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Abstract
Background: Metabolites present in human urine can be influenced by individual 
physiological parameters (e.g., body mass index [BMI], age, and sex). Observation of 
altered metabolites concentrations could provide insight into underlying disease pa-
thology, disease prognosis and diagnosis, and facilitate discovery of novel biomarkers.
Methods: Quantitative metabolomics analysis in the urine of 183 healthy individuals 
was performed based on high- resolution liquid chromatography– mass spectrometry 
(LC– MS). Coefficients of variation were obtained for 109 urine metabolites of all the 
183 human healthy subjects.
Results: Three urine metabolites (such as dehydroepiandrosterone sulfate, acetami-
nophen glucuronide, and p- anisic acid) with CV183 > 0.3, for which metabolomics 
studies have been scarce, are considered highly variable here. We identified 30 age- 
related metabolites, 18 BMI- related metabolites, and 42 sex- related metabolites. 
Among the identified metabolites, three metabolites were found to be associated with 
all three physiological parameters (age, BMI, and sex), which included dehydroepian-
drosterone sulfate, 3- methylcrotonylglycine and N- acetyl- aspartic acid. Pearson's co-
efficients demonstrated that some age- , BMI- , and sex- related compounds are strongly 
correlated, suggesting that age, BMI, and sex could affect them concomitantly.
Conclusion: Metabolic differences between distinct physiological statuses were 
found to be related to several metabolic pathways (such as the caffeine metabolism, 
the amino acid metabolism, and the carbohydrate metabolism), and these findings 
may be key for the discovery of new diagnostics and treatments as well as new under-
standings on the mechanisms of some related diseases.
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1 |  INTRODUCTION

Urine is an easily accessible and well- investigated biologi-
cal fluid for disease- associated studies (Kostidis et al., 2018; 
Weiss & Kim, 2011), for example, serial sampling to monitor 
disease and therapeutic response (Zhang et al., 2012). Human 
urine metabolites are the downstream products (Wishart, 
2016) and end point markers of various biologic processes 
in the human body (Suhre et al., 2016), which can be a very 
sensitive measure of an organism's phenotype (Bouatra et al., 
2013; Zhang et al., 2015). Observation of the altered urine me-
tabolites concentrations can provide insights into underlying 
disease pathology (Wild et al., 2013) and disease prognosis 
and diagnosis (Houten, 2009; Suhre et al., 2016), and facilitate 
the discovery of novel biomarkers (Perreault et al., 2016). As 
reported, clinical metabolomics will be the next stage of clin-
ical biochemistry (D'Alessandro et al., 2012). In particular, 
clinical biochemistry was a research field mainly relied on the 
biochemical analyses of various biological fluids (e.g., urine, 
serum, and cerebrospinal fluid; D'Alessandro et al., 2012), 
for example, Richard Bright's (1789– 1858) test. Currently, 
the introductions of the cutting- edge instrumentation and 
technology innovation have enabled decades of substantial 
improvements in the field of standard analytical chemistry in 
the clinical analysis. For example, the emerging metabolomic 
technology has been reported to be likely enough add up to the 
analytical approaches at disposal of clinical analysis.

Metabolomics is a branch of omics science which system-
atically studies metabolites in organisms, cells, and biofluid 
(e.g., urine; Chaleckis et al., 2016; Saccenti et al., 2014). 
Among many emerging metabolomic techniques, the liquid 
chromatography– mass spectrometry (LC– MS) has advanced 
advantages of sensitively and simultaneously detecting thou-
sands of metabolites, and has no chemical derivatization re-
quirements and high- throughput capacity (Chen et al., 2007; 
Dunn et al., 2011; Hildebrandt et al., 2011), which is the 
main reason that it has been the most widely employed tech-
nique in untargeted metabolomic studies of human popula-
tion (Luan et al., 2015; Mapstone et al., 2014; Torres- Benitez 
et al., 2017; Wang et al., 2011).

Urinary metabolites were found to be associated with sev-
eral physiological parameters (e.g., body mass index [BMI], 
age, or sex; Geifman et al., 2013; Rescigno et al., 2017; 
Sugimoto et al., 2013; Wu & Gao, 2015). These physiolog-
ical parameters may influence the filtering of metabolites in 
the glomeruli and reabsorption in the proximal tubules of the 
nephron (Wu & Gao, 2015). In addition, physiological pa-
rameters could be associated with a higher risk of multiple 
diseases (e.g., cancer, cardiovascular disease, or neurode-
generation; Johnsson et al., 2018; Joo et al., 2018; Niccoli & 
Partridge, 2012; Reckelhoff, 2001), which were the key influ-
ential factors when considering phenotypic changes in health 
and disease (Martinez- Selles et al., 2018). For example, a 

patient's age can affect the course and progression of a disease 
(Diamond et al., 1989; Geifman & Rubin, 2012; Hasenclever 
& Diehl, 1998; Joo et al., 2018) or play an important role in 
determining the correct course of the treatment (Vecht, 1993). 
Thus, quantitative analysis of a metabolite (or compound) of 
among individuals offer profound insights into health or dis-
ease conditions and the effects of nutrition, drugs, and stress 
(Chaleckis et al., 2016; Masike et al., 2017). Moreover, com-
prehensive information about individual variations in metab-
olites could impact the future of medical science (Patti et al., 
2012; Ramautar et al., 2013). However, individual variability 
and physiological variations of urine metabolite have not been 
extensively studied, not to mention the potential mechanisms 
underlying how metabolites alternate between different phys-
iological conditions (Slupsky et al., 2007), which will be the 
key to the discovery of new diagnosis and treatment and new 
understandings of the mechanism of disease (Goveia et al., 
2016; Wishart, 2016).

Herein, in this study, individual variability in human urine 
metabolites based on LC– MS untargeted metabolomic study 
was systematically investigated. The coefficient of variation 
(CV) is a well- known metric for exploring the metabolites 
variability among individuals. First, to quantify individual 
variation, CVs for 109 urine metabolites were calculated 
and categorized into two distinct groups: low variability and 
high variability. Second, the statistical significance of metab-
olites between the distinct studied physiological parameters 
was calculated by a linear model and moderated t- statistics 
using an empirical Bayes method implemented in the limma 
R/Bioconductor package. In this study, the adjusted p val-
ues were estimated using the Benjamini– Hochberg method. 
Combining the present quantitative data with age, BMI, and 
sex information, we identified 30 age- related metabolites, 
18 BMI- related metabolites, and 42 sex- related metabo-
lites. Among the identified metabolites, three metabolites 
were found to be associated with all three physiological pa-
rameters, which included dehydroepiandrosterone sulfate, 
3- methylcrotonylglycine, and N- acetyl- aspartic acid. Third, 
correlation analysis suggested that certain age- related, BMI- 
related, and sex- related compounds were highly correlated. 
Moreover, based on these related metabolites, several met-
abolic pathways (such as caffeine metabolism, amino acid 
metabolism, and carbohydrate metabolism) were found to be 
related to age, BMI, or sex.

2 |  MATERIALS AND METHODS

2.1 | Subjects in this study

Samples were collected from a previous study of healthy adult 
urines (Thevenot et al., 2015), which included 183 healthy 
adults. Samples were obtained with informed consent of the 
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subjects, which was in accordance with the 1964 Helsinki 
Declaration. The benchmark dataset was obtained by non-
targeted high- resolution liquid chromatography– mass spec-
trometry (LC– MS) analysis, which was obtained by the 
“ropls” package. This package is publicly available from the 
Bioconductor repository. In particular, a total of 109 urine me-
tabolites were annotated for each sample. The annotation of the 
metabolites was performed by using the HMDB, KEGG, and 
METLIN public databases, as well as in- house ESI- mass spec-
tra database developed by Thevenot et al. (2015). All detailed 
descriptions on LC– MS analysis and data acquisition and data 
preprocessing are provided in the Supplementary Method.

2.2 | Identification of the performance 
relationship among CVs for each metabolite

The hierarchical clustering (Libbrecht & Noble, 2015) was 
adopted to differentiate the individual variability among the 
109 urine metabolites (Supplementary Method). As previ-
ously reported, the CV is a well- known metric for quanti-
fying individual variation of metabolites among healthy 
subjects. Individually different relative ratios of peak areas 
were relevant to the obtained CVs. Thus, in this study, the 
CV was applied for estimating the variability of each urine 
metabolite. The CV is the ratio of the standard deviation 
(SD) of metabolite abundance (peak areas) divided by the 
mean. The high CVs of metabolites could indicate metabolite 
variation among individuals (Chaleckis et al., 2016). First, 
the CVs for each urine compound from all the 183 volun-
teers (CV183) were calculated based on these relative peak 
areas among subjects using SD mean ratio (Chaleckis et al., 
2016). The CV183 of a specific metabolite among 109 urine 
metabolites were used to generate a 109- dimensional vec-
tor. Second, hierarchical clustering was adopted to investi-
gate the relationship among the vectors, and therefore among 
corresponding CV183. To measure the distance between any 
two vectors, the Manhattan was applied (Kim et al., 2016). 
The clustering method applied is the Ward's minimum vari-
ance, which can reduce the total within- cluster variance to 
the maximum extent. In this work, Ward's minimum variance 
module in R package was used (Tippmann, 2015). Finally, a 
dendrogram visualization of the hierarchical clustering was 
generated by the version 3 of Interactive Tree Of Life (iTOL) 
v3 software (Letunic & Bork, 2016).

2.3 | Statistical analysis for selecting 
changed metabolites between two distinct 
physiological conditions

To identify the differential age- , BMI- , and sex- related 
compounds, the linear models for microarray data (limma; 

McGeachie et al., 2015) and partial least square discriminant 
analysis (PLS- DA) were applied in this study (Kim et al., 
2009; Supplementary Method). The limma is a package for 
the analysis of gene expression data arising from microarray 
or RNA- Seq techniques (Ritchie et al., 2015). A core capabil-
ity is the use of linear models to assess differential expression 
in the context of multifactor designed experiments (Ritchie 
et al., 2015). In recent, Manuela et al. also applied a method 
based on generalized linear model to investigate the relation-
ship between sex-  and age- related physiological conditions 
for human metabolites. Meanwhile, the PLS- DA is a chemo-
metrics technique used for classification purposes either to 
infer variables that maximize the discrimination between 
predefined sample groups or to predict class affiliations of 
unclassified samples based on a calibration set of known 
class distributions (Bartel et al., 2013).

At this step, first, the abundance values for each metabo-
lite were modeled using a standard fixed effects linear model 
framework. Second, the t- statistic for the physiological con-
ditions effect was then extracted for each metabolite from 
the selected model and the p- values were computed by using 
one- sided tests. Then, the p- values were further adjusted for 
multiple comparisons by controlling their false discovery rate 
(FDR; proportion of false positives among the metabolites 
called significant) at a 5% of threshold. Finally, the metab-
olites were selected by variable importance in the projection 
(VIP) values (>1) on the PLS- DA model All procedures were 
implemented by the “limma” Bioconductor package on the R 
statistical computing environment (McGeachie et al., 2015).

2.4 | Correlation of urine metabolites 
identified to be associated with age, 
BMI, and sex

Pearson's coefficients (Paglia et al., 2015) were applied to 
examine the correlation among the age- related compounds, 
the correlation among the BMI- related compounds, and the 
correlation among the in sex- related compounds. Pearson's 
coefficients (>0.7; Chaleckis et al., 2016) between two dis-
tinct compounds demonstrated that they were strongly cor-
related, suggesting that aging or BMI or sex conditions could 
affect them concomitantly.

2.5 | Metabolic pathways revealed by 
metabolites associated with age, BMI, and sex

To explore the age- , BMI- , and sex- relevant metabolic func-
tions and pathways for understanding the biological mean-
ing of the observed metabolic changes, a metabolite pathway 
enrichment analysis was conducted using the widely ap-
plied MetaboAnalyst 4.0 web tool (Xia et al., 2015). Human 
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species and hypergeometric test were selected as parameters 
for the pathway analysis and the threshold of FDR was set at 
0.05 for allowing the research discovery (Fanelli et al., 2018).

3 |  RESULTS AND DISCUSSION

3.1 | Sample grouping based on age, BMI, 
and sex

To systematically investigate the variation of urine metabo-
lites, a total of 183 human adults were selected from a pre-
vious study, where individuals were sampled by using the 
Grubbs outlier methodology for being representatives. We 
performed sample grouping based on the information of 
age, BMI, and sex (Figure 1). The age was stratified into 
three age groups according to the commonly used MeSH 
vocabulary. The teenager is between the ages of 13 and 
18, the age of young adults is between 19 and 44, and the 
middle- aged people is between the ages of 44 to 65 (Geifman 
et al., 2013). Based on the classification for global database 
on BMI by the World Health Organization (Allison et al., 
2002; Medehouenou et al., 2015), the BMI was categorized 
into underweight (BMI < 18.5 kg/m2), normal weight (BMI 
18.5 ≤ 24.9 kg/m2), overweight (BMI 25 ≤ 29.9 kg/m2), and 
obese (BMI ≥ 30 kg/m2; Consultation, 2004; Czwornog & 
Austin, 2013). Sex was categorized into female and male 
groups, among which, 100 were males (55%) and 83 were fe-
males (45%). Too small sample sizes could reduce the power 
of the study and increase the probability of error, which can 
render the study meaningless (Ayeni et al., 2012). Thus, sta-
tistical power analysis was performed for estimating suffi-
cient sample sizes to achieve adequate power (Billoir et al., 
2015; Blaise et al., 2016). Power values were calculated on 
all the three datasets at an overall significance level of 1% 
with Bonferroni's adjustment. Figure S1 provides the sta-
tistical power values of the datasets between young adults 

versus middle- aged (A), normal weight versus overweight 
people (B), and male versus female individuals (C). For these 
three datasets, they gave over 90% power to detect differen-
tial metabolites at an overall significance level of 0.01 with 
Bonferroni's adjustment using their corresponding sample 
sizes. Results suggested that the sample sizes of the datasets 
were suitable for discriminating metabolites between the 
young adults and middle- aged groups, between the normal 
weight and overweight groups, and between the male and fe-
male groups.

3.2 | Determination of individual CVs for 
each urine metabolite

We examined individual metabolite variations among the 
healthy subjects. The CVs for the entire experimental popula-
tion of 183 individuals were determined for each compound 
(CV183) in urine. The unsupervised hierarchical clustering 
method has been used successfully for identifying the rela-
tionship among compounds and features (e.g., metabolites or 
genes; Caesar et al., 2018). In this study, to identify the rela-
tionship of variability among the individuals on the 109 urine 
metabolites detected, we thus applied the hierarchical clus-
tering to CVs and grouped the 109 urines metabolites into 
three categories (A, B, and C) based on their CV183 values 
(Figure 2). As illustrated in Figure 2, many compounds with 
CV183 less than 0.07 constituted the least variable subset of 
urine metabolites. The 43 metabolites highlighted in green in 
Figure 2 belonged to this group (A group). Forty- seven com-
pounds, highlighted in violet in Figure 2, had CV183 values 
from 0.07 to 0.2 and belonged to the second least variable 
group. 1,7- Dimethyluric acid, a urinary caffeine metabolite, 
belonged to this group (B group). The findings indicated that 
these compounds of the intermediate CV group do not fluc-
tuate on individual diet basis. In addition, the remaining 19 
compounds highlighted in blue showed CV183 values from 

F I G U R E  1  Summary of demographic variables of the benchmark dataset. (a) Distribution of age; (b) distribution of BMI; (c) distribution of 
gender. BMI, body mass index; F, female; M, male; No- w, normal weight; Ov- w, overweight; Ob- w, obese; Teen, Teenagers; Un- w, underweight
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0.2 to 1.08. We consider these compounds to be of interme-
diate to high variability. Among them, 16 compounds had 
CV183 values from 0.2 to 0.3 that could be considered as 
moderately variable. As an example, testosterone glucuron-
ide, a natural human metabolite of testosterone (Ambrosini 
et al., 2012) belonged to this group (C group). The com-
pounds with CV183 > 0.3 were considered highly variable. 
The three metabolites, dehydroepiandrosterone sulfate, 

acetaminophen glucuronide and p- anisic acid, belonged to 
the C group; CV183 > 0.3. To our knowledge, CVs of these 
three urine metabolites identified had not been previously re-
ported, which could be considered as potential biomarkers 
for different individuals. On the contrary, compounds with 
low CVs (A group) may support physiological homeostasis 
in vivo thereby might be consider as good candidates to rep-
resent health biomarkers (Chaleckis et al., 2016).

F I G U R E  2  Cluster profiling of CV profiles for 109 human urine metabolites. The 109 urine compounds with coefficients of variation (CV183) 
in three different ranges. The lowest CV183 (<0.07) group contains 43 compounds are highlighted in green (a). The middle CV183 (0.07– 0.3) group 
contains 47 compounds are highlighted in violet (b). The highest CV183 (>0.3) group contains 19 compounds are highlighted in blue (c). The higher 
CV183 indicate high variability groups, the lower CV183 indicate low variability groups
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3.3 | Biological functions analysis for urine 
metabolites revealed by CV measurements

We classified the 109 detected compounds into 41 categories 
based on their molecular biological functions. Among the 109 
compounds, 71 metabolites could be matched into HMDB da-
tabase, and many had the information about their biological 
function. In total, 41 biological functions sets were identified, 
12 compounds belonging to the lowest CV183 (<0.07) group A 
were related to 36 biological function sets; 7 compounds be-
longing to the middle CV183 (0.07– 0.2) B group were related 
to 9 biological function sets; and 2 compounds in the C group 
with the highest CV183 (0.2– 1.08; e.g., dehydroepiandrosterone 
sulfate, CV183 0.32; acetaminophen glucuronide, CV183 1.08) 
were identified to be associated with five biological functions 
sets: waste products, cell signaling, fuel and energy storage, 
fuel or energy source, and membrane integrity stability.

Most of the urine compounds (109) could be classified 
into high- area MS peaks (>5), medium- area MS peaks (4– 5), 
and low- area MS peaks (<4). It is noteworthy that acetamin-
ophen glucuronide (HMDB10316) data were dubious with 
a CV183 of 1.08. A close review of its dataset revealed that 
seven individuals presented high levels, seven presented mid-
dle levels, whereas the remaining of the individuals presented 
negligible levels of HMDB10316 (Figure S2). HMDB10316 
(acetaminophen glucuronide) is a natural human metabolite 

of acetaminophen generated in the liver by UDP glucuonyl-
transferase (Wishart et al., 2018), which is involved in the 
acetaminophen metabolism pathway. As reported in Court's 
pioneer study, the race, sex, and genetic polymorphism could 
contribute to variability in acetaminophen metabolism in 
healthy volunteers (Court et al., 2017). The abundant dif-
ferences in HMDB10316 across individuals might be ex-
plained by the perturbed acetaminophen metabolism pathway 
(Wishart et al., 2018). Moreover, the very large variability 
among intensities (HMDB10316) was found to be associated 
with some metabolic waste products (e.g., the excretion of 
drugs, toxic substances, or other substances cannot be used 
as an energy source; Aw & Jones, 1983; Wishart et al., 2018).

3.4 | Evaluation and validation of the 
“limma” Package approach based on spiked 
metabolites

A good feature selection method should have the character-
istic of selecting differential features that are related to the 
spiked metabolites (true positives). Thus, in this work, we 
performed the accuracy evaluation of the “limma” approach 
by measuring its ability to whether select the true positive 
spiked- in metabolic features set. First, a benchmark spike-
 in dataset (MTBLS59) from Franceschi's work (Franceschi 

F I G U R E  3  Identification of significant differential urine metabolites between the young adults and middle- aged people groups (a), between 
the normal weight and overweight groups (b), and between the male and female groups (c). Age: young adult (19– 44 years of age) and middle- aged 
people (44– 65 years of age); BMI: normal weight (BMI 18.5 ≤ 24.9 kg/m2), overweight (BMI 25 ≤ 29.9 kg/m2); Gender: female and male. All 
differential metabolites were order according to the adjusted p- value (adjP) which were calculated using the Benjamini and Hochberg method
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et al., 2012) was analyzed (Supplementary Method). Then, a 
well- suited metric (the number of true positives metabolic fea-
tures; Christin et al., 2013) was calculated in order to evaluate 
the accuracy performance of the method. As shown in Table 
S1, the true positives metabolic features could be identified 
based on the limma approach, which indirectly reflected the 
reliability of the strategy applied in this study. Moreover, the 
PLS- DA method (Kim et al., 2009) adopted for supporting the 
interpretation of the above results were also further evaluated 
and validated. The performances on identifying spike- in com-
pounds based on the PLS- DA approach was also consistent 
with Franceschi's work (Franceschi et al., 2012; Table S1).

3.5 | Discriminating metabolites between 
young adults and middle- aged people

To identify significantly differential urine metabolites be-
tween two distinct age groups, the “limma” approach was 
used, which could be implemented with the “limma” package 

(Ritchie et al., 2015). As illustrated in Figure 3a, we found 
30 compounds that differed significantly between the two 
distinct age groups (FDR  ≤  0.05). For example, quinic 
acid (Figure 4a) showed strikingly lower levels in young 
healthy adults compared with middle- aged healthy people 
(adjP = 2.42E- 07). The levels of two urinary metabolites in-
cluding the 1,7- dimethyluric acid (adjP = 9.48E- 06; Figure 
4b) and 1- methylxanthine (adjP = 0.00015; Figure 4c) were 
clearly less abundant in the young adult people. Similarly, 
fumaric acid, an organic dicarboxylic acid that played a role 
in the tricarboxylic cycle (TCA cycle), showed obvious dif-
ference between the middle- aged people and the young adults 
(much less in young adult urine; adjP value of 0.00017; 
Figure 4d). Meanwhile, the levels of dehydroepiandrosterone 
sulfate (adjP  =  4.52E- 06; Figure 4e), dehydroepiandroster-
one 3- glucuronide (adjP  =  4.52E- 06; Figure 4f), FMNH2 
(adjP  =  0.00016; Figure 4g), and dimethyl- guanosine 
(adjP = 0.00048; Figure 4h) were clearly more abundant in 
the urine of the young adults. Moreover, we noted that the 
discriminating metabolites selected based on the PLS- DA 

F I G U R E  4  Identification of some urine metabolites that differ in abundance between young adult (19– 44 years of age) and middle- aged (44– 
65 years of age) people. Quinic acid (a), 1,7- dimethyluric acid (b), 1- methylxanthine (c), and fumaric acid (d) are higher in middle- aged subjects 
whereas dehydroepiandrosterone sulfate (e), dehydroepiandrosterone 3- glucuronide (f), FMNH2 (g), and dimethylguanosine (h) are higher in the 
adult. The CVs indicate individual variability of metabolites. p values between the age groups are in the range of 2.42E- 07 and .00048
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models were present in the ones selected by the “limma” 
method (Figure S3), which reflected the reliability of the 
results.

3.6 | Discriminating metabolites 
between normal weight subjects and 
overweight subjects

To identify the significant differential urine metabolites as-
sociated with BMI, the “limma” approach was used, which 
could be implemented in the “limma” package (Ritchie 
et al., 2015). As illustrated in Figure 3b, we found that 18 
compounds that differed significantly between the two 
BMI groups at p ≤ .05. For example, the methyl- (hydroxy)- 
piperidine- carboxylate (Figure 5a) showed the lower levels 
in normal weight subjects compared with overweight ones 

(p  =  .0177). Kynurenic acid showed impressive difference 
between the normal weight and overweight individuals (much 
less in urine normal weight individuals; p value of .0190; 
Figure 5b) and in agreement with previous studies (Favennec 
et al., 2015), so high kynurenic acid level was associated with 
higher BMI (p < .05). Similarly, the levels of 1,3- dimethyluric 
acid (p = .0280; Figure 5c) and xanthosine (p = .0297; Figure 
5d) were clearly less abundant in the normal weight individu-
als. Meanwhile, the levels of N- acetyltryptophan isomer 3 
(adjP  =  0.0035; Figure 5e), 3- hydroxyphenylacetic acid 
(adjP = 0.001; Figure 5f), 4- acetamidobutanoic acid isomer 
3 (adjP = 0.0165; Figure 5g), and Phe- Tyr- Asp (and isomers; 
adjP = 0.0231; Figure 5h) were clearly more abundant in the 
urine of normal weight subjects. The differences in urine 
metabolites between normal weight and overweight subjects 
might suggest that certain dysregulated metabolic pathways 
existed between them.

F I G U R E  5  Identification of some urine metabolites that differ in abundance between BMI: normal weight (BMI 18.5 ≤ 24.9 kg/m2) and 
overweight (BMI 25 ≤ 29.9 kg/m2) people. Methyl (hydroxy) piperidine- carboxylate (a), kynurenic acid (b), 1,3- dimethyluric acid (c), and 
xanthosine (d) are higher in overweight subjects, whereas N- acetyltryptophan isomer 3 (e), 3- hydroxyphenylacetic acid (f), 4- acetamidobutanoic 
acid isomer 3 (g), and Phe- Tyr- Asp (and isomers) (h) are higher in the normal weight people. The CVs indicate individual variability of 
metabolites. p values between the BMI groups are in the range of .003505 and .19018
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3.7 | Discriminating metabolites between 
male and female subjects

To identify the significant differential urine metabolites as-
sociated with sex, the “limma” approach was used, which 
could be implemented with the “limma” package (Ritchie 
et al., 2015). As illustrated in Figure 3c, we found 42 com-
pounds that differed significantly between the two sex 
groups (false discovery rate ≤0.05). For example, p- anisic 
acid (Figure 6a) showed strikingly lower levels in healthy 
male subjects compared with female subjects (adjP = 9.81E- 
10). Malic acid, a tripeptide analog of glutathione, showed 
impressive differences between the male and the female 
groups (much less in the male subjects; adjP value of 4.48E- 
09; Figure 6b). Similarly, the levels of two oxidant scav-
engers, pantothenic acid (adjP = 1.31E- 07; Figure 6c) and 
acetylphenylalanine (adjP  =  9.23E- 06; Figure 6d) were 
clearly less abundant in the male subjects. Meanwhile, 
the levels of testosterone glucuronide (adjP  =  6.34E- 
12; Figure 6e), γ- Glu- Leu/Ile (adjP  =  0.0012; Figure 6f); 

Asp- Leu/Ile- isomer- 1 (adjP  =  0.0059; Figure 6g) and 
6- (carboxy- methoxy)- hexanoic acid (adjP = 0.00743; Figure 
6h) were clearly more abundant in the urine of male subjects. 
The differences in urine metabolites between males and fe-
males might suggest that certain dysregulated metabolic 
pathways existed between them.

3.8 | Correlations among age- , BMI- , and 
sex- related compounds

We found that 13 pairs of 30 age- related compounds that 
showed relatively strong correlation coefficients (Pearson's 
r; r2  =  0.70– 0.93; Table 1 and Figure S4), 3 pairs of 18 
BMI- related compounds showed relatively strong correla-
tion (r2 = 0.70– 0.74; Table 1 and Figure S5) and 12 pairs 
of 42 sex- related compounds that showed strong correlation 
(r2 = 0.70– 0.85; Table 1 and Figure S6). Interestingly, among 
the 22 pairs of age- , BMI- , or sex- related compounds (Table 
1), the strongest correlation was found between 1- methyl- uric 

F I G U R E  6  Identification of some urine metabolites that differ in abundance between sex: male and female subjects. p- Anisic acid (a), malic 
acid (b), pantothenic acid (c), and acetylphenylalanine (d) are higher in female subjects, whereas testosterone glucuronide (e), (gamma) Glu- Leu/Ile 
(f), Asp- Leu/Ile isomer 1 (g), and 6- (carboxymethoxy)- hexanoic acid (h) are higher in the male people. The CVs indicate individual variability of 
metabolites. p values between the gender groups are in the range of 6.34E- 12 and .00743
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acid and 1- methyl- xanthine (r2  =  0.927). This may be at-
tributed to their related structures and they are linked in the 
biochemical pathway of the caffeine metabolism. Potential 
correlation between dehydro- epiandrosterone- 3- glucuronide 
and testosterone- glucuronide was examined (r2  =  0.922), 
and these two compounds are components of the lipid me-
tabolism pathway. Many other correlations between two 
distinct compounds existed due to similarity chemical tax-
onomy (e.g., organooxygen compounds or amino acids, 
peptides, and analogues). In addition, interestingly, among 
the strong correlation compounds, three pairs of age- related 
correlations also existed in sex- related pairs: correlation 
between fumaric acid and pentose (r2  =  0.796), correla-
tion between pyrocatechol sulfate and pentose (r2 = 0.724), 
and correlation between dehydro- epiandrosterone- 3- 
glucuronide and testosterone- glucuronide (r2  =  0.722). 
Three pairs of BMI- related correlations also existed in sex- 
related pairs: correlation between 3- methyl- crotonyl- glycine 
and valeryl- glycine isomer- 2 (r2  =  0.742), 

correlation between alpha- N- phenyl- acetyl- glutamine and 
Phe- Tyr- Asp (r2  =  0.740), and correlation between the 
3- methyl- crotonyl- glycine and 4- acetamido- butanoic acid 
isomer- 3 (r2  =  0.703). The dehydro- epiandrosterone- 3- 
glucuronide and testosterone- glucuronide showed decreased 
urine levels in the middle- aged people, the latter compound 
also presented in low levels in female people. Our finding 
regarding testosterone glucuronide was agreement with a pre-
vious study that indicated a sex difference in abundance of 
testosterone glucuronide, urinary testosterone glucuronide is 
lower in female subjects (Jones et al., 1977; Perera et al., 1987; 
Raynaud et al., 1993; Sayo & Hosokawa, 1980). The number 
of teenagers (1), obese (3), and underweight (6) individuals 
were too small, and not suited for identifying their regulated 
metabolites. More urine samples of teenagers, obese, and 
underweight individuals will be needed for obtaining more 
general conclusions in the future. Studies aiming elucidate 
the variability among urine metabolites on the wider age and 
BMI ranges are of considerable interest nowadays.

T A B L E  1  Pairs of age- , BMI- , and gender- related compounds that show relatively high correlation values

Compounds 1 Compounds 2 Correlation Age- related BMI- related Gender- related

1- Methyluric acid 1- Methylxanthine 0.927 + − −

1,3- Dimethyluric acid 1- Methyluric acid 0.896 + − −

Gluconic acid Threonic acid 0.851 − − +

Hippuric acid Phe- Tyr- Asp 0.847 − − +

1,7- Dimethyluric acid 1- Methylxanthine 0.841 + − −

1,3- Dimethyluric acid 1- Methylxanthine 0.832 + − −

Gluconic acid Glucuronic acid 0.828 − − +

Glucuronic acid Threonic acid 0.824 − − +

1,3- Dimethyluric acid 1,7- Dimethyluric acid 0.809 + − −

Fumaric acid Pentose 0.796 + − +

1,7- Dimethyluric acid 1- Methyluric acid 0.795 + − −

Asp- Leu/Ile isomer 1 Asp- Leu/Ile isomer 2 0.762 − − +

3- Methylcrotonylglycine Valerylglycine isomer 1 0.744 − − +

3- Methylcrotonylglycine Valerylglycine isomer 2 0.742 − + +

α- N- Phenylacetyl- glutamine Phe- Tyr- Asp (and isomers) 0.740 − + +

Pyrocatechol sulfate Pentose 0.724 + − +

Dehydroepiandrosterone 
3- glucuronide

Testosterone glucuronide 0.722 + − +

1- Methyluric acid Quinic acid 0.721 + − −

Pyridylacetylglycine Dimethylguanosine 0.711 + − −

1- Methylxanthine Quinic acid 0.704 + − −

Deoxyhexose Fumaric acid 0.704 + − −

3- Methylcrotonylglycine 4- Acetamidobutanoic acid 
isomer 3

0.703 − + +

Note: The compounds are selected according to relatively strong correlation coefficients (Pearson's r) (r2 = 0.70– 0.93). These compounds are ordered by the 
correlation coefficients. Plus (+) indicates that the compounds were correlated in the corresponding condition and minus (−) indicates that the compounds were not 
correlated in the corresponding condition.
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3.9 | Age, BMI, and sex differences 
in metabolism

To uncover age- , BMI- , and sex- relevant metabolic functions 
and pathways, we conducted a metabolic pathway enrich-
ment analysis using MetaboAnalyst (Xia et al., 2015). Age- 
associated metabolites were found to be related to several 
metabolic pathways (such as caffeine metabolism, and alanine, 
aspartate, and glutamate metabolism; Table 2). The BMI- 
associated metabolites were found to be related to the glycine, 
serine, and threonine metabolism and also the cyanoamino acid 
metabolism (Table 2). The sex- associated metabolites were 
found to be related to the carbohydrate metabolism (such as 
citrate cycle, glyoxylate, dicarboxylate, and butanoate metabo-
lism; Table 2) and the amino acid metabolism (such as phe-
nylalanine metabolism, and alanine, aspartate, and glutamate 
metabolism; Table 2). Interestingly, age- specific dysregulated 
metabolic pathways identified (e.g., caffeine metabolism) were 
operative in age- associated diseases such as Parkinson's disease 
(Fujimaki et al., 2018; Makrantonaki et al., 2006; Palacios et al., 
2010), Alzheimer's disease (Ribeiro & Sebastiao, 2010), and 

Huntington's disease (Lee & Chern, 2014), which may provide 
valuable clues to explain the relationship between age and risk 
of Parkinson's disease. Glycine is a major amino acid in mam-
mals and other animals (Glynn et al., 2015), we also discov-
ered the impact of glycine metabolism in overweight humans, 
which was consistent with previous published study (Glynn 
et al., 2015). Moreover, sex- related variability in carbohydrate 
metabolism was also discovered (Wismann & Willoughby, 
2006), which might contribute to 17- β- estradiol mediation, a 
major determinant of the sex dimorphic response and could af-
fect the organs (Tarnopolsky & Ruby, 2001). In addition, an 
evidence from previous study suggested the administration of 
17- β- estradiol could result in a lower level of glucose and cat-
echolamines in amenorrhoeic women or men (Tarnopolsky & 
Ruby, 2001). The potential mechanisms behind these sex differ-
ences in carbohydrate metabolism need to be further validated.

Moreover, based on a systematic study on urine and serum 
metabolites by Lau et al. (2018), population- specific variance 
(age, sex, BMI, ethnicity, dietary, and country of origin) was 
identified both in urine and serum metabolites, which indi-
cated the ethnicity parameters may be a factor contributing 

Metabolic pathway p- value FDR

Age- specific

Caffeine metabolism .004 0.237

Alanine, aspartate, and glutamate metabolism .006 0.237

Nitrogen metabolism .015 0.302

Nicotinate and nicotinamide metabolism .019 0.302

Phenylalanine metabolism .020 0.302

Glycine, serine, and threonine metabolism .023 0.302

BMI- specific

Glycine, serine, and threonine metabolism .008 0.614

Cyanoamino acid metabolism .045 0.762

Gender- specific

Citrate cycle (TCA cycle) 4.47E- 06 0.0003

Phenylalanine metabolism .0001 0.005

Glyoxylate and dicarboxylate metabolism .0002 0.005

Alanine, aspartate, and glutamate metabolism .0004 0.007

Butanoate metabolism .002 0.027

Taurine and hypotaurine metabolism .006 0.086

Pantothenate and CoA biosynthesis .012 0.129

Pentose phosphate pathway .016 0.129

Vitamin B6 metabolism .016 0.129

Lysine biosynthesis .016 0.129

Nicotinate and nicotinamide metabolism .029 0.205

Ascorbate and aldarate metabolism .031 0.205

Glycine, serine, and threonine metabolism .035 0.213

Note: The pathways are selected as differential according to p- value (p < .05). All specific pathways are 
ordered by p- value. The false discovery rate (FDR) indicated adjust p- value.

T A B L E  2  Metabolic pathways differed 
significantly between the two age groups, 
two BMI groups, and two gender groups
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to the urine metabolome variance. Therefore, substantial 
work will be needed to more systematically investigate the 
ethnicity- specific variance in urine metabolites when the 
studied subjects are diverse, and the ethnicity information 
will be fully obtained in the future.

4 |  CONCLUSIONS

Human urine provides a rich and important source of in-
formation about human metabolites. The coefficient of 
variation for urine metabolites reflects individual differ-
ences in age, BMI and sex conditions. In conclusion, we 
conducted a comprehensive analysis of urine metabolome 
physiological variations, and identified 30 age- related me-
tabolites, 18 BMI- related metabolites, and 42 sex- related 
metabolites. Among them, three metabolites were found 
to be associated concomitantly with all three physiologi-
cal parameters (age, BMI, and sex), including dehydroe-
piandrosterone sulfate, 3- methyl- crotonyl- glycine, and 
N- acetyl- aspartic acid. Correlation analysis suggests that 
certain age- related compounds, BMI- related compounds, 
and BMI- related compounds are highly correlated. 
Individual variability in urine metabolites may also lead to 
identify candidates for biomarkers of human aging, BMI, 
sex, or relevant diseases.
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