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Abstract

Quantity estimation can be represented in either an analog or symbolic manner and recent

evidence now suggests that analog and symbolic representation of quantities interact.

Nonetheless, those two representational forms of quantities may be enhanced by conver-

gent multisensory information. Here, we elucidate those interactions using high-density

electroencephalography (EEG) and an audiovisual oddball paradigm. Participants were pre-

sented simultaneous audiovisual tokens in which the co-varying pitch of tones was com-

bined with the embedded cardinality of dot patterns. Incongruencies were elicited

independently from symbolic and non-symbolic modality within the audio-visual percept, vio-

lating the newly acquired rule that “the higher the pitch of the tone, the larger the cardinality

of the figure.” The effect of neural plasticity in symbolic and non-symbolic numerical repre-

sentations of quantities was investigated through a cross-sectional design, comparing musi-

cians to musically naïve controls. Individual’s cortical activity was reconstructed and

statistically modeled for a predefined time-window of the evoked response (130–170 ms).

To summarize, we show that symbolic and non-symbolic processing of magnitudes is re-

organized in cortical space, with professional musicians showing altered activity in motor

and temporal areas. Thus, we argue that the symbolic representation of quantities is altered

through musical training.

Introduction

Organisms have biologically-endowed abilities for using their senses synergistically, allowing

them to act complementary to each other [1]. Recent studies reveal that multisensory phenom-

ena might originate on the basis of automated integration of convergent stimulus characteris-

tics in time or space [2–4], on the statistics of cross-modal regularities [5–7], or on explicitly

learned rules binding otherwise unrelated unisensory stimuli [8, 9].

On the other hand, humans—and other animals—acquire the ability to represent discrete

sets of elements [10, 11]. Particularly, we estimate precisely, without counting, a small set of
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items [12]. The above-mentioned mechanism is present across different human societies [13]

as it has been evolutionary conserved within a wide variety of other species–from bees to non-

human primates—highlighting its importance for survival and its crucial role for social behav-

ior [14–16]. There is a broad agreement that representations of numerosity are analog and

multi-sensory: embedded within a sequences of sounds, in the cardinality of figures or in a

series of actions [17]. On this basis, quantitative judgments for time or space of non-symbolic

nature have been documented [12, 18], proposing a domain-general, or an amodal representa-

tion of analog quantities, underlying the computations of quantities, space, and time [19].

Relevant neuroimaging studies suggest an active role of the parietal cortex in this represen-

tational mechanism [20–22]. The traditional view on this cognitive mechanism presumes that

these estimations are supported and expanded by the use of symbolic references representing

quantities (e.g. numbers). A product of cultural acquisition, symbolic reference emerged late

in human evolution [23] and established a powerful mental tool for representing any kind of

associations between a symbol and its meaning [24]. However, recent empirical evidence sup-

ports the notion that distinct brain areas underpin the processing of notation-dependent

(therefore symbol-dependent) and independent quantities [25], pointing towards the existence

of two quantity-processing mechanisms: one that processes symbol-dependent quantities and

another that processes analog ones [26]. Nevertheless, it is still unclear whether any of those

representational mechanisms are subject to change due to the long-term effects of cultural

acquisition as provided by education and training, or whether their development is phyloge-

netically predetermined.

Our brains are effectively interacting with the environment, which shapes its properties and

determines both its structure and function. In the neural level this could be achieved by the

strengthening of synapses [27, 28], although the exact mechanisms underlying this plasticity

are still called into question. Interestingly, musical training is one such model to study neural

plasticity [29, 30], since playing a musical instrument involves the partition of several—per-

fectly tuned—sensory systems. Musical training constitutes a powerful stimulator of neuro-

plasticity [31, 32] and enculturation [33]. As musical expertise requires long-term training,

several studies use a cross-sectional approach, comparing musicians to non-musicians, provid-

ing indices of training-induced plasticity [29]. Numerous studies have been reported for audi-

tory, multisensory, or motor tasks [for review: [29]] with stimuli confined to the nature of

musical action. Neuroplastic changes in tasks with stimuli outside the borders of music have

also been reported [34–38]. Those studies indicate changes in domain-general cognitive mech-

anisms that are related to musical training [39]. Behaviorally, it has been shown that musicians

outperform musically naïve individuals in magnitude estimation at temporal, spatial and

numerical discrimination tasks [40]. To this end, a study by Proverbio et al. (2013) used EEG

and an ERP design to find an increased activity of the fusiform and inferior occipital gyrus

during word reading comparing musicians to non-musicians, indicating cortical reorganiza-

tion of symbolic representations in the language domain [41].

A series of experiments have extensively investigated the neurophysiological underpinnings

of audiovisual integration via event-related-potentials in linguistic [42, 43] and musical stimuli

[44, 45] with Magneto- or Electro-encephalography (M/EEG) using a common neuropsycho-

logical index, called the Mismatch-Negativity paradigm [46]. During a MMN paradigm, infre-

quent incongruencies (~20% of stimuli) are interleaved within a string of congruent ones

(~80% of stimuli), yielding an error-related activity in the brain (approx. 150ms), resulting

from the top-down comparison of an internal prediction [47] with the bottom-up sensory evi-

dence. Thus, MMN components provide fertile ground to contrast experimental conditions

representing cognitive processes. Traditionally, MMNs were studied within the auditory

domain and are triggered by “surprising” frequencies, durations or amplitudes of sound
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stimuli. Similar mechanisms have been reported for the processing of visual [48] and somato-

sensory [49] stimulation, indicating a common cross-modal mechanism for the detection of

deviants across previously-learned regularities. Paraskevopoulos et al. (2014) used a multi-fea-

ture MMN paradigm in which pitches were combined with symbolic numbers with an explic-

itly acquired rule “the higher the pitch of the tone, the larger the number of the figure” [50].

They showed that musical expertise is related to increased activity in the prefrontal cortex dur-

ing multisensory judgments of magnitude within 130–170 ms of the ERP response. Nonethe-

less, the design of the abovementioned study did not allow the differentiation between the

effects of symbolic and non-symbolic representation of quantity processing. Here, we adapt

this paradigm and we include a condition in which cardinality is coded in a non-symbolic

manner to elucidate the effect of symbolic and non-symbolic numerical processing.

The present study aims to disentangle symbolic quantities from non-symbolic quantity pro-

cessing and the effect that musical training has on this interaction by comparing neural

responses of musicians to non-musicians. To this aim, Electroencephalographic (EEG) data

were used to estimate cortical responses in an adapted multisensory MMN paradigm [44, 50].

In this paradigm, a stream of congruent audiovisual quantities were interleaved with “surpris-

ing” violations equivalent to traditional MMN paradigms. Incongruencies were elicited inde-

pendently within either audiovisual symbolic or non-symbolic representations. Audiovisual

congruency was defined according to the explicit rule: “the higher the pitch of the tone, the

larger the cardinality of the figure” and audiovisual stimuli that didn’t follow this rule (sym-

bolic or non-symbolic) were considered as incongruent. The effect of long-term plasticity due

to musical training in the corresponding incongruency response generators was evaluated via

a comparison of musically trained individuals to musically naïve controls in the predefined

window of 130–170 ms after stimulus presentation. Our main hypothesis was that musical

training enhances the ability to represent numbers in a two-fold manner, by supporting both

the analog and notation-independent quantities along with symbolic and notation-dependent

representations. Previous research on brain plasticity associated with musical training has

revealed that perceptual changes attributed to long-term musical training are domain general

and are related to auditory and motor systems [29, 32, 51]. Thus, in our multi-feature oddball

paradigm we were expecting activation differences in cortical generators of the embedded

incongruencies in temporal and motor areas between musicians and non-musicians, consis-

tent with prior research in a similar paradigm [50].

Materials & methods

Participants

The sample of the study was 30 individuals: 15 musicians and 15 non-musicians. Musicians

(mean age = 26.44 years, SD = 3.02 years, 7 males) were professional musicians or students of

Music Studies (mean musical training = 15.47; SD = 3.72). Non-Musicians (mean age = 23.34,

SD = 4.45, 8 males) had not received musical lessons apart from compulsory school lessons.

Sample size was calculated via G-Power on the basis of a power analysis of the behavioral data

measured in Paraskevopoulos et al., (2014). This analysis revealed an effect size of 0.98; target-

ing a one-tailed analysis. The sample size analysis revealed that the desired size for each group

is 14 subjects, to reach a power of 0.8 and significance level of a = 0.05. All participants had

normal hearing and normal -or corrected to normal- vision. The study was approved by the

ethics committee of the Medical Faculty of University of Thessaloniki, whereas the study is in

accordance with the Declaration of Helsinki (1964). Before the EEG session, participants

signed written consent.
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Stimuli

Congruent and incongruent stimuli were prepared by combining 4 sinusoidal tones (F5,

698.46 Hz; A5, 880.46 Hz; C6, 1046.50 Hz; and E6, 1318.51 Hz) to five-tone melodies. Figures

illustrating disc-patterns (1 dot up to 5 dots, in blue color) were presented simultaneously with

each sinusoidal tone. Tones had a duration of 400ms, including 10ms rise and decay time and

a sampling rate of 44.100 Hz. The Inter Stimulus Interval (ISI) was set to 500ms and the total

duration of each melody was 4 sec. During ISI a fixation cross was presented. Finally, 8 melo-

dies were prepared for each video category. For each tone, the figure was presented in the

exact time and for the same duration with the tone (Fig 1).

Congruency of stimuli (A) followed the instructed rule: “the higher the pitch of the tone,

the larger the cardinality of the figure”. Incongruent categories included violation in the (B)

audiovisual modality: the co-varying pitch of the tone and cardinality of the presented figure

did not match according to the abovementioned congruent rule and (C) symbolic modality:

the figure encoded magnitude information through symbolic quantities (Arabic-digit instead

of analog patterns). For sanity checking of our study with MEG dataset [44, 50] the paradigm

included also violations of the auditory modality: the presented tone was delivered with differ-

ent timbre (piano instead of sinusoidal tone) and visual modality: the discs were either pre-

sented with different color (red instead of blue). Auditory and visual incongruencies were

outside the scope of the current study and thus are not reported herein. Each melody has a

ratio of 4:1 congruent to incongruent stimuli, for each modality independently (Fig 1).

EEG recordings

Evoked Related Potentials were recorded with a Nihon-Kohden 128 channel EEG recording

system and an active electrodes cap (actiCAP128, Brain Products), inside an electrically

shielded room. Data were acquired continuously with a sampling rate of 500 Hz, with elec-

trode impedance kept below 10 kO, while participants were seated comfortably in an upright

position. Auditory stimulation was delivered via headphones at 60 dB above each participant’s

hearing threshold, determined at the beginning of the EEG session. Visual stimuli were deliv-

ered through a flat-panel display located ~ 110 cm away from the subject, with a refresh rate of

60 Hz and a spatial resolution of 1280 x 768 pixels.

Fig 1. Illustration of the design. Example of congruent and incongruent trials. A: Audiovisual congruent trial was based on the explicit rule “the higher the

pitch of the tone, the larger the cardinality of the figure” B: Audiovisual incongruent trial contained an incongruent stimulus with respect to the learned rule. C:

Symbolic incongruent trial contained visual stimulus in which cardinality was presented through symbol (Arabic digit).

https://doi.org/10.1371/journal.pone.0266165.g001

PLOS ONE Multisensory judgments of magnitude

PLOS ONE | https://doi.org/10.1371/journal.pone.0266165 May 5, 2022 4 / 18

https://doi.org/10.1371/journal.pone.0266165.g001
https://doi.org/10.1371/journal.pone.0266165


Experimental design

A multi-feature oddball paradigm was generated by combining random videos from each con-

dition, forming blocks. After each 4sec video, participants were asked to decide whether the

previously presented video violated the instructed rule “the higher the pitch of the tone, the

larger the cardinality of the figure”. In total, there were 3 blocks of 14.5 mins, with short breaks

in between. Finally, the total amount of trials was 72 for each condition.

Data analysis

Behavioral data analysis. For estimating the accuracy of behavioral responses we calcu-

lated the discriminability index d-prime [52] on the 2AFC task. The 2AFC task was placed

after the presentation of each video (containing the five-tone melody). Participants had to

decide whether there was -or not- a violation of the acquired rule “The higher the pitch of the

tone, the larger the cardinality of the dots”, within the previously presented video. Thus, the

responses of audiovisual symbolic and non-symbolic (in)congruencies were evaluated. Indi-

vidual responses to each video taken from three blocks of EEG measurements were collected

for the calculation of the d-prime. Data were analyzed with a 2×2 mixed model ANOVA with

between-subjects factor group (musicians, non-musicians) and within-subject condition

(non-symbolic, symbolic). The significance level was set to p< 0.05.

EEG data pre-processing. The Brain Electrical Source Analysis software (BESA Research,

version 6; Megis Software) was used to process the EEG data. The data were visually inspected:

bad channels were interpolated and artifacts due to eye-movement were corrected through an

adaptive artifact correction [53]. Continuous data were separated into epochs of 800 ms,

including 200 ms of a pre-stimulus interval, serving as a baseline. As stimulus, we considered

one single sinusoidal tone (and the corresponding figure) within each presented five-tone mel-

odies. Data were filtered offline with a Butterworth high pass forward filter of 1 Hz, a Butter-

worth low pass zero-phase filter of 30 Hz, and a notch filter at 50 Hz. Epochs were averaged

separately, resulting in 3 conditions (1 congruent and 4 incongruent). An equal number of

epochs (n = 72) was chosen for each experimental condition for ensuring equal signal-to-noise

ratio across conditions. Similar analytic approach has been applied and verified in previous

studies [54, 55].

Source activity estimation. Individual’s source activity was estimated for each condition

using the low-resolution electromagnetic tomography (LORETA) [56]. LORETA provides

computation of distributed currents across the whole-brain, while maintains the advantage of

not needing an a-priori definition of activated sources. Based on previous research [44], an

appropriate time-window of 130–170 ms across each condition was chosen for analysis. Cur-

rent Density Reconstructions (CDRs) of the selected time-window were projected onto an

MRI template based on the Montreal Neurological Institute (MNI). Head models were simu-

lated realistically with a Finite Element Model (FEM), using an average of 50 individual MRIs.

Furthermore, the images were smoothed through an isotropic Gaussian kernel with 7mm

full-width half-maximum as provided by BESA.

Statistical analysis of EEG data

Current Density Reconstructions (CDRs) were coregistered into the MNI space with Statistical

Parametric Mapping 12 (SPM 12, https://www.fil.ion.ucl.ac.uk/spm) and statistically modeled

using the Sandwich Estimator Toolbox [SWE; [57]] implementing a flexible factorial model

-equivalent to 2x3 mixed model ANOVA with within-subject factor Condition [congruent,

audiovisual incongruency, symbolic incongruency] and between-subject factor Group (musi-

cians and non-musicians). We note that, in the behavioral level in which d-prime was
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calculated, within-subject conditions were 2 (non-symbolic and symbolic) as the congruent

condition was used for the calculation of d-prime for both of the conditions. In the source

analysis results, the congruent condition was also included in the model (and thus having 3

levels) as the difference between congruent and incongruencies (symbolic and non-symbolic)

is a marker of the typical MMN response. We note that throughout the manuscript we refer to

the statistical difference between congruent and each incongruent condition as “mismatch”.

Finally, a Monte-Carlo approach was applied [58] by which simulated statistic images were

compared under the null hypothesis and thus setting the maximum cluster size, above which

p-values correspond to corrected p-values.

Results

Behavioral responses

For measuring participant’s ability to detect whether a presented video congruent or incongru-

ent, we calculated the discriminability index, d-prime [52] for the audiovisual (non-symbolic)

and symbolic modality. The statistical analysis of the behavioral responses revealed a signifi-

cant main effect of the factor Group ½Fð1; 28Þ ¼ 27:99; p ¼ 0:000; Z2
p ¼ 0:5�, indicating

enhanced accuracy in musicians’ behavioral responses, irrespective of the experimental condi-

tions. The main effect of factor Condition ½Fð1; 28Þ ¼ :784; p ¼ 0:383; Z2
p ¼ 0:027� and the

interaction of Group × Condition ½Fð1; 28Þ ¼ 1:03; p ¼ 0:319; Z2
p ¼ 0:035� didn’t reach sig-

nificance, indicating that the experimental conditions (audiovisual symbolic and non-sym-

bolic incongruencies) didn’t have an effect on the behavioral responses of participants. In Fig 2

we summarize the difference in d-prime for musicians and non-musicians.

Fig 2. Behavioral responses. D-prime values for musicians and non-musician in non-symbolic [audiovisual]

incongruencies (black) and symbolic incongruencies (blue).

https://doi.org/10.1371/journal.pone.0266165.g002
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EEG source activity

Firstly, as we were interested in assessing the neural interaction of symbolic and analog pro-

cessing of numerosity in audiovisual context we proceeded with the calculation of Audiovisual

mismatch × Symbolic mismatch interaction. This statistical analysis yielded one significant

cluster located at left occipital cortex [peak coordinates: x = 16, y = -96 z = -18; X(28) = 11.83;

cluster size = 3485 voxels; p< 0.005 (corrected); Fig 3, panel C].

To evaluate the effect of musical training, we proceeded with the calculation of Audiovisual

mismatch × Symbolic mismatch × Group interaction. This interaction yielded three statisti-

cally significant clusters, located at: a) left superior temporal gyrus [peak coordinates: x = -58,

y = -26 z = 12; X(28) = 7.19; cluster size = 3648 voxels; p<0.05 (corrected)], b) left SMA [peak

coordinates: x = 42, y = -6, z = 38; X(28) = 6.54; cluster size = 1846 voxels; p< 0.05 (corrected)]

c) right SMA [peak coordinates: x = -36, y = 4, z = 56; X(28) = 5.61; cluster size = 1316 voxels;

p< 0.05 (corrected); Fig 3, panel D].

For unraveling the impact of non-symbolic audiovisual incongruency, we proceeded with

the calculation of the main effect of audiovisual mismatch. Our results indicated two signifi-

cant clusters of activation: a) one cluster located at left superior temporal gyrus [peak coordi-

nates: x = -24, y = 62, z = 30; Z(28) = 3.10; cluster size = 2166 voxels; p< 0.005 (corrected); Fig

4, panel A] and b) one cluster located at left pre-frontal cortex [peak coordinates: x = -66, y =

-16, z = 2; Z(28) = 3.42; cluster size = 2856 voxels; p< 0.005 (corrected)]. For those two clus-

ters, non-musicians exhibited lower activation in the audiovisual congruent condition and

higher in the non-symbolic audiovisual incongruent compared to musicians, and for the left

Fig 3. Audiovisual non-symbolic and symbolic interaction in musicians and non-musicians. A: Grand average of global field power for musicians and non-

musicians during the presentation of audiovisual congruent and audiovisual (non-symbolic) incongruent stimuli. Shaded area depicts the predefined window

of analysis (130–170 ms). B: Grand average of global field power for musicians and non-musicians during the presentation of audiovisual congruent and

audiovisual symbolic incongruent stimuli. Shaded area depicts the predefined window of analysis (130–170 ms). C: Statistical Parametric Maps for the

interaction of audiovisual non-symbolic and symbolic mismatch response generators. Threshold p<0.005, cluster corrected. D: Statistical Parametric Maps for

the interaction of audiovisual non-symbolic mismatch × symbolic mismatch × group. Threshold p<0.05, cluster corrected.

https://doi.org/10.1371/journal.pone.0266165.g003
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pre-frontal cortex, non-musicians showed decreased activation for both non-symbolic audio-

visual congruent and incongruent response. At the left superior temporal gyrus, musicians

showed higher activity in the non-symbolic audiovisual congruent and lower activation in the

non-symbolic audiovisual incongruent, when compared to non-musicians (Fig 4, panel C).

Furthermore, for assessing the impact of musical training in audiovisual incongruency

response generators we calculated the Audiovisual incongruency × Group interaction. This

statistical analysis yielded two significant clusters of activation: a) one cluster located at left

temporal cortex [peak coordinates: x = -16, y = -44, z = 22; Z(28) = 2.53; cluster size = 3510

voxels; p< 0.005 (corrected)] and b) one cluster located at left pre-frontal cortex [peak coordi-

nates: x = -56, y = -32, z = -34; Z(28) = 2.41; cluster size = 5840 voxels; p< 0.005 (corrected);

Fig 4, panel B]. Similar to the left superior temporal gyrus pattern, at the left temporal gyrus

musicians showed increased activation for the audiovisual congruent condition and decreased

activation for the non-symbolic incongruent condition, when compared to non-musicians

(Fig 4, panel C).

Furthermore, for assessing the impact of symbolic incongruency, we proceeded with the

calculation of the main effect of symbolic incongruency. The statistical analysis yielded two

significant clusters of activations: a) one located at left temporal cortex [peak coordinates: x =

-16, y = -36, z = -4; Z(28) = 2.91; cluster size = 4914 voxels; p< 0.05 (corrected)] and b) one in

right temporal cortex [peak coordinates: x = 34, y = -14, z = -12; Z(28) = 2.23; cluster

size = 7017 voxels; p< 0.05 (corrected); Fig 5, panel A]. At the left temporal gyrus, musicians

showed increased activation in the audiovisual congruent and decreased activation in the sym-

bolic incongruent condition, when compared to non-musicians (Fig 5, panel C). Strikingly, at

the right temporal gyrus we observed the opposite pattern: musician’s showed increased

Fig 4. Audiovisual non-symbolic mismatch response generators in musicians and non-musicians. A: Statistical Parametric Maps for the main effect of

audiovisual non-symbolic incongruency. Threshold p<0.005, cluster corrected. B: Statistical Parametric Maps for the interaction audiovisual non-symbolic

mismatch × group. Threshold p<0.05, cluster corrected. C. Point plots depicting individual’s and mean activity for each statistically significant cluster of

activation for the main effect of audiovisual non-symbolic mismatch and audiovisual non-symbolic mismatch × group interaction.

https://doi.org/10.1371/journal.pone.0266165.g004
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activation at the symbolic incongruent condition and decreased at the audiovisual congruent

condition, when compared to non-musicians. Additionally, for evaluating the effect of musical

training in the symbolic incongruency response, we calculated the Symbolic

mismatch × Group interaction. This statistical analysis yielded two significant cluster of activa-

tions: a) one located at left SMA [peak coordinates: x = -36, y = 0, z = 52; Z(28) = 2.19; cluster

size = 2200 voxels; p< 0.05 (corrected)] and b) one located at right SMA [peak coordinates:

x = 32, y = 4, z = 38; Z(28) = 2.09; cluster size = 1828 voxels; p< 0.05 (corrected); Fig 5, panel

B]. Similar to the observation for the left and right temporal gyrus, at the left SMA musicians

showed increased activation for the audiovisual congruent condition and decreased activation

for the non-symbolic incongruent condition when compared to non-musicians, whereas the

opposite effect was observed for the right SMA (Fig 5, panel C).

As our results may have been driven by group characteristics that are not directly tested in

this study, we tested whether the activation strength of each cluster identified via the interac-

tion of Symbolic mismatch x Audiovisual mismatch x Training in the sub-group of musicians

can be predicted by the amount of musical training, namely the number of years since training

began. The clusters included in the analysis were the left Auditory Cortex, the right SMA and

the Occipital Cortex. The result of this analysis identified that the activation strength of the left

Auditory Cortex when processing symbolic incongruencies can be significantly predicted by

the amount of training [b = .674, t(9) = 2.58, p = .033]. The rest of the clusters included in the

analysis did not yield a significant effect. This serves as evidence arguing for the grounding of

this difference in musical training instead of innate characteristics of the groups.

In Table 1 we summarize the individual’s source activation values (mean ± SD) from each

significant cluster yielded from the analysis.

Fig 5. Audiovisual symbolic mismatch response generators in musicians and non-musicians. A: Statistical Parametric Maps for the main effect of

audiovisual symbolic mismatch. Threshold p<0.005, cluster corrected. B: Statistical Parametric Maps for the interaction audiovisual symbolic

mismatch × group. Threshold p<0.05, cluster corrected. C. Point plots depicting individual’s and mean activity for each statistically significant cluster of

activation for the main effect of audiovisual symbolic mismatch and audiovisual symbolic mismatch × group interaction.

https://doi.org/10.1371/journal.pone.0266165.g005
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Discussion

The present study used Electroencephalography (EEG) to investigate the cortical responses of

audiovisual incongruencies, in which non-symbolic and symbolic magnitude information was

combined with pitch-elevation in a multisensory mismatch paradigm. Effects of experience-

driven neuroplasticity were monitored cross-sectionally, through the comparison of musically

naïve individuals with professional musicians. Results indicated that the interaction of neural

responses for symbolic and non-symbolic processing of magnitude originated in occipital

sources. Interestingly, the interaction of musical training in this effect suggests that the neural

activation for symbolic and non-symbolic incongruency differs between musicians and non-

musicians for left superior temporal gyrus and bilateral motor areas. It is essential to note that

our study followed a cross-sectional design and thus following the nature versus nurture

debate our interpretation focuses on the effects of musical expertise, rather than the effect of

training [59]. To summarize, our results indicate a re-organization of the neural processing of

symbolic and non-symbolic magnitude information, possibly attributed to musical expertise.

On the behavioral level, both musicians and non-musicians were able to discriminate

cross-modal correspondences when cardinality was coded either in an analog or symbolic

manner. As expected, musicians were significantly better at detecting cross-modal

Table 1. Activity of each cluster for each contrast evaluated.

Anatomical Region Group Condition Activation (mean ± SD)

Left STG Musicians Audiovisual Standard 47.41 ± 13.78

Audiovisual Deviant 40.34 ± 11.21

Non-musicians Audiovisual Standard 45.95 ± 7.08

Audiovisual Deviant 45.51 ± 17.93

Left PFC Musicians Audiovisual Standard 74.93 ± 18.49

Audiovisual Deviant 64.68 ± 19.08

Non-musicians Audiovisual Standard 64.73 ± 21.24

Audiovisual Deviant 59.02 ± 16.04

Left Temporal Gyrus Musicians Audiovisual Standard 52.64 ± 7.13

Audiovisual Deviant 45.39 ± 11.72

Non-musicians Audiovisual Standard 46.64 ± 7.51

Audiovisual Deviant 46.71 ± 14.91

Left Temporal Cortex Musicians Audiovisual Standard 56.89 ± 8.24

Symbolic Deviant 50.5 ± 13.4

Non-musicians Audiovisual Standard 51.07 ± 8.82

Symbolic Deviant 63.72 ± 11.84

Right Temporal Cortex Musicians Audiovisual Standard 64.25 ± 25.44

Symbolic Deviant 84.57 ± 12.23

Non-musicians Audiovisual Standard 70.19 ± 13.78

Symbolic Deviant 51.51 ± 12.11

Left SMA Musicians Audiovisual Standard 39.86 ± 14.21

Symbolic Deviant 35.81 ± 10.50

Non-musicians Audiovisual Standard 28.77 ± 7.52

Symbolic Deviant 40.29 ± 11.98

Right SMA Musicians Audiovisual Standard 32.45 ± 14.21

Symbolic Deviant 47.62 ± 13.76

Non-musicians Audiovisual Standard 32.81 ± 8.15

Symbolic Deviant 33.25 ± 12.19

https://doi.org/10.1371/journal.pone.0266165.t001
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incongruencies, confirming previous studies with a similar design [44, 50]. Nevertheless, there

were no—within-group—significant differences in the detection of violation across symbolic

and non-symbolic conditions, indicating that on a perceptual level, neither dots nor Arabic

digits interfere with cross-modal decisions. To our knowledge, this is the first study investigat-

ing variations in multisensory judgments of magnitude that are attributable to symbolic and

non-symbolic stimuli. Although considering uni-sensory environment and quantities above

the subitizing range, our results confirmed previous findings in adults [60] and in children

[61], even though opposite results exist as well [62]. Hence, our behavioral results regarding

symbolic and non-symbolic quantity processing should be taken into consideration

cautiously.

Regarding non-symbolic and symbolic audiovisual incongruency response generators, the

symbolic mismatch × audiovisual mismatch interaction yielded one significant cluster of acti-

vation covering occipital gyrus. This is consistent with previous studies using MEG dipole

modeling, which have reported visual MMN located at the MOG, peaking around ~150 ms

after infrequent stimulus onset [63, 64]. This verifies its role for the detection of visual changes,

even though the specific mechanism remains elusive [65, 66]. Results of the present study pro-

vide further evidence that the neural generator corresponding to the interaction of the sym-

bolic and audiovisual (non-symbolic) mismatch covered occipital resources, indicating that

the interaction of those incongruencies is perceived as a visual mismatch, as evident in a previ-

ous study [50]. The source analysis results of symbolic mismatch × audiovisual

mismatch × group interaction revealed the effect of long-term musical expertise in the process.

Specifically, the source analysis of the symbolic mismatch × audiovisual mismatch × group

interaction was located in a cluster covering the left superior temporal gyrus (STG). Thus,

along with our behavioral evidence, the symbolic mismatch × audiovisual mismatch × group

interaction illustrates the enhanced ability of professional musicians at detecting uni- and

cross-modal irregularities [39, 67], explained partly by neuroplastic changes of extensive multi-

sensory training within the auditory cortex [51]. Two clusters, covering motor areas bilaterally,

were also evident, confirming the reorganized audio-visuomotor processing in professional

musicians during the perception of irregularities [68]. The right precentral gyrus has been pre-

viously found with fMRI to overlap during size and luminance comparison tasks of symbolic

numbers [69], demonstrating the contribution of motor-association regions for domain-gen-

eral magnitude comparisons.

Audiovisual non-symbolic and symbolic mismatch responses dissociated those processes

from their corresponding interaction. The source analysis results for the audiovisual non-sym-

bolic mismatch revealed that generators were located in the left superior temporal gyrus (STG)

and middle frontal gyrus. Regarding frontal regions, middle frontal gyrus (MFG) is considered

to support working memory and goal-oriented attention [70, 71], consistent with our experi-

mental design, as participants were challenged to decide upon cross-modal correspondences

after the completion of each block. The activation of the left superior temporal gyrus (STG) in

audiovisual non-symbolic mismatch responses indicates that participants—regardless of musi-

cianship—allocated temporal cortical sources for the cross-modal perception of incongruency.

In a previous study with a similar paradigm [44], activation of the STG was found during the

identification of auditory incongruencies. In the aforementioned study audiovisual regularities

were acquired on the basis of pitch (auditory) and elevation (spatial). Nonetheless, in both

studies [current and [44]], (in)congruency depended on the relation of each stimulus to the

previous one, which is used as perceptual prior. Associations relying on absolute characteris-

tics of each stimulus evoke innate [72] processing strategies that rely on cross-modal corre-

spondences [73], but cannot be employed when the relative position designates the

association. In the latter case, explicitly-learned rules have to be employed to lead congruency
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identification. Here, cross-modal correspondences incorporated information of magnitude in

the visual modality. Hence, we argue that analog audiovisual incongruency responses consti-

tute a domain-general mechanism, in which the corresponding cortical resources exhibit stim-

ulus specificity within each modality.

The results of the source analysis of the interaction between the audiovisual non-symbolic

incongruency response and the groups of musicians and non-musicians revealed increased

activation in temporal and frontal areas, which might be attributed to the long-term plasticity

effects of musical training. Specifically, musicians’ audiovisual mismatch response generators

were located at a broad cluster in temporal region corroborating the notion that professional

musicians prioritize their cortical resources on the auditory modality [74, 75]. Likewise, activa-

tion in the left superior frontal gyrus (SFG) indicates the audio-visuomotor processing of

musical notation that musicians have acquired during their long-term training [76]. A rela-

tively recent meta-analysis of Sokolowski et al. (2017) has reported a right-lateralized fronto-

parietal network in which superior parietal lobule, inferior parietal lobule, and superior frontal

gyrus (SFG) support the processing of non-symbolic magnitude information [[77], see also:

[71]]. Thus, our results suggest that SFG may be related to the analog and format-independent

processing of quantities, along with high-association goal-oriented functions [78].

The main effect of symbolic mismatch was unfolded broadly in the bilateral temporal cor-

tex, extending to inferior temporal gyrus (ITG). Interestingly, our results may be in part inter-

preted within the framework of the Triple Code model [10, 79] whereby numerical

representations incorporate symbolic, verbal, and analog quantities. Accordingly, our results

indicate that symbolic representation of quantities may be generated through bilateral activa-

tion of the temporal cortex, within a unitary audio-visual representation [80]. Abboud et al.

(2015), through visual-to-music substitution paradigm and fMRI recordings, found distinct

activation in right ITG in sighted and blind subjects, suggesting that its activity is independent

of sensory income or experience [81]. Recently, studies trying to unravel the role of the ITG in

numerical cognition applied intracranial electroencephalography (iEEG) and highlighted its

role during perception of visual numerals [82, 83] as well during calculations [84]. ITG has

also been found to be functionally connected with the lateral parietal cortex [LPC; [85]], a cen-

tral hub for domain-specific representation of quantities [86–88], especially when noted in an

analog manner [89] along with domain-general magnitude estimations of non-symbolic

nature [21].

Activation of bilateral SMA was revealed at the group × condition interaction for the sym-

bolic modality, indicating increased activity in the region, due to neuroplastic effects of musi-

cal expertise. This activation matches with the two motor-associated clusters revealed in the

symbolic mismatch × audiovisual mismatch × group interaction and thus elucidates its origin.

Τhe significantly-higher activation of motor areas delineates that the cortical re-organization

of professional musicians affects the processing of numerical symbols [29, 76, 90]. Interest-

ingly, when we look at activation patterns at the left and right SMA we observe an opposite

effect between musicians and non-musicians. Specifically, while musicians show increased

activation in the symbolic incongruency at the right SMA, they show decreased activation at

the left SMA for the same condition. Similar pattern is also observed at the left temporal gyrus:

musician’s show increased activation at the right temporal gyrus and decreased activation at

the left temporal gyrus for the symbolic incongruency, when compared to non-musicians.

Taken together, we observe a right-hemispheric dominance for the identification of symbolic

[audiovisual] incongruencies for the group of musicians when compared to non-musicians, a

finding consistent with previous results obtained from a longitudinal study [91].

Previously, it has been demonstrated that musical training enhances the association

between pitch and spatial representation behaviorally [92] and neurophysiologically [44]
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Thus, our results may partly be driven by the enhanced audiovisual integration that musicians

exhibit, evidenced even in primary auditory areas [51]. This enhancement may be transferred

to the symbolic and non-symbolic processing of numbers. On the other hand–and more spe-

cific to visual modality–, musical training has been related to enhanced ability in processing of

local features in a visual scene [93] which can explain the difference in processing non-sym-

bolic and symbolic representation. We speculate that both these factors may ground the neuro-

plastic effects on symbolic and non-symbolic incongruence processing. Distinguishing which

factor drives the corresponding effect remains outside of the scope of the current study, and

requires further research

Conclusion

We have found that cortical activity supporting symbolic quantities is subject to changes due

to enculturation factors such as musical expertise. Increased activation within the group of

musicians, when compared to musically naïve controls, was evident in temporal and motor

areas. In a theoretical framework, our interpretation collaborates the notion that symbolic ref-

erence–as a tool for the representation of exact quantities- has emerged via ‘the interaction of

biology and culture [94, 95]. That is to say, interaction between the culturally-transmitted sym-

bolic reference quantities and biologically-evolved quantity estimations seem to have acted

synergistically during the course of evolution. Here, we provide evidence of this interaction,

showing that culturally transmitted traits (i.e musical expertise) alters the cortical representa-

tion of non-symbolic and symbolic reference of quantities. Hence, we argue that the so-called

‘number faculty’ could not have been merely evolved through processes of natural selection

but stands upon biologically grounded and phylogenetically conserved neuronal networks

underpinning quantity representation [96].
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from event-related oscillatory gamma-band activity. Cereb Cortex. 2007; 17:2696–702. https://doi.org/

10.1093/cercor/bhl178 PMID: 17272264

81. Abboud S, Maidenbaum S, Dehaene S, Amedi A. A number-form area in the blind. Nat Commun [Inter-

net]. Nature Publishing Group; 2015 [cited 2018 Oct 21]; 6:6026. Available from: http://www.nature.

com/articles/ncomms7026 https://doi.org/10.1038/ncomms7026 PMID: 25613599

82. Hermes D, Rangarajan V, Foster BL, King JR, Kasikci I, Miller KJ, et al. Electrophysiological Responses

in the Ventral Temporal Cortex During Reading of Numerals and Calculation. Cereb Cortex. 2017;

27:567–75. https://doi.org/10.1093/cercor/bhv250 PMID: 26503267

83. Shum J, Hermes D, Foster BL, Dastjerdi M, Rangarajan V, Winawer J, et al. A brain area for visual

numerals. J Neurosci [Internet]. NIH Public Access; 2013 [cited 2018 Oct 19]; 33:6709–15. Available

from: http://www.ncbi.nlm.nih.gov/pubmed/23595729 https://doi.org/10.1523/JNEUROSCI.4558-12.

2013 PMID: 23595729

84. Pinheiro-Chagas P, Daitch A, Parvizi J, Dehaene S. Brain Mechanisms of Arithmetic: A Crucial Role for

Ventral Temporal Cortex. J Cogn Neurosci [Internet]. MIT PressOne Rogers Street, Cambridge, MA

02142-1209USAjournals-info@mit.edu; 2018 [cited 2018 Oct 19];1–16. Available from: https://www.

mitpressjournals.org/doi/abs/10.1162/jocn_a_01319 PMID: 30063177

85. Daitch AL, Foster BL, Schrouff J, Rangarajan V, Kaşikçi I, Gattas S, et al. Mapping human temporal
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