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Abstract

Cytosine DNA methylation is an epigenetic mark implicated in several biological processes. Bisulfite treatment of DNA is
acknowledged as the gold standard technique to study methylation. This technique introduces changes in the genomic
DNA by converting cytosines to uracils while 5-methylcytosines remain nonreactive. During PCR amplification 5-
methylcytosines are amplified as cytosine, whereas uracils and thymines as thymine. To detect the methylation levels, reads
treated with the bisulfite must be aligned against a reference genome. Mapping these reads to a reference genome
represents a significant computational challenge mainly due to the increased search space and the loss of information
introduced by the treatment. To deal with this computational challenge we devised GPU-BSM, a tool based on modern
Graphics Processing Units. Graphics Processing Units are hardware accelerators that are increasingly being used successfully
to accelerate general-purpose scientific applications. GPU-BSM is a tool able to map bisulfite-treated reads from whole
genome bisulfite sequencing and reduced representation bisulfite sequencing, and to estimate methylation levels, with the
goal of detecting methylation. Due to the massive parallelization obtained by exploiting graphics cards, GPU-BSM aligns
bisulfite-treated reads faster than other cutting-edge solutions, while outperforming most of them in terms of unique
mapped reads.
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Introduction

Regulation of gene expression is a very complex process

controlled by multiple factors, including epigenetic ones. Epige-

netics studies changes in gene expression that do not involve

changes in the underlying DNA sequence [1]. Specifically, it refers

to functionally relevant modifications that permit the genes of an

organism to express themselves differently. Cytosine DNA

methylation is a stable epigenetic mark that plays a very important

role in several biological processes, including genomic imprinting,

and is often responsible of phenotypic expressions (e.g., cancer)

[2]. It involves the addition of a methyl group to the cytosine DNA

nucleotides (see Figure 1). Mechanisms of epigenetic regulation

include methylation at CpG islands in the promoter region of the

gene. In many disease-causing processes gene promoter CpG

islands acquire abnormal hypermethylation [3], which results in

transcriptional silencing that can be inherited by daughter cells

upon cell division. Three main approaches (i.e., endonuclease

digestion, affinity enrichment and bisulfite conversion) [4] have

been developed to analyze DNA methylation and various

molecular biology techniques, as probe hybridization and

sequencing, can be used to identify methylated cytosines in

genomic DNAs treated with one of these approaches.

Bisulfite treatment of DNA [5] is considered the gold standard

technique to study methylation. This technique introduces specific

changes in the DNA sequence, depending on the methylation

status of individual cytosine residues. Genomic DNA is modified

by converting cytosines to uracils, while 5-methylcytosines remain

nonreactive. In particular, during PCR amplification, only 5-

methylcytosines are amplified as cytosine, whereas uracils and

thymines are amplified as thymine. Two main protocols have been

developed to construct bisulfite-treated libraries for high-through-

put sequencing. These protocols, methylC-seq [6] and BS-seq [7],

mainly differ in the PCR amplification procedure. In methylC-seq

libraries are generated in a directional manner: a single

amplification step is performed, so that reads are related to the

forward (+FW) or to the reverse (-FW) direction of the bisulfite-

treated sequence. Libraries generated using the methylC-seq

protocol are termed directional. In BS-seq, two amplification steps

are performed, so that bisulfite reads may be related to four

different directions of the bisulfite-treated sequence: forward

Watson strand (+FW) and its reverse complement (+RC), forward

Crick strand (-FW) and its reverse complement (-RC) (see Figure 2).

Libraries generated using the BS-seq protocol are termed non-

directional.

The main limitation of whole-genome bisulfite sequencing

(WGBS) is related to its cost, which is very high. Reduced

representation bisulfite sequencing (RRBS) [8] is an alternative

and cost-effective technique used to study methylation. In RRBS,

DNA genome is first digested using specific restriction enzyme to

enrich for CpGs. Then, the DNA fragments are size-selected and

subsequently, as for WGBS, treated with bisulfite to be sequenced.

Hence, in RRBS, only specific CpG-rich regions are considered.
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To calculate the methylation levels, bisulfite-treated reads are

aligned against a reference genome. Mapping these reads to a

reference genome represents a computational challenge mainly

due to i) the increased search space and ii) the loss of information

introduced by the bisulfite treatment. As for the former issue,

considering that bisulfite affects only cytosines, non complemen-

tary Watson and Crick strands are generated. As previously

highlighted, this implies that PCR amplification of both strands

will produce up to four different strands and the bisulfite treated

read can be derived from any of these strands. Moreover, the

alignment process is further complicated by the asymmetric

mapping between cytosines and thymines. In fact, a thymine in a

read can be mapped to a cytosine in the reference genome, but the

inverse is not allowed (see Figure 3). As for the latter issue, it

should be pointed out that only a very small portion of cytosines is

methylated in mammalian [9], making more difficult the

alignment process along the reference genome.

Some tools have been proposed in the literature to address this

mapping challenge. These tools can be divided in two classes,

according to the strategy adopted to deal with the asymmetric

mapping between cytosines and thymines. Tools belonging to the

first class are specifically designed to perform alignments by

allowing cytosines and thymines in the reads to match with

cytosines in the reference sequence. By contrast, tools in the

second class adopt an unbiased strategy that reduces the

complexity of involved sequences converting cytosines to thy-

mines. In so doing, sequences are represented with a simplified 3-

letter nucleotide alphabet and alignments can be carried out with

common and available short-read mapping tools. Alignments

obtained exploiting this strategy must be post-processed to avoid

those ambiguous and false positives. Tools in the first class

provides the highest mapping efficiency. However, it should be

observed that with the mapping strategy adopted by these tools,

methylated read sequences will be aligned with greater efficiency

than unmethylated ones. This means that tools in this class can

overestimate methylation levels. By contrast, tools in the second

class provide a slightly reduced mapping efficiency whereas

alignment of reads is unaffected by their methylation state [10].

With no claim of being exhaustive, let us cite BSMAP/

RRBSMAP [11][12] (we point out that the latest release of

RRBSMAP has been merged into BSMAP) and segemehl [13] as

tools of the first class, and BS-Seeker/BS-Seeker2 [14][15],

Bismark [16], and BRAT-BW [17] are of the second class.

BSMAP, applies to the reads a reverse bisulfite conversion,

converting thymines to cytosines only at cytosine positions in the

reference genome; then, it maps the masked reads to the genome.

RRBSMAP, was the first tool specifically tailored for RRBS

libraries. Based on suffix arrays, segemehl was the first tool able to

take into account indels (insertions/deletions) in alignments of

bisulfite-treated reads. Its high speed and accuracy are obtained by

means of multi-threading, and with a very high memory

consumption compared to those of others state-of-the-art tools.

BS-Seeker performs a 3-letter alphabet reduction by converting

cytosines to thymines on the FW reads and on both strands of the

reference genome. Then, it uses the Bowtie [18] short-read

alignment tool to map the converted FW reads against the

converted Watson and Crick strands. In the event that reads are

generated from the BS-seq protocol, a guanine to adenine

conversion is performed on the RC of both reads and reference

genome. Bowtie is then used to map the converted RC reads to the

converted RC of the Watson and Crick strands. BS-Seeker runs in

parallel the different instances of Bowtie. A final post-processing

phase is performed to detect false positive alignments and

methylation. BS-Seeker2 is an updated version of BS-Seeker that

can also map reads from RRBS. Furthermore, BS-Seeker2

Figure 2. Bisulfite treatment. Two main type of libraries can be generated, directional and non-directional. As for directional libraries, a single
amplification step is performed so that reads are related either to the forward (+FW) or to the reverse (-FW) direction of the bisulfite-treated
sequence. Conversely, as for non-directional libraries, two amplification steps are performed, so that bisulfite reads may be related to four different
directions of the bisulfite-treated sequence: forward Watson strand (+FW) and its reverse complement (+RC), forward Crick strand (-FW) and its
reverse complement (-RC).
doi:10.1371/journal.pone.0097277.g002

Figure 1. Cytosine DNA Methylation. Cytosine DNA methylation is
a epigenetic mechanisms that affects gene expression. It involves the
addition of a methyl group to the cytosine DNA nucleotides.
doi:10.1371/journal.pone.0097277.g001
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supports gapped global and local alignments with the newest

multi-threading Bowtie2 [19] release. Bismark is an alternative

tool able to map bisulfite-treated reads generated with both

WGBS and RRBS. Similarly to BS-Seeker2, Bismark uses Bowtie2

and Bowtie to map preprocessed reads with and without indels

supports respectively. Unlike from BS-Seeker2, Bismark does not

support local alignments when used with Bowtie2. BRAT-BW uses

the same strategy adopted by BS-Seeker and Bismark, while

efficiently implementing the FM-index [20] in terms of memory

occupancy. In general, due to the computational effort that may

be required to cope with this mapping task, these tools present one

or more implicitly or explicitly imposed constraints on the

alignment process (e.g., number of mismatches, number of hits

for reads, indels support). Table 1 reports a summarization of

some features of the cited tools.

In this work, we present GPU-BSM (standing for GPU-BiSulfite

reads Mapping), an accurate and very fast tool devised to map

bisulfite-treated reads and to estimate methylation levels. Written

in Python, GPU-BSM exploits the 3-letter nucleotide alphabet

reduction strategy and it is mainly based on SOAP3-dp [21], a

short-read mapping tool able to take advantage of the computa-

tional power of modern Graphics Processing Units (GPU). GPU-

BSM has been designed to support ungapped and gapped (global

and local) alignment with libraries generated with both WGBS

and RRBS. Currently, GPU-BSM can be run parallelized on up

to 4 different GPU cards. The massive parallelization obtained by

means of GPUs enables GPU-BSM to map bisulfite-treated reads

without imposing stringent limitations on the alignment process.

Methods

Based on the 3-letter nucleotide alphabet reduction strategy,

GPU-BSM implements an approach similar to the one adopted by

similar tools as BS-Seeker, Bismark, and BRAT-BW. In particular,

similarly to other tools, GPU-BSM uses a third-part short-read

mapper (i.e., SOAP3-dp) to align 3-letter converted reads. In the

following of this section, we first give a short introduction to GPUs

and to existing state-of-the-art short-read mapping tools. Then, we

present our strategy, devised to deal with the bisulfite-treated reads

mapping problem. Subsequently, we discuss about the adopted

alignment constraints. Finally, we briefly resume the hardware and

software equipment required to use GPU-BSM.

GPU
GPUs are hardware accelerators that are increasingly used to

deal with computationally intensive algorithms. From an archi-

tectural perspective, GPUs are very different from traditional

CPUs. Indeed, the latter are devices composed of few cores with

lots of cache memory able to handle a few software threads at a

Table 1. Bisulfite-treated reads mapping tools.

tool 3-letter mismatches indels support hits/reads WGBS-RRBS

Bismark Yes Unlimited Yes� Unlimited Yes

BSMAP No 15 Yes 1000 Yes

BS-Seeker Yes 3 No 2 only WGBS

BS-Seeker2 Yes Unlimited Yes� 2 Yes

BRAT-BW Yes Unlimited No Unlimited only WGBS

segemehl No Unlimited Yes Unlimited only WGBS

Some bisulfite-treated reads mapping tools listed according to some relevant features. The second columns indicates whether the corresponding tool adopts a 3-letter
conversion strategy. The third column reports the maximum number of mismatches allowed for the read. The fourth column reports whether the corresponding tool
supports gapped alignments. The fifth column reports the maximum number of hits allowed for a read. The sixth column reports whether the corresponding tool
supports WGBS and RRBS protocols.
�Using Bowtie2.
doi:10.1371/journal.pone.0097277.t001

Figure 3. Asymmetric mapping. Due to the bisulfite treatment, unmethylated cytosines are converted to thymines during the PCR amplification.
This conversion must be take into account during alignment by allowing an asymmetric mapping. A thymine in a read mapped to a cytosine in the
reference genome sequence is considered as a match, whereas a thymine in the genome sequence mapped to a cytosine in a read is considered as a
mismatch.
doi:10.1371/journal.pone.0097277.g003
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time. Conversely, the former are devices equipped with hundreds

of cores able to handle thousands of threads simultaneously, so

that a very high level of parallelism (see Figure 4) can be reached.

GPGPU (General Purpose Computing on Graphics Processing

Units) is a methodology for high-performance computing that

combines CPUs with GPUs to deal with data parallel and

throughput intensive algorithms. As CPUs are more effective than

GPUs for serial processing, they are used to perform serial parts of

the algorithm, whereas GPUs are used to perform parts of the

algorithm where processing of large blocks of data is done in

parallel. The main disadvantage of using GPUs is related with the

effort required to code algorithms. To take advantage of the GPU

technology, algorithms must be coded to reflect the architecture of

these hardware accelerators. Incorporating GPU support into

existing codes is very difficult and typically requires significant

changes of the code and of the algorithm.

In the NVIDIA GPU-based architecture, parallelization is

obtained through the execution of tasks in a number of stream

processors or CUDA cores. Cores are grouped in multiprocessors

that execute in parallel. A CUDA core executes a floating point or

integer instruction per clock cycle for a thread and all cores in a

streaming multiprocessor execute the same instruction at the same

time. The code is executed in groups of threads called warps.

Device memory access takes a very long time due to the very long

memory latency.

The parallel programming model of the CUDA architecture

provides a set of API that allows programmers to access the

underlying hardware infrastructure and to exploit the fine-grained

and coarse-grained parallelism of data and tasks. Summarizing,

the CUDA execution model (see Figure 5) can be described as

follow: the GPU creates an instance of the kernel program that is

made of a set of threads grouped in blocks in a grid. Each thread

has a unique ID within its block and a private memory and

registers, and runs in parallel with others threads of the same

block. All threads in a block execute concurrently and coopera-

tively by sharing memory and exchanging data. A block, identified

by a unique ID within the block grid, can execute the same kernel

program with different data that are read/written from a global

shared memory. Each block in the grid is assigned to a streaming

multiprocessor in a cyclical manner.

Short-read mapping tools
Several tools have been devised to perform short-read

mappings. Without claiming to be exhaustive, let us cite some of

the most popular solutions, i.e. MAQ [22], RMAP [23,24],

Bowtie, BWA [25], CloudBurst [26], and SHRiMP2 [27,28].

MAQ maps short sequence reads to a reference genome by

calculating the probability of a read alignment to be correct, and

consensus genotype calling with a model that incorporates

correlated errors and diploid sampling. It supports gapped

alignment and can align reads up to 128 bp. RMAP uses quality

scores to provide accurate ungapped alignments. It exploits a first

Figure 4. Multi-core and many-core processors. Multi-core processors as CPUs are devices composed of few cores with lots of cache memory
able to handle a few software threads at a time. Conversely, many-core processors as GPUs are devices equipped with hundreds of cores able to
handle thousands of threads simultaneously.
doi:10.1371/journal.pone.0097277.g004

Figure 5. CUDA execution model. Threads are grouped in blocks in
a grid. Each thread has a private memory and runs in parallel with the
others in the same block.
doi:10.1371/journal.pone.0097277.g005
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criterion based on a simple count of mismatches and a second

criterion making use of the base-call quality scores. Bowtie is a

memory-efficient short-read aligner that exploits the Burrows-

Wheeler Transform (BWT) to index the genome allowing only

ungapped alignments. BWA is another tool that exploits the BWT

to index the reference sequences. Unlike from Bowtie, it can also

provide gapped alignments. CloudBurst is a parallel seed-and-

extend read-mapping tool able to align reads with a specified

number of differences, including both mismatches and indels. It

exploits the open-source Hadoop [29] implementation of Ma-

pReduce [30] to parallelize the execution using multiple comput-

ing nodes. SHRiMP2 exploits specialized vector computing

hardware to speed-up the Smith-Waterman [31] dynamic

programming algorithm. It is a multi-core short-read mapping

tool that enables the alignment of reads with extensive polymor-

phism and sequencing errors. A comparative study aimed at

assessing the accuracy and the runtime performance of different

cutting-edge next-generation sequencing read alignment tools

highlighted that among all SOAP2 [32] was the one that showed

the higher accuracy [33]. Exhaustive review of the tools cited

above can be found in [34].

In general, the mentioned solutions exploit some heuristics to

find a good compromise between accuracy and running time.

Recently, GPU-based solutions have been proposed to cope with

different bioinformatics problems [35–38]. GPUs have also been

exploited to cope with the exponentially increasing throughput of

next-generation sequencing. In particular, the computational

power of these hardware accelerators is helping researchers to

Figure 6. Mapping directional reads. To map directional reads, GPU-BSM performs two different alignments. As for the former alignment, GPU-
BSM maps the reads of the library against the forward strand of the reference genome, after that cytosines have been converted to thymines in all
sequences. As for the latter alignment, GPU-BSM maps the reverse complement of the reads against the forward strand of the reference genome,
after that guanines have been converted to adenines in all sequences. Finally, all 3-letter alignments obtained for a read (i.e., outputs (1) and (2) in the
figure) will be post-processed with the aim to detect and remove those ambiguous and false positives.
doi:10.1371/journal.pone.0097277.g006

GPU-BSM
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speed the short-read mapping process without compromising

accuracy. Lately, the GPU-based short-read mapping tools

Barracuda [39], CUSHAW [40], SOAP3 [41] and SOAP3-dp

have been proposed to the scientific community. Experimental

results show that SOAP3, which is the GPU evolution of SOAP2,

outperforms the popular tools BWA and Bowtie. When tested to

align millions of 100-bp read pairs against the human genome, it

resulted at least 7.5 times faster than BWA, and 20 times faster

than Bowtie. Moreover, SOAP3 does not exploit heuristics and it

is able to align correctly slightly more reads than BWA and

Bowtie. SOAP3 is able to align a read to a reference sequence with

up to four mismatches while it does not support gapped

alignments. Lately, the SOAP3 research team released SOAP3-

dp, a new version of the aligner that exploits dynamic

Figure 7. Mapping non-directional reads. To map non-directional reads, GPU-BSM performs four different alignments. The figure shows that
two additional alignments are performed with respect to ones reported in Fig. 6 for directional reads. As for the first additional alignment, GPU-BSM
maps the reads of the library against the forward strand of the reference genome after that guanines have been converted to adenines in all
sequences. As for the second alignment, GPU-BSM maps the reverse complement of the reads of the library against the forward strand of the
reference genome after that cytosines have been converted to adenines in all sequences. Finally, all 3-letter alignments obtained for a read (i.e.,
outputs (1), (2), (3) and (4) in the figure) will be post-processed with the aim to detect and remove those ambiguous and false positives.
doi:10.1371/journal.pone.0097277.g007

GPU-BSM
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programming to support gapped global and local alignments.

Compared with BWA, Bowtie2 [19], SeqAlto [42], GEM [43],

and the previously mentioned GPU-based aligners, SOAP3-dp is

two to tens of times faster, while maintaining the highest sensitivity

and lowest false discovery rate on Illumina reads with different

lengths.

The implemented strategy
Reads alignment may be very expensive in terms of both

computing time and exploited hardware resources. Modern short-

read mapping tools try to speed the alignment i) by parallelizing

the overall process, and ii) by using ad-hoc heuristics. Paralleliza-

tion could considerably accelerate the alignment, but it is often

limited by the available hardware resources (i.e., CPU cores and

memory). On the other hand, the adoption of heuristics may

degrade sensitivity and affect the quality of the final results. As

already pointed out, the computational challenge is heightened in

the process to map bisulfite-treated reads, in which to map a read

two or four different alignments must be performed according to

the used protocol. Massive parallelization that may be obtained

exploiting GPUs has been successfully used to address the short-

read mapping problem and we deem that it may be exploited to

address also the mapping of bisulfite-treated reads. In fact, GPU-

BSM uses the GPU-based SOAP3-dp mapping tool to align

bisulfite-treated reads.

Initially, GPU-BSM creates two sequences from the forward

genomic strand. The first sequence is obtained by converting

cytosines to thymines, whereas the second sequence is obtained by

converting guanines to adenines. These sequences are created

differently, depending on the sequencing technique used to

generate the analyzed library. As for WGBS libraries, sequences

are created from the original forward genomic strand, whereas for

RRBS libraries they are created from a modified version to take

into account the sequencing parameters. In particular, GPU-BSM

modifies the genomic strand masking those DNA fragments that

do not meet the sequencing parameters. In so doing, GPU-BSM

notably improves the computing time required to align RRBS

libraries.

Directional and non-directional libraries are treated differently.

To map reads from a directional library, GPU-BSM performs two

different alignments using SOAP3-dp. The first alignment is

obtained by converting cytosines to thymines in the reads and then

aligning them to the first sequence. The second is obtained by

converting guanines to adenines in the reverse complement of the

reads and then aligning them to the second sequence (see Figure 6).

To map reads from a non-directional library, GPU-BSM performs

four different alignments. In addition to the alignments performed

for a directional library, GPU-BSM uses SOAP3-dp to map the

reverse complement of the reads with cytosines converted to

thymines to the first sequence, and the reverse complement of the

reads with guanines converted to adenines to the second sequence.

Then, GPU-BSM analyzes the mapped reads, detecting and

removing ambiguous reads and those that are in fact false positives

(see Figure 7). We consider ambiguous those reads for which i) a

best match exists for at least two of two/four alignments

performed according to the exploited library or ii) at least two

best hits exist for a single alignment. However, users interested in

these mappings can disable this filtering option. To detect false

positives, GPU-BSM calculates the number of mismatches of the

mapped reads using the 4-letter nucleotide alphabet. Let us recall

that, due to the bisulfite treatment, a thymine in a read can be

aligned to a cytosine in the reference sequence. Similarly, a

guanine in the reverse complement of a read can be aligned to an

adenine in the reference sequence (see Figure 8).

To take advantage of multiple GPUs, GPU-BSM automatically

runs in parallel the two (four) different alignments for directional

(non-directional) libraries. In the current release, GPU-BSM

performs alignments on up to four GPUs. In particular, it uses

up to two GPU cards to perform two different alignments required

for reads of directional libraries, whereas it uses up to four cards to

perform four different alignments required for reads of non-

directional libraries. For machine equipped with a single GPU

card, GPU-BSM sequentially performs the different alignments.

Tool settings
Depending on whether dynamic programming is enabled or

not, SOAP3-dp will generate gapped or ungapped alignments.

When dynamic programming is enabled, SOAP3-dp performs the

alignment in two steps. In the first step, it uses SOAP3 to look for

ungapped alignments that meet a given constraint on the allowed

number of mismatches. Up to 4 mismatches are allowed for this

step and no heuristic is used. In the second step, it exploits

dynamic programming to look for gapped alignments. A score

threshold defines when to use dynamic programming. It is also

Figure 8. False positive alignments. GPU-BSM aligns reads exploiting a reduced 3-letter nucleotide alphabet. Alignments obtained using this
encoding must be processed to look for false positives; i.e., those alignments that in the actual 4-letter nucleotide alphabet do not meet the
alignment constraints imposed by the user. A typical case is represented in this figure. A two mismatches alignment obtained with the 3-letter
encoding is reported on the left side. The same alignment, reported on the right of the figure with 4-letter nucleotide alphabet, shows three
mismatches.
doi:10.1371/journal.pone.0097277.g008
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Table 2. Tool settings used to map synthetic reads.

tool

GPU-BSMu WGBS -m 5 –ungapped -l 1

RRBS -m 5 –ungapped -l 1 -R -d C-CGG

GPU-BSMg WGBS -m 5 –e2e -l 1

RRBS -m 5 –e2e -l 1 -R -d C-CGG

GPU-BSMgl WGBS -m 5 -l 1

RRBS -m 5 -l 1 -R -d C-CGG

Bismarku WGBS -q –directional

RRBS -q –directional

Bismarkg WGBS -q –directional –bowtie2

RRBS -q –directional –bowtie2

BS-Seeker2u WGBS -m 5 –aligner = bowtie -f sam

RRBS -m 5 –aligner = bowtie -f sam -r -c C-CGG -L 40 -U 500

BS-Seeker2g WGBS -m 5 –aligner = bowtie2 –bt2–end-to-end -f sam

RRBS -m 5 –aligner = bowtie2 –bt2–end-to-end -r -c C-CGG -L 40 -U 500

BS-Seeker2gl WGBS -m 5 –aligner = bowtie2 -f sam

RRBS -m 5 –aligner = bowtie2 -r -c C-CGG -L 40 -U 500

segemehl WGBS -D 0 -F 1 -H 1

RRBS not supported

BSMAP WGBS -v 5 -w 2 -r 0

RRBS -v 5 -w 2 -r 0 -D C-CGG

Tool settings used to map reads of synthetic libraries. Default settings have been used for not specified parameters.
uUngapped alignments. In these experiments Bismark and BS-Seeker2 are used with Bowtie.
gGapped alignments. In these experiments Bismark and BS-Seeker2 are used with Bowtie2.
gl Gapped local alignments. In these experiments BS-Seeker2 is used with Bowtie2.
doi:10.1371/journal.pone.0097277.t002

Figure 9. Unique best mapped reads for WGBS libraries with reads length of 75 bp. The graph represents the percentage of unique best
mapped reads obtained for each tool as function of the sequencing error for WGBS synthetic libraries with reads length of 75 bp.
doi:10.1371/journal.pone.0097277.g009
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possible to skip the first step with the aim to align all reads

exploiting the dynamic programming reducing the computing

time. By default, in the first step SOAP3-dp allows up to two

mismatches to speed-up the overall alignment process. However,

GPU-BSM uses SOAP3-dp to aligns reads with up to four

mismatches when it looks for ungapped alignments, whereas it

does not allow mismatches in the first step when used to look for

gapped alignments. It should be pointed out that this constraint

refers to the number of mismatches allowed in the alignment when

both read and genome are converted using the 3-letter nucleotide

alphabet. Users can change this value in GPU-BSM as well as

disable ungapped alignments. By default, GPU-BSM generates up

to 2 alignments for a read. Users can easily modify this value to

decrease, increase, or avoid the upper limit to the alignments that

may be found for each sequence. By default, GPU-BSM analyzes

only the unique best alignments found by SOAP3-dp. However,

GPU-BSM also permits to analyze all valid alignments or all best

alignments obtained by SOAP3-dp.

Hardware and Software Requirements
GPU-BSM works on linux based systems, equipped with a

custom installation of Python (releasew~2.7.3) and with a CUDA

enabled GPU-card. We tested it on two families of NVIDIA GPU

Figure 10. Unique best mapped reads for WGBS libraries with reads length of 120 bp. The graph represents the percentage of unique
best mapped reads obtained for each tool as function of the sequencing error for WGBS synthetic libraries with reads length of 120 bp.
doi:10.1371/journal.pone.0097277.g010

Table 3. Precision for WGBS libraries with reads length of
75 bp.

simulated sequencing error

tool 0% 2% 4% 6%

GPU-BSMu 93.75% 92.91% 84.48% 58.74%

GPU-BSMg 93.84% 92.68% 87.89% 72.75%

GPU-BSMgl 92.57% 89.92% 88.64% 89.09%

Bismarku 92.69% 92.30% 88.99% 70.86%

Bismarkg 90.01% 77.75% 43.50% 17.85%

BSMAP 93.59% 92.96% 89.21% 71.08%

BS-Seeker2u 92.69% 92.16% 89.36% 88.73%

BS-Seeker2g 92.52% 78.60% 63.41% 49.28%

BS-Seeker2gl 92.69% 90.08% 89.36% 88.73%

segemehl 93.57% 93.30% 91.96% 84.41%

Table reports precision varying the sequencing error from 0% to 6% for 250
thousands of 75 bp reads mapped against the build 37.3 of the human genome.
doi:10.1371/journal.pone.0097277.t003

Table 4. Precision for WGBS libraries with reads length of
120 bp.

simulated sequencing error

tool 0% 2% 4% 6%

GPU-BSMu 99.39% 99.16% 98.79% 98.56%

GPU-BSMg 99.35% 99.09% 99.08% 99.25%

GPU-BSMgl 99.32% 98.62% 98.29% 98.49%

Bismarku 100% 99.78% 99.57% 98.32%

Bismarkg 100% 99.87% 99.67% 97.76%

BSMAP 100% 99.45% 98.75% 98.07%

BS-Seeker2u 100% 99.67% 99.65% 98.36%

BS-Seeker2g 100% 98.61% 98.65% 94.76%

BS-Seeker2gl 100% 95.41% 96.12% 86.55%

segemehl 100% 99.72% 99.50% 99.30%

Table reports precision varying the sequencing error from 0% to 6% for 250
thousands of 120 bp reads mapped against the build 37.3 of the human genome.
doi:10.1371/journal.pone.0097277.t004

GPU-BSM

PLOS ONE | www.plosone.org 9 May 2014 | Volume 9 | Issue 5 | e97277



cards. In particular tests have been carried out on the NVIDIA

FERMI architecture based GTX 480 card, and on the NVIDIA

Kepler architecture based k10 and k20c cards. Currently, SOAP3-

dp can be run on the CUDA-4.2 and CUDA-5.5 releases. As

SOAP3-dp has been successfully deployed on some cloud

computing services (e.g., Amazon EC2, NIH BioWulf and

Tianhe-1A) it is also possible to use our tool on them.

Results

Experiments have been designed to assess the performances of

GPU-BSM to map WGBS and RRBS libraries with both synthetic

and real data. In this section, we first introduce experiments on

synthetic data mainly aimed at assessing the reliability of GPU-

BSM. Then, we present evaluation results on real data. Finally, we

Figure 11. F1 measure analyzing WGBS libraries with reads length of 75 bp. This figure reports F1 measure varying sequencing error from
0% to 6% for 250 thousands of 75 bp reads mapped against the build 37.3 of the human genome.
doi:10.1371/journal.pone.0097277.g011

Figure 12. F1 measure analyzing WGBS libraries with reads length of 120 bp. This figure reports F1 measure varying sequencing error from
0% to 6% for 250 thousands of 120 bp reads mapped against the build 37.3 of the human genome.
doi:10.1371/journal.pone.0097277.g012
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briefly resume the hardware and software configuration used for

experiments.

Performance evaluation on synthetic data
Synthetic WGBS and RRBS libraries have been generated with

the Sherman bisulfite-read simulator (http://www.bioinformatics.

babraham.ac.uk/projects/sherman/). For our experiments, we

used libraries of different reads length. In particular, libraries with

reads length of 75 and 120 bp have been generated. Each library

consisted of 250 thousands of reads generated from the build 37.3

of the human genome with a uniform bisulfite conversion rate of

50% on both strands. Libraries have been generated simulating

the sequencing error rate from 0% to 6% in increments of 2%. So,

we generated sixteen libraries: eight synthetic WGBS libraries and

eight synthetic RRBS libraries. Specifically, for both WGBS and

RRBS, we generated four libraries for reads of length of 75 bp and

four libraries for reads of length 120 bp with simulated sequencing

errors of 0%, 2%, 4% and 6%, respectively. As for RRBS libraries,

Figure 13. Unique best mapped reads for RRBS libraries with reads length of 75 bp. The graph represents the percentage of unique best
mapped reads obtained for each tool as function of the sequencing error for RRBS synthetic libraries with reads length of 75 bp.
doi:10.1371/journal.pone.0097277.g013

Figure 14. Unique best mapped reads for RRBS libraries with reads length of 120 bp. The graph represents the percentage of unique best
mapped reads obtained for each tool as function of the sequencing error for RRBS synthetic libraries with reads length of 120 bp.
doi:10.1371/journal.pone.0097277.g014
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we performed an in-silico MspI digestion on the build 37.3, and

selected 40–500 bp fragments.

Sherman simulates sequencing errors using an error rate curve

that follows an exponential decay model with the aim to mimic

real data. In this way, it will be most likely that the simulated

errors are in bases towards the 39 end rather than in bases towards

the 59 end.

As for WGBS libraries, GPU-BSM has been compared with

Bismark, BSMAP, BS-Seeker2 and segemehl, whereas for RRBS

libraries only with Bismark, BSMAP and BS-Seeker2 as segemehl

does not support this type of data. To provide an accurate

comparison with the other tools, experiments were performed to

assess the reliability of GPU-BSM to look for ungapped and

gapped alignments. In particular, as for gapped alignments, we

separately assessed the performance of GPU-BSM when used to

look for global and local alignments. Bismark and BS-Seeker2

have been used with Bowtie to look for ungapped alignments, and

with Bowtie2 to look for gapped alignments. BS-Seeker2 with

Bowtie2 has been run to look for gapped global and local

alignments. BSMAP and segemehl look for gapped global

alignments and do not permit to enable or disable this feature.

Tools compared in this work implement different algorithms

that do not allow to perform experiments using the same

constraints. Then, experiments have been performed setting

parameters with the aim to obtain more accurate alignments

according to the analyzed library (see Table 2). In particular, tools

have been run to look for alignments with up to five mismatches. It

should be pointed out that Bismark and segemehl do not permit to

Table 5. Precision for RRBS libraries with reads length of
75 bp.

simulated sequencing error

tool 0% 2% 4% 6%

GPU-BSMu 100% 99.26% 98.72% 98.04%

GPU-BSMg 99.98% 99.02% 98.64% 98.64%

GPU-BSMgl 99.95% 98.02% 97.01% 96.27%

Bismarku 100% 98.96% 98.60% 98.49%

Bismarkg 100% 99.43% 98.51% 97.38%

BSMAP 99.92% 99.44% 99.10% 98.48%

BS-Seeker2u 100% 98.72% 97.96% 97.51%

BS-Seeker2g 100% 97.41% 96.15% 96.36%

BS-Seeker2gl 100% 91.42% 87.37% 85.67%

Table reports precision varying the sequencing error from 0% to 6% for 250
thousands of 75 bp reads mapped against the build 37.3 of the human genome.
doi:10.1371/journal.pone.0097277.t005

Table 6. Precision for RRBS libraries with reads length of
120 bp.

simulated sequencing error

tool 0% 2% 4% 6%

GPU-BSMu 99.27% 98.88% 98.71% 98.32%

GPU-BSMg 99.26% 99.08% 99.45% 99.45%

GPU-BSMgl 99.24% 98.74% 98.83% 98.68%

Bismarku 100% 99.72% 99.67% 99.58%

Bismarkg 100% 99.79% 99.62% 99.26%

BSMAP 99.91% 99.69% 99.44% 99.06%

BS-Seeker2u 100% 99.66% 99.63% 99.62%

BS-Seeker2g 100% 99.04% 99.13% 99.26%

BS-Seeker2gl 100% 97.14% 96.30% 95.89%

Table reports precision varying the sequencing error from 0% to 6% for 250
thousands of 120 bp reads mapped against the build 37.3 of the human genome.
doi:10.1371/journal.pone.0097277.t006

Figure 15. F1 measure analyzing RRBS libraries with reads length of 75 bp. This figure reports F1 measure varying sequencing error from
0% to 6% for 250 thousands of 75 bp reads mapped against the build 37.3 of the human genome.
doi:10.1371/journal.pone.0097277.g015
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set the number of mismatches to be allowed; they permit to set the

number of mismatches in the seed. Then, in order not to

overestimate the performance of these tools, we analyzed their

alignments without taking into account those obtained with more

than five mismatches.

Very accurate tools will exhibit high precision and high recall

(sensitivity). Then, with the goal of providing a rigorous

comparison among the tools, we compared the performances of

the analyzed tools in terms of unique best mapped reads, precision,

and F1. Defined as the harmonic mean between precision (p) and

recall (r), F1 is a measure that weights equally both metrics. It

penalizes systems with a mediocre performance of precision or

sensitivity with respect to those that exhibit good performance on

both metrics.

Performance evaluation on WGBS libraries. Figures 9

and 10 show the percentage of unique bes t mapped

reads as function of sequencing error for WGBS libraries. In

almost all cases GPU-BSM and BS-Seeker2, both run to support

local alignments, have been able to map more reads than the other

tools. GPU-BSM, when run supporting gapped global alignments

was the second tool able to map more reads than the other ones

for almost all simulated sequencing errors. In particular, GPU-

BSM outperforms the other tools that adopt the same unbiased

strategy. As for ungapped alignments, the number of reads

mapped by GPU-BSM is comparable with those of Bismark and

BS-Seeker2 for simulated sequencing error up to 2%.

The analysis of precision (see Table 3 and Table 4) shows that

for local alignments GPU-BSM is more accurate than BS-Seeker2.

As for gapped alignments, BSMAP and segemehl outperform the

other tools, whereas for ungapped alignments Bismark and BS-

Seeker2 are slightly more accurate than GPU-BSM.

F1 measures concerning all experiments on WGBS libraries are

reported in Figures 11 and 12. These graphs show that GPU-

BSM, when run to support local alignments, outperforms BS-

Seeker2 for all sequencing errors. As for gapped global alignments,

GPU-BSM outperforms Bismark and BS-Seeker2 that exploit the

same unbiased strategy, whereas for ungapped alignments its

performance is comparable with those of Bismark and BS-Seeker2

only for simulated sequencing error of 0% and 2%.

Performance evaluation on RRBS libraries. Figures 13

and 14 show the percentage of unique best mapped reads as

function of sequencing error for RRBS libraries. Also in

this case, GPU-BSM and BS-Seeker2, both run to support local

alignments, have been able to map more reads than the other

tools. As for gapped global alignments, in almost all cases BSMAP

has been able to map more reads than the other tools, whereas

GPU-BSM and BS-Seeker2 mapped more reads than Bismark. As

for ungapped alignments, the performance of GPU-BSM is

comparable with those of Bismark and BS-Seeker2 for simulated

error sequencing up to 2%. For higher simulated sequencing error

BS-Seeker2 mapped more reads than the other tools.

The analysis of precision (see Table 5 and Table 6) shows that

GPU-BSM outperforms BS-Seeker2 when run to look for local

alignments. As for gapped alignments, BSMAP and Bismark are

more accurate than the other tools for reads of length 75 bp and

120 bp respectively. Bismark shows better precision for ungapped

alignments.

F1 measures concerning all experiments on RRBS libraries are

reported in Figures 15 and 16. These graphs show that GPU-

BSM, when run to support local alignments, outperforms BS-

Seeker2 for all sequencing errors. As for gapped global alignments

BSMAP outperforms the other tools for simulated sequencing

error up to 4%. GPU-BSM outperforms the other tools based on

the same mapping strategy for all simulated sequencing errors, and

BSMAP for simulated errors of 6%. As for ungapped alignments,

BS-Seeker2 outperforms all the other tools.

Performance evaluation on real data
As for WGBS, to assess the performances of GPU-BSM on real

data, we used it to map the reads of two directional libraries

obtained by sequencing the human H1 cell line on the Human

Figure 16. F1 measure analyzing RRBS libraries with reads length of 120 bp. This figure reports F1 measure varying sequencing error from
0% to 6% for 250 thousands of 120 bp reads mapped against the build 37.3 of the human genome.
doi:10.1371/journal.pone.0097277.g016
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NCBI genome build 37.3/hg19. We mapped the reads of the same

real-life libraries analyzed in [14] and [13] to assess the

performance of BS-Seeker and segemehl, respectively: library

SRR019597, consisting of 5.9 millions of 76 bp reads, and library

SRR019048, consisting of 15.3 millions of 87 bp reads. Results

have been compared with those of Bismark, BSMAP, BS-Seeker2,

and segemehl.

As for RRBS, we used GPU-BSM to map against the mus

musculus genome (mm9) the reads of the library SRR748751 [44].

The library consists of 11.9 millions of 100 bp reads generated

with MspI digestion and selecting fragments of 40–220 bp.

Tables 7 and 8 summarize experimental results in terms of

fraction of unique best mapped reads and computing time for all

tools. In the tables have only been reported the percentage of

unique best mapped reads for alignments with up to five

differences.

Experimental results show that GPU-BSM is a very effective

tool for mapping bisulfite-treated reads, as it outperforms almost

all analyzed tools. When run to look for ungapped and gapped

global alignments, it has been able to map more reads than the

other tools in almost all cases. As for unique best mapped reads, its

performances are only comparable with those of segemehl for

WGBS libraries. GPU-BSM appears to be slightly more effective

than segemehl to map reads with few differences. On the other

hand segemehl appears to be slightly more effective to map reads

with more differences. When run to look for local alignment BS-

Seeker2 mapped more reads than GPU-BSM.

As for the computing time, GPU-BSM is definitely the faster

tool to map WGBS libraries, and the second to map RRBS

libraries. In particular, as for SRR0195957/SRR019048 WGBS

libraries, GPU-BSM ran on a single GPU resulted: i) 3.3x/1.25x

faster than Bismark and 3x/2.5x faster than BS-Seeker2 when run

to look for ungapped alignments; ii) 6.6x/4.3x faster than Bismark,

9x/11.2x faster than BS-Seeker2, 3.5x/2.4x faster than segemehl,

and 1.4x/3.9x faster than BSMAP when run to look for gapped

global alignments; iii) 9x/10.6x faster than BS-Seeker2 to map

reads with gapped local alignments. As for the SRR748751 RRBS

library, GPU-BSM ran on a single GPU resulted: i) 1.9x faster

than Bismark and 2.8x faster than BS-Seeker2 when run to look

for ungapped alignments; ii) 2.8x faster than Bismark and 12.3x

faster than BS-Seeker2 when run to look for gapped global

alignments; iii) 7.7x faster than BS-Seeker2 to map reads with

gapped local alignments. As for RRBS and gapped global

alignments, BSMAP resulted 3.3x faster than GPU-BSM.

Hardware and Software Configuration
Experiments described hereinafter have been carried out on a

12 cores Intel Xeon CPU E5-2667 2.90 GHz with 128 GB of

RAM. Two NVIDIA Kepler architecture based Tesla k20c cards

with 0.71 GHz clock rate and equipped with 4.8 GB of global

memory have been exploited to execute SOAP3-dp rel. 2.3.177.

Discussion

GPU-BSM is a mapping tool able to align single-end and

paired-end reads generated from WGBS and RRBS. GPU-BSM

supports both gapped and ungapped alignments. Massive

parallelization on GPUs enables GPU-BSM to map reads without

stringent limitations on the alignment process. Experimental

results shown that GPU-BSM is very accurate and outperforms

most of the cutting-edge solutions in terms of unique best mapped

reads, while keeping computational time reasonably low.

We deem there are further margins of improvement of the

overall computing time. The mapping process implemented in

GPU-BSM can be represented by a three-stage pipeline. In the

first stage, GPU-BSM performs a 3-letter nucleotide alphabet

reduction. Successively, the bisulfite-treated reads are mapped

against the reference genome. Finally, GPU-BSM analyzes the

mapped reads to detect and remove those ambiguous and false

positives. Currently, only the second stage of the pipeline has been

parallelized on GPU cards. In particular, the mapping process can

be run on up to four GPU cards. At the second stage, the gain in

terms of computing time resulted nearly linear with increasing the

number of GPU cards. Nevertheless, the overall gain is not linear

due to the fact that the first and third stages of the pipeline have

not yet been parallelized. We are working to improve GPU-BSM i)

porting to GPU the third stage of the pipeline and ii) extending the

parallelization of the second stage to a cluster of GPUs. Porting to

GPUs the analysis performed at the third stage is essential to

obtain a linear gain of the computing time with increasing the used

GPUs. Without this improvement, there will be no benefit from

the parallelization of the second stage on a cluster of GPUs. We

estimated that the planned updates of GPU-BSM can notably

improve the computing time. We implemented this part of the

algorithm with the aim to easily migrate it on GPU. In doing this,

we defined data structures mainly devised for massive paralleliza-

tion on GPU that are not optimized for CPU. This implied a huge

amount of memory required to run it. We reported the peaks of

memory required from the different tools in Table 9 which shows

that only segemehl requires more memory than GPU-BSM.

GPU-BSM is freely available for non-commercial use under the

terms of the Affero GNU General Public License. The current

release can be downloaded at the following addresses http://pypi.

python.org/pypi/GPU-BSM/ and http://www.itb.cnr.it/web/

bioinformatics/gpu-bsm.
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Table 9. Memory consumption.

library tool memory

GPU-BSMu=g=gl 20.3/20.3/20.3 GB

Bismarku=g 7.7/10.1 GB

SRR019597

BSMAP 8.3 GB

BS-Seeker2u=g=gl 4.6/7.3/7.3 GB

segemehl 53 GB

GPU-BSMu=g=gl 22.4/40.6/41.6 GB

Bismarku=g 7.7/10.1 GB

SRR019048

BSMAP 8.3 GB

BS-Seeker2u=g=gl 4.6/7.3/7.3 GB

segemehl 53 GB

GPU-BSMu=g=gl 17.3/27.7/29.5 GB

Bismarku=g 7.7/10.1 GB

SRR748751

BSMAP 2.1 GB

BS-Seeker2u=g=gl 3.0/3.0/3.0 GB

Peaks of memory required to run experiments on real-life libraries. Data
reported in the table shows that GPU-BSM is not very efficient in terms of
memory consumption.
doi:10.1371/journal.pone.0097277.t009
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