”, 
13.98% “Female”, and 0.14% “male” and 0.07% “MAle” variants. All terms are standardized with perfection.

3.4. Error analysis

To understand the capability of this standardization, if we look attentively at the table, we will find that some errors are seen in 
the three groups such as ‘Blood Group Finding And Another Measure’, ‘Mixed Finding’, and ‘Compatibility Finding’, as shown in Ta-
ble 5. Analysis of the category “Blood Group Finding And Other Measures” in Table 4 reveals a mixture of successful standardization 
and errors. Despite the fact that the vast majority of terms are successfully standardized, there are a few terms that are not perfectly 
standardized. These terms include “M”, “Q.N.S.”, “Packed cell”, “Reddish”, “RED”, “RCC”, “O”, “M/F”, “Cloudy”, “InCompatible(Mi-
nor),” “F”, “Ansent”, and “Srock” described in Section 3.2. It can be seen that these terms do not belong in this group, it is possible 
to conclude that the ML system incorrectly classified them. The plot in Fig. 4 depicts the error rate of standardization for each of 
the groups. We see that three groups: “Blood Group Finding And Another Measure,” “Mixed Finding,” “Compatibility Finding” and 
“Blood Group Finding And Another Measure” have error in standardization. The “Blood Group Finding And Another Measure” have 
34.29% error rate in standardization for the incorrect classification of ML. This indicates that accurate standardization of terms 
within this group presents challenges. In contrast, the “Mixed Finding” and “Compatibility Finding” groups exhibit reduced error 
rates of 5.26% and 16.21%, respectively.

3.5. Validation on MIMIC-III dataset

To validate and evaluate the robustness of the proposed standardization module, the entire procedure was evaluated using the 
MIMIC-III data set. By analyzing the dataset, five groups were identified, and the terms for each group were extracted with text 
mining techniques and labeled with their corresponding group names manually. Then, the application of ML models - RF and SVM 
for automatic labeling or classification perfectly classified text reports of the dataset into the five predefined groups. The RF model 
obtained an accuracy of 0.80 and a weighted average F1 score of 0.76, while the SVM model with a linear kernel achieved a faultless 
9

score across all performance metrics mean 100% score over all the metrics.
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Fig. 4. Error rate of standardization for each string distance similarity by groups.

Table 6

Overall standardization results of categorical test results with Jaro Winkler similarity across multiple groups Of 
MIMIC-III dataset.

Group Level Label Standardize Status of Unique Value (%) Supported Data

Presence Finding 4 of 4 (100%) 2002 (100%)
Physical Finding 8 of 8 (100%) 556(100%)
Blood Group Finding And Another Measure 3 of 3 (100%) 786(100%)
Mixed Finding 13 of 13(100%) 1775(100%)
Non Specific Finding 5 of 5 (100%) 538 (100%)

Total Correctly Standardize 100%

Only Jaro-Winkler similarity is utilized to standardize the categorical test results for the MIMIC-III dataset, as this method in 
Section 3.3 demonstrated the maximum accuracy among the three distance similarity methods. For more detailed information on 
the status of the standardization of the MIMIC-III dataset’s categorical test results from various groups, ML model’s evaluation, and 
confusion matrix, please refer to Supplementary Material-Additional Performance Results for the MIMIC-III Dataset.

All of the categorical test results from the MIMIC-III dataset have been accurately and flawlessly standardized. The distribution 
of terms in this dataset and its standardization status is described below. In the “Presence Finding” group, 95.45% of terms are “neg” 
standardized as “Negative”, 2.4% are “negative” standardized as same, and 2.5% are “pos” standardized as “Positive”. The majority 
of terms in the “Physical Finding” group were “clear” (36.87%), followed by “yellow” (32.01%) and “straw” (12.23%). The rest of the 
terms make less than 10%. All of the terms are precisely standardized. We find that “slhazy” standardize to “Hazy” and “slcloudy” to 
“Cloudy”. In the “Mix Finding” group, the most common terms are “usual” (31.66%), “hold” (17.58%), and “occasional” (14.25%). 
This group’s standardization of “occ” to “Occasional” is perfect. Perfect standardization can be shown in all terms of the “Blood Group 
Finding and Another Measure” and “Non-specific Finding” from the MIMIC-III dataset. Using Table 6 to evaluate the methodology 
for MIMIC-III dataset, we can confidently conclude that the standardization of categorical test results across multiple groups in the 
dataset is highly effective. Standardizing textual test results is a complete success across all groups,

The success of the categorical test results in the standardization procedure relies heavily on the accuracy of the data’s manual 
labeling. For the standardization of the results to be successful, the dataset must be appropriately labeled.

3.6. Comparison with previous studies

This section provides an analysis of our study with existing studies. We applied our technique and an existing method [13] to 
the publicly accessible MIMIC-III [1] dataset for fair comparison. For standardization of the groups of Presence Finding, Physical 
Finding, Mix Finding (Normal, Occasional), and Non-Specific Finding, the existing SALT-C method [13] obtained accuracy values of 
100%, 100%, 90%, and 80%, respectively. The SALT-C method cannot perform well for the group “Blood Group and other Measures 
(+, ++, +++)”, hence modifications are required in their rule-based approach. On the other hand, our proposed method shows 100% 
10

accuracy in standardization in all five groups. Hence, our approach is better than the existing rule-based method.
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4. Discussion

4.1. Principal findings

This research paper’s key finding is a new method for standardizing clinical textual results using standardized terminologies such 
as SNOMED-CT and LOINC that combine ML and string distance similarity. It can significantly improve the accuracy and consistency 
of clinical data interpretation. We used international clinical vocabularies to create predefined groups that covered over 95% of 
categorical data from the source. By creating an algorithm that grouped source clinical terms and compared distance similarity 
between source text and standard text from the group, we were able to accurately standardize clinical textual results.

In contrast to previous research [13] that focused on standardizing the test result using rule-based classifiers on a smaller number 
of groups and distance similarities such as Cosine similarity or Levenshtein distance, we used the supervised ML model SVM achieving 
a 98% accuracy rate in classifying textual terms and accurately grouping them into more predefined groups. For standardizing, we 
used Jaro-Winkler distance similarity to standardize the test results. However, to make a fair comparison, different approaches should 
be applied to the same dataset. Previous studies did not utilize our collected dataset, and as a result, their results cannot be directly 
applied to the dataset, as they only utilized a smaller number of groups. Existing approaches based on Cosine or Levenshtein distance 
achieved approximately 90% accuracy when applied to our dataset, whereas our approach achieved 92.97% accuracy. The findings 
of this paper demonstrate that the use of standardized terminologies can effectively improve the accuracy and consistency of clinical 
data interpretation.

This research has significant implications for healthcare professionals, as it streamlines the process of interpreting clinical results 
and ensures consistency in the interpretation of results across healthcare service providers. The use of standardized terminologies also 
reduces errors and misinterpretations, which can have a significant impact on patient outcomes. By creating predefined groups using 
international clinical vocabularies and developing a guideline to standardize clinical textual results, this research has demonstrated 
the effectiveness of using standardized terminologies in clinical data interpretation. This methodology can be implemented in diverse 
healthcare environments, resulting in enhanced patient outcomes.

4.2. Future work

The limitations identified in this study provide opportunities for enhancing the proposed procedures for standardizing categorical 
test results across a wider range. Firstly, future research can validate the application’s accuracy using datasets from a broader range 
of healthcare systems to ensure its applicability in a wide range of settings. This may enhance the generalizability of the findings 
and provide more convincing evidence of the method’s effectiveness. Secondly, future research can expand the vocabulary groups 
used in the study to increase the accuracy and confidence in the results. This can be achieved by adding additional terms and groups 
to encompass a wider range of laboratory tests and test attributes. In addition, modifications can be made to the preprocessing 
and labeling steps to increase its adaptability to various datasets. Thirdly, the preprocessing and labeling steps were tailored to the 
particular datasets used in the study; therefore, modifications may be required to apply the tools to a different dataset. Importantly, 
the study excluded certain data, such as bacterial and fungal information obtained through the Gram stain test and categorical data 
exceeding twenty characters. This was done to simplify the process, but it may have limited the study’s findings. Future research 
can investigate the impact of including bacterial and fungal information obtained through the Gram Stain Test and categorical data 
exceeding twenty characters in length on the guidelines’ accuracy. This can provide a more comprehensive understanding of the 
guidelines’ potential to manage a wider range of laboratory data. Furthermore, even though the terminology used in this study is 
taken from LOINC or SNOMED CT, there are several terms in the groups “Physical Finding” and “Blood Component Finding” that 
are not found in those sources. As a consequence, we depend on the most frequently used resulted text from the datasets, which is 
free of anomalies. Even though the study provides practical guidelines for managing categorical test results and demonstrates good 
accuracy, additional analysis and testing are necessary to determine its effectiveness and applicability to a broader range of datasets.

5. Conclusion

In our study, we presented a clinical data standardization process that facilitates the mapping of test result data to LOINC and 
SNOMED CT standard texts. This process was applied to a dataset obtained from the two largest private hospitals in Bangladesh 
and the publicly available MIMIC-III dataset. Unlike previous studies that focused on standardizing test results using rule-based 
classifiers on a smaller number of groups and distance similarity such as Cosine similarity or Levenshtein distance, we used supervised 
ML algorithms to classify the term into groups and Jaro-Winkler distance similarity to standardize the test results, also known as 
categorical clinical data. Using supervised ML algorithms enabled us to improve the accuracy and efficiency of our data categorization 
process. For the cases considered, the Jaro-Winkler similarity method performed better than other distance similarity methods. 
Overall, our study offers a novel method for standardizing test results data, which has significant implications for enhancing the 
interoperability and integration of healthcare data across diverse systems and research platforms.

6. ACRONYM

EHR Electronic Health Record
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OpenMRS Open Medical Record System
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NGO Non-Governmental Organisation
LOINC Logical Observation Identifiers Names and Codes
SNOMED CT Systematized Nomenclature of Medicine Clinical Terms
DHIS2 District Health Information System 2
RF Random Forrest
SVM Support Vector Machine
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