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The expression of proteins in Escherichia coli is often essential for their characterization, modification, and
subsequent application. Gene sequence is the major factor contributing expression. In this study, we used
the expression data from 6438 heterologous proteins under the same expression condition in E. coli to
construct a deep learning classifier for screening high- and low-expression proteins. In conjunction with
conserved residue analysis to minimize functional disruption, a mutation predictor for enhanced protein
expression (MPEPE) was proposed to identify mutations conducive to protein expression. MPEPE identi-
fied mutation sites in laccase 13B22 and the glucose dehydrogenase FAD-AtGDH, that significantly
increased both expression levels and activity of these proteins. Additionally, a significant correlation of
0.46 between the predicted high level expression propensity with the constructed models and the protein
abundance of endogenous genes in E. coli was also been detected. Therefore, the study provides founda-
tional insights into the relationship between specific amino acid usage, codon usage, and protein expres-
sion, and is essential for research and industrial applications.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

High-level production of soluble recombinant proteins at low
cost is crucial for their application in many fields. However, there
are barriers to heterologous expression in many hosts, including
in the unicellular bacterial Escherichia coli expression system. In
order to minimize the effect of heterologous recombinant proteins
on cell growth, a smart expression host could degrade the heterol-
ogous proteins by the proteolysis system or form an inclusion
body. It is estimated that <50% of bacterial and <15% of non-
bacterial proteins could be expressed in soluble form in E. coli [1].

Studies of expression system modification have examined, for
example, the optimization of expression conditions [2–5], expres-
sion of co-soluble tags fused to target proteins [6], as well as co-
expression of the molecular chaperone [7]. While these methods
work for a small number of proteins, the level of improvement
for most proteins is still limited and some strategies to increase
expression reduce the catalytic activity.

Additional studies show that there are many different strategies
to increase the soluble and functional expression of foreign pro-
teins. According to Deng et al., alanine- or leucine-scanning muta-
genesis increased soluble expression, and leucine could increase
the protein helices and their stability against degradation by pro-
teinase K [8]. In recent years, the well-established directed evolu-
tion approach has been employed to optimize the coding sequence
based on soluble expression phage-assisted continuous evolution
(SE-PACE). This method has been used to evolve some antibody
fragments and maltose-binding protein (MBP) to increase their
expression [9]. Michal Jamroz et al. conducted a promising rational
design study in which they proposed the AGGRESCAN 3D struc-
tural aggregation predictor. This method was used to modify the
green fluorescent protein and the human single-domain VH anti-
body, effectively reducing the aggregation propensity of the pro-
tein and increasing its expression [10]. In summary, those results
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indicated that the sequence is also a vital factor to regulate its
expression.

One promising approach for uncovering the key factors affect-
ing high-level and soluble expression is deep learning, a subfield
of machine learning that uses multi-layered Deep Neural Networks
(DNNs) to extract novel features from input data [11]. The first pre-
dictive tool for protein solubility based on amino acid sequence
was proposed by Wilkinson and Harrison in 1991 [12]. Based on
81 soluble or insoluble protein sequences, the authors found that
the charge average and turn-forming residue fraction correlated
with inclusion body formation. In recent years, deep learning algo-
rithms for enhancing the expression of exogenous proteins in E. coli
have been developed. Approaches based on logistic regression [13]
and deep learning architecture (EPSOL) [14] were proposed to
learn the features related to soluble expression from the expressed
sequence fragments and construct the classifier to distinguish the
soluble expressed proteins, but they lacked the experimental vali-
dation. A model based on the bidirectional long-short-term mem-
ory conditional random field was constructed to optimize the
codon and enhance protein expression [15]. A feed-forward artifi-
cial neural networks were also constructed based on the ribosome
profiling [16]. All of the results indicated that the gene sequence
could affect the protein expression. A complicated model should
be trained based on the real gene sequence and design the gene
to improve its expression.

In this study, we propose a predictive model, mutation predic-
tor for enhanced protein expression (MPEPE). The 6438 proteins
that were experimentally validated the expression yields in
E. coli [17] were selected to train and validate the prediction model
based on multi-layered deep neural networks (DNNs). The evolu-
tionary method was incorporated into the model to virtually
screen the mutant sites that might make positive contributions
to protein expression but not disrupt its function. When the strat-
egy was applied on two enzyme proteins, the laccase 13B22 and
the flavin adenine dinucleotide-dependent glucose dehydrogenase
(FAD-AtGDH), the expression and activity of these two enzymes in
E. coli were significantly increased. This study will help researchers
to understand the relationship between amino acids and soluble
protein expression and is important for the industrial application
of enzymatic proteins.
2. Materials and methods

2.1. Collection of the protein expression dataset

We collected the protein expression dataset from a published
study [17]. All of the 6438 proteins in the dataset have been clas-
sified to six classes (Class1, Class2, Class3, Class4, Class5, and
Class6) based on the protein expression level under the identical
conditions and from the same promoter in E. coli in the reference
[17]. The protein level was scored on the integer scale from class1
(lowest) to class6 (highest) based on the visual inspection of whole
cell lysates in Coomassie-blue-stained SDS-PAGE gels [17–18]. The
proteins in Class1 have the lowest protein levels while the proteins
in Class6 have the highest protein levels. For the aim to construct
the relative balanced training dataset in terms of the size, the
low expression dataset consisted of 2308 proteins in Class1, Class2,
and Class3, while the 1973 proteins in Class6 comprised the high
expression dataset. Therefore, the ratio of low expression proteins
to high expression proteins was �1:1. The independent validation
dataset was composed of the proteins in Class4 and Class5 and its
size was 2067. Table 1 shows detailed information on the size of
each dataset. The protein abundance data were downloaded from
the paxdb database and the weighted average of WHOLE_ORGAN-
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ISM between the different protein abundance values was taken
(http://pax-db.org/) [19].

2.2. Data processing of protein expression datasets and coding schemes

In order to use synonymous codon number, the specific amino
acid, and specific nucleotide combination to construct three Deep
Neural Network (DNN) models, the nucleotide (codon) sequences
in the protein expression dataset were translated into amino acid
sequences and codon number sequences, the detailed coding infor-
mation was shown in Table S1.

We used the one-hot encoding method to code different
sequence-style datasets under different coding schemes. The syn-
onymous codon number sequences were transformed by a 6 � 6
matrix; for instance, codon number 1 was encoded by the vector
(1,0,0,0,0,0), codon number 6 was encoded by the vector
(0,0,0,0,0,1):

A ¼ an1; an2; an3; � � �ð Þ;

a 2

1
2
3
4
5
6

2
66666664

3
77777775

6�1ð Þ

¼

1 0 0
0 1 0
0 0 1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
0 1 0
0 0 1

2
666666664

3
777777775

6�6ð Þ

8>>>>>>>>><
>>>>>>>>>:

;

n 2 ð1;2;3;4;5;6Þ
The specific amino acid sequences were transformed by a

20 � 20 matrix; for example A (Ala, Alanine) was encoded by vec-
tor ð1;0;0; � � � ;0;0;0Þð1�20Þ and Y (Tyr, Tyrosine) was encoded by
vector ð0;0;0; � � � ;0; 0;1Þð1�20Þ:

B ¼ bn1; bn2; bn3; � � �ð Þ;

b 2

A

C

..

.

W

Y

2
6666664

3
7777775
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¼
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0 1
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0 0

..
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0 0
0 0
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>>>>>>>:

;

n 2 ðA;C � � �W;YÞ
Specific nucleotide combination sequences were transformed

by a 61 � 61 matrix; for example, the index of ‘‘GCT” in Table S1
was 1 and it was encoded by the vector ð1;0;0; � � � ;0;0;0Þð1�61Þ,
and the index of ‘‘TAT” in Table S1 was 61 and it was encoded by
the vector ð0;0;0; � � � ;0;0;1Þð1�61Þ:

C ¼ cn1; cn2; cn3; � � �ð Þ;

c 2
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..

.
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TAT

2
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;

n 2 ðGCT;GCC; � � � ; TAC; TATÞ
2.3. DNN architecture in three models

We used convolution layers, pooling layers, and Long-Short
Term Memory (LSTM) layers together to make up the DNN archi-
tecture. DNNmodels were trained with the three constructed data-
sets based on a 10-fold cross-validation strategy. And the specific
process of the 10-fold cross-validation strategy here is as follows.

http://pax-db.org/


Table 1
Datasets classification and its size.

Dataset Evaluation Scores Class Sequence Number Constructed Datasets

lixiProtein Expression Dataset 1 Negative data 1754 low expression dataset
2 Negative data 131
3 Negative data 423
4 – 896 validation dataset
5 – 1171
6 Positive data 1973 high expression dataset
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The negative and positive samples are randomly partitioned into k
(k = 10) equal size subsamples. Of the k subsamples, a single sub-
sample is retained as the validation data for testing the model, and
the remaining k-1 subsamples are used as training data. The 10-
cross-validation process is then repeated k(k = 10) times (the
folds), with each of the k subsamples used exactly once as the val-
idation data. Based on this method, all samples are used for both
training and validation, and each sample is used for validation
exactly once. The detailed architectures and optimized hyper-
parameters showed in Fig. S1 and three DNN models were trained
on the TensorFlow platform [20] based on Keras 2.1.5 in the Python
2.7.15 programming environment.

Three models were successfully constructed. The architecture of
each one started with an embedding layer, followed by two convo-
lutional, maximum pooling layers, an LSTM layer, and a final pre-
diction layer. In addition to the prediction layer, each layer was
followed again by a Batch Normalization layer and a final dropout
layer. In this model, the rectified linear unit (ReLU) activation func-
tion was used (except for the final prediction layer) as follows:

ReLU Xð Þ ¼ 0; ifx < 0
x; else

�

where x denotes the feature map from the convolution operation
(the weighted sum of a neuron). The softmax activation function
was used in the final prediction layer.

To avoid over-training and the resultant over-fitting of the pre-
diction model, we used an early stopping technique to detect the
prediction accuracy achieved the high score on the test dataset in
the training process. We optimized the various hyper-parameters
in the DNN architecture, including the number of layers, number
of kernels, kernel size, fully connected layer size, dropout rate,
learning rate, batch size, activation functions, number of nodes,
and optimizers using the optimization package HYPERAS (https://
github.com/maxpumperla/hyperas). The final parameters used for
the prediction models are shown in Table S2. We also verified
the performance of the proposed method by a 10-fold cross-
validation method. The code for the above DNN architecture with
Python v2.7.15 environments is available from GitHub (https://
github.com/BRITian/MPEPE).

2.4. Evaluation of prediction performance

A 10-fold cross-validation strategy was used to train and evalu-
ate the performance of the prediction models. The performance of
the prediction models was evaluated with metrics including accu-
racy, recall, precision, F1-score, and the area under the receiver
operating characteristic curve (AUROC) score, which were each cal-
culated based on 10-fold cross-validation. The area under ROC
(AUROC) and the area under PRC (AUPRC) of the prediction models
were greater than 0.5, which indicated that the performance of the
constructed models was better than that of a random classifier. The
metrics were calculated using the Keras package as follows:

Recall ¼ TP
TP þ FN

0 � Recall � 1ð Þ
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Precision ¼ TN
TN þ FP

0 � Precision � 1ð Þ

F1 ¼ 2� Precision� Recall
Precisionþ Recall

0 � F1 � 1ð Þ

Accuracy ¼ TP þ TN
FP þ FN þ TN þ FP

0 � Accuracy � 1ð Þ

where TP, TN, FP, and FN indicate true positive, true negative, false
positive, and false negative, respectively.

2.5. The PSAP and entropy analysis

Using BLASTP, we identified and downloaded sequences of
homologous proteins of laccase 13B22 and the glucose dehydroge-
nase FAD-AtGDH (identity >40% and coverage >50%), from NCBI
(https://www.ncbi.nlm.nih.gov/). The homologous protein
sequences were aligned with their respective wild type and spliced
to the same length. Then the position-specific amino-acid probabil-
ity (PSAP) matrices for both enzymes were calculated to determine
the conservation of amino acids at each locus. The entropy of each
residue was then determined using the PSAP calculation tool
[4,21,22]. In this study, we used the cutoffs of PSAP value of muta-
tions greater than 0.1 and the entropy value of the residue greater
than 0.65 to select the non-conserved residues and natural selected
mutations.

2.6. Simulation of protein three-dimensional structure

The AlphaFold 2.0 tool was used to simulate the three-
dimensional structure of laccase 13B22 and FAD-AtGDH from its
amino acid sequence with the publicly available code and default
parameters [23]. All five structures were simulated and the struc-
ture with the least structural energy was selected for the following
analysis.

2.7. Construction of mutants

We generated single-point mutations in the residues that dif-
fered from the sequence of the wild type in the mutants using
the two-step PCR mutagenesis strategy [24]. Mutant primers were
designed using Oligo software ver.7.0 (Table S3) and were then
used to generate the single-point mutants. Using wild-type plas-
mid DNA template, we amplified the mutant site by T7-F primer
and each downstream primer containing a mutation sequence or
T7-R and each upstream primer containing a mutation sequence
under the action of Phanta Max Super-Fidelity DNA Polymerase
(Vazyme, Nanjing, China). PCR was performed as follows: 95 �C
for 5 min for the preheat, 95 �C for 30 s, 58 �C for 30 s, 72 �C for
1 min, 32 cycles, and 72 �C for 10 min. We used an AxyPrep DNA
gel extraction kit (Axygene, California, USA) to recover the target
gene fragment, and then it was used as the primer and the wild-
type plasmid as the template for the second round of PCR amplifi-
cation. The mutant plasmid was obtained by PCR amplification.

https://github.com/maxpumperla/hyperas
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The second round PCR was performed as follows: 95 �C, 5 min for
the preheat, 95 �C for 30 s, 72 �C for 5 min, 32 cycles, and 72 �C for
10 min. The wild-type plasmid was eliminated by DpnI (NEB, Ips-
wich, United Kingdom) and the mutant plasmids were recovered
using a purification and recovery kit (TransGen, Beijing, China)
and then transformed into E. coli Top10 competent cells (TransGen,
Beijing, China) using standard procedures [25]. Through bacterial
liquid PCR, the single clone with the correct size of the target gene
was preliminarily identified and sequenced by TSINGKE biological
technology (Beijing, China), and then the correct mutant plasmid
was transformed into competent E. coli BL21 (DE3) cells (TransGen,
Beijing, China). Multi-site mutations were obtained by adding two
mutation sites in each round according to the above method.

2.8. Detection of the expression of laccase 13B22

E. coli BL21 (DE3) cells harboring the recombinant plasmid were
cultured in a 50 mL LB (Lysogeny Broth) medium supplemented
with kanamycin (50 lg/mL) at 30 �C with shaking at 120 rpm to
an OD600 of 0.7�0.75. Then, 0.2 mM isopropyl-b-d-thiogalactopyra
noside (IPTG) and 0.4 mM CuCl2 were added to the culture med-
ium, and the temperature was reduced to 25 �C. Incubation was
continued for a further 4 h, during which microaerobic conditions
were achieved by switching off the shaking function [26,27]. Cells
were harvested after a further 20 h of growth by centrifugation at
8000g for 10 min [28]. The pellets were resuspended in 5 mL buffer
containing 20 mM Tris-HCl (pH 8.0). The cells were disrupted by
sonication on ice, and debris was removed by centrifugation at
4 �C and 8000g for 30 min. After transferring the crushed super-
natant to a new pre-cooled 10 mL EP tube and resuspending the
crushed pellet in 5 mL of 20 mM Tris-Cl buffer (pH 8.0), the laccase
activity was determined. 50 mL protein were taken concurrently to
prepare SDS-PAGE samples.

SDS-PAGE was performed using standard procedures and gels
were stained with Coomassie brilliant blue R250. For Western blot-
ting analysis, SDS-PAGE gels were transferred to polyvinylidene
fluoride (PVDF) membranes (Amersham, Piscataway, NJ, USA),
and these were blocked with 5% non-fat milk (Applygen, Beijing,
China) and incubated with mouse anti-His monoclonal antibody
(TransGen, Beijing, China), followed by horseradish peroxidase
HRP-conjugated goat anti-mouse IgG (TransGen, Beijing, China).
Proteins were visualized using a BeyoECL Plus Chemiluminescence
Detection Kit (Beyotime, Shanghai, China) and Chemiluminescence
Touch Imaging System (e-BLOT, Shanghai, China).

2.9. The detection of the activity of the laccase 13B22

Laccase activity was assayed at 37 �C using 2,2-azino-di-(3-et
hylbenzthiazoline-sulfonate) ABTS (Sigma-Aldrich, St. Louis, USA)
as substrate. An assay mixture containing 200 mL 5 mM ABTS and
750 mL 50 mM citrate/phosphate was preheated at 37 �C for
2 min, and then 50 mL crushed supernatant was added to react
accurately for 3 min. This mixture was then terminated in an ice-
water bath for 1 min. The increase in absorbance due to the oxida-
tion of ABTS at 420 nm was measured (e420 = 36,000 M�1 cm�1).
One unit was defined as the amount of enzyme that oxidized
1 lmol of substrate per minute [29].

2.10. Detection of the expression of glucose dehydrogenase activity of
FAD-AtGDH

E. coli BL21 (DE3) cells harboring the recombinant plasmid were
cultured in a 50 mL LB medium supplemented with kanamycin
(50 lg/mL) at 37 �C with shaking at 200 rpm to an OD600 of
0.7�0.75. Then 0.3 mM isopropyl-b-d-thiogalactopyranoside was
added to the culture medium, which was grown for 18 to 20 h in
1145
LB medium at 16 �C and 200 rpm to obtain FAD-AtGDH as soluble
and active proteins. Cells were harvested by centrifugation at
8000g for 10 min. The pellets were resuspended in 5mL buffer con-
taining 20 mM Tris-HCl (pH 8.0). The cells were disrupted by son-
ication on ice, and debris was removed by centrifugation at 4 �C
and 8000g for 30 min. The crushed supernatant was then trans-
ferred to a new pre-cooled 10 mL EP tube, and the crushed pellets
resuspended in 5 mL of 20 mM Tris-Cl buffer (pH 8.0), and the glu-
cose dehydrogenase activity was determined. At the same time,
50 mL protein were taken to prepare SDS-PAGE samples.

2.11. Detection of the activity of glucose dehydrogenase activity of
FAD-AtGDH

FAD-AtGDH activity was assayed spectrophotometrically using
2,6-dichloroindophenol (DCIP, e600 = 16.3/mM/cm) (Solarbio, Bei-
jing, China) and phenazine methosulfate (PMS) (Solarbio, Beijing,
China) as electron acceptors. The reaction was followed for per
min measured and the reaction continued for 5 min at 600 nm
using the SpectraMax M2 microplate reader (Molecular Devices,
Silicon Valley, USA). The DCIP-based assay contained 50 mM Potas-
sium phosphate buffer (pH 6.5), 0.06 mM DCIP, 0.6 mM PMS and
100 mM D-glucose. One unit of FAD-AtGDH activity was defined
as the amount of enzyme required for the reduction of 1 lmol glu-
cose or electron acceptor per min under the assay condition [30].
3. Results

3.1. Overview of the MPEPE prediction strategy

In order to predict mutations that could enhance the heterolo-
gous expression of proteins in the soluble fraction in E. coli, we pro-
posed the MPEPE strategy for rational optimization of gene
sequence related to translation rate and protein surface charge.
To this end, we constructed DNNs, the predicted accuracy of which
was higher than the other machine learning methods (Fig. S2,
Table S4), to select mutations with a high potential to increase pro-
tein expression levels based on published, experimentally-
determined expression data generated in E. coli under the identical
expression condition and expression system including the pro-
moter (Fig. 1A; and more details in the next sub-section) [17]. In
addition, evolutionary analysis was employed to select non-
conserved residues for mutagenesis that appeared unlikely to dis-
rupt protein function (Fig. 1B). Based on the above two design com-
ponents (Fig. 1A and B), we screened single-point mutations that
might positively contribute to expression levels, but not disrupt
the catalytic function of the protein of interest (Fig. 1C). We exper-
imentally verified the contribution of each screened mutation by
SDS-PAGE and enzymatic activity analysis, then generated mutants
with stacked mutations to determine the combined effects of these
confirmed positive mutations (Fig. 1D). Through this discovery
pipeline we obtained several candidate mutations for exploration
of the determining factors related to increased protein expression
in the soluble fraction in E. coli (Fig. 1E) and to subsequently design
a mutant with significantly enhanced expression in E. coli.

3.2. Protein expression data-based selection of charged amino acids
and rapidly translated codons in E. coli

To investigate relationships between protein expression level
and amino acid charge properties or synonymous codon number
for specific amino acids, we identified preferentially selected
amino acids/codons in 6438 published proteins that were experi-
mentally classified into six categories based on their heterologous
protein expression under identical conditions and promoter in



Fig. 1. The workflow of MPEPE based on deep learning and evolutionary analysis. A. The protein datasets were used as inputs for constructing and training the prediction
model. B. Mutation sites were screened using evolutionary analysis of target protein sequence without disrupting function. C. The target nucleotide sequences were used as
inputs in the MPEPE to virtually screen mutants. D. Experimental validation on the effect of virtual screened mutants on their expression level in E. coli. E. A new data set was
constructed based on the experimental results for optimizing the MPEPE model.
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E. coli, collected from diverse phylogenetic sources and provided
broad sampling of codon and amino acid space due to variations
in codon-usage frequency in the source organisms [17]. The
expression indexes for the six classes ranged from 1 to 6 (from
lowest to highest), and consisted of n = 1754 proteins in group 1,
n = 131 in group 2, n = 423 in group 3, n = 896 in group 4,
n = 1171 in group 5, and n = 1973 in group 6. Due to substantial
bias in the number of proteins allocated among the six classes,
groups 1, 2, and 3 were combined to represent low expression pro-
teins, while group 6 represented highly expressed proteins. The
resulting dataset was relatively balanced, with a low:high ratio
of 1:0.85. Proteins in groups 4 and 5 were selected as independent
categories to validate the performance of the prediction model.

An initial analysis of the data revealed significantly different
usage of amino acids between the low- and high-expression pro-
teins (Fig. 2A). Among the eleven amino acids (E, K, D, Q, H, T, M,
1146
N, Y, V, and F) preferred in the highly expressed proteins
(Fig. 2B), four were charged amino acids (E, K, D, and H) and eight
amino acids (E, K, D, Q, H, N, Y, and F) were encoded by only two
codons. Additionally, the amino acid E, K and D were also preferred
in the endogenous proteins of E. coli (Fig. S3). However, among the
other nine amino acids (R, L, A, P, G, S, C, W, and I) preferentially
found in low-expression proteins (Fig. 2C), only one was a charged
amino acid (R), and six of these amino acids (R, L, A, P, G, and S)
were encoded by four or six codons.

In addition, five of the nine amino acids preferentially used in
low-expression proteins (R, S, G, C and P) contained the codons
AGG, AGT, GGT, TGT, and CCC which have been established to sig-
nificantly affect in vivo translation speed in E. coli (Loss of attenu-
ation >3) [31]. Here, the loss of attenuation of the codon was
relative score that was the b-galactosidase activity of each codon
construct divided by the activity of the wild-type construct that



Fig. 2. Comparison of the amino acid or codon frequencies in lowly and highly expressed proteins. A. Amino acids usage differences between the lowly and highly expressed
proteins. B-C. Codon frequencies in the highly and-lowly expressed proteins, and in the endogenous E. coli genome. D-E. Codon frequencies in the highly and-lowly expressed
proteins, and in the exogenous E. coli genome. In addition, ‘‘ns” denotes no significant, ‘‘*” denotes 0.01 < p-value � 0.05, ‘‘**” denotes 0.001 < p-value� 0.01, and ‘‘***” denotes
p-value � 0.001.
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contains the CAC His codon [31]. The high loss of attenuation of the
codon indicated that the codon could decrease the translation
speed, and the vice versa [31]. Notably, in high-expression pro-
teins, the codons encoded any of the preferred eleven amino acids
that did not greatly affect the translation rate [31]. The average
attenuation loss of preferential high-expression codons was
1.57 ± 0.53, significantly (p < 0.01) lower than the average attenu-
ation loss (2.75 ± 2.12) of preferred codons in the low expression
proteins [31] (Table S5). Therefore, the average translation rate of
high expression proteins was significantly greater than that of
the low expression proteins. Additionally, the correlation coeffi-
cients between the codon usage vector of the endogenous genes
in the E. coli and the genes for the high or low expressed heterolo-
gous proteins (Fig. S3B and S3C) were 0.58 and 0.45, respectively.
These results revealed that highly expressed proteins were more
likely to use optimal synonymous codons than low-expression pro-
teins, which could facilitate faster translation of those proteins. In
light of these findings, we hypothesized that the selection of
charged residues [32] and optimal synonymous (i.e., penalty-
free) codons in highly expressed proteins likely enhanced their sol-
ubility and translation rate [33,34], respectively.

3.3. Evaluation of deep learning model performance

For training the classifiers to accurately predict the effects of a
given mutation on expression, we used the dataset constructed
in the above section [17]. Since each codon in a given gene
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sequence could also be categorized according to synonymous
codon number, i.e., number of codons encoding the same amino
acid (1 to 6), the specific amino acid it called (1 to 20), or its specific
nucleotide combination (1 to 61) (Table S1), three classifiers were
constructed based on these three coding patterns, respectively.
Receiver Operating Characteristics curve (ROC) and Precision-
Recall curve (PRC) analyses were used to evaluate the predictive
accuracy of each classifier through 10-fold cross validation. Nota-
bly, AUROC and AUPRC scores of the classifier that used specific
nucleotide combinations were both markedly higher than those
of the other two classification strategies, which were 0.764 and
0.751, respectively (Fig. 3B). Additionally, we also considered sev-
eral alternative metrics, including the prediction, accuracy, F1
score, precision score, and recall score; all of these indexes sup-
ported classification based on the 61 combinations of nucleotides
as the highest performing model for predicting protein expression
levels (Fig. 3C). This result demonstrated the importance effect of
codon usage on protein levels.

When the three prediction models were applied to groups 4 and
5, the results showed that group 5 proteins had a significantly
greater propensity for high expression in E. coli than that of pro-
teins in the 4th group (p < 0.001) (Fig. 3D). The ratios of predicted
average highly expressed propensity of the genes between groups
5 and 4 were 1.01, 1.09, and 1.13 for the synonymous codon
number-, amino acid-, and nucleotide combination-based models,
respectively. Thus, these collective results all indicated that speci-
fic nucleotide combinations were most informative aspect of codon



Fig. 3. Evaluation predictive performance of the three constructed models. A-B. Receiver operator characteristic and precision recall curves for the three models output based
on the results of 10-fold cross-validation. C. Model evaluation metrics. D. Prediction results of the three models on the independent test set class4 and class5. In addition, ‘‘ns”
denotes no significant, ‘‘*” denotes 0.01 < p-value � 0.05, and ‘‘**” denotes p-value � 0.01.
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frequency for predictive modeling of soluble protein expression.
We therefore selected the model trained with specific nucleotide
combination frequencies to design subsequent mutations.

3.4. Correlation between the predicted high-level expression
propensity and protein abundance

To evaluate the relationship between the predicted high-level
expression propensity and the protein abundance, we collected
the protein abundance (PA) data of seven species of unicellular
organisms from Paxdb and predicted the high-level expression
propensity of those endogenous genes with the three coding
schemes. As shown in Table 2 and Fig. S4, most of the spearman
rank correlations of the predicted high-level propensity with the
coding scheme of 61 combinations of nucleotides were higher than
the other two coding schemes. Additionally, among all spearman
rank correlations of species, the correlation between the PA of
E. coli and the predicted high-level propensity with the coding
scheme of 61 combinations of nucleotides exhibited the highest
score which was 0.4581. The results indicated that the constructed
models based on the analysis of heterologous gene expression
propensity in the E. coli expression system gave significant results
when predicted endogenous gene expression in various organisms
across the tree of life. This suggest that there are universal gene
expression codes that our model was able to detect.

3.5. Mutation prediction to increase expression of laccase 13B22 and
AtGDH

To further validate the MPEPE model, we selected two proteins,
laccase 13B22 (GenBank number: MZ817083) and the glucose
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dehydrogenase, AtGDH (GenBank number: XM_001216916), both
of which were reported to have high value in commercial applica-
tions and were not included in the training, validation and test
dataset [35,36]. Laccase 13B22 can be used in oxidative bioremedi-
ation of toxic xenobiotic compounds, while glucose dehydrogenase
is an oxidoreductase that catalyzes the oxidation of glucose into
gluconic acid d-lactone. Although, the coding sequences of laccase
13B22 and glucose dehydrogenase FAD-AtGDH were both opti-
mized for expression in E. coli, the two proteins still exhibited poor
efficiency in their expression in E. coli, which we speculated was
related to their codon composition.

In order to ensure that both enzymes remained functional after
modification for high, soluble expression, we first examined their
conserved residues through protein sequence alignment and resi-
due entropy analysis. Using BLASTP, we identified and downloaded
sequences of 1335 and 2413 homologous proteins of 13B22 and
FAD-AtGDH, respectively. Based on those collected sequences from
NCBI, the position-specific amino-acid probability (PSAP) matrices
for both enzymes were calculated. The PSAP cutoff value was set to
0.05, which was the average PSAP value of each amino acid at a
given target residue (Figs. S5 and S6). The entropy of each residue
was then determined and the higher the entropy, the lower the
conservation at that site. For our purposes, we set the demarcation
point to 0.65, and higher entropy values indicated that residues did
not have conserved function at that position. Finally, the laccase
13B22 and FAD-AtGDH amino acid sequences were individually
used as inputs for the MPEPE model to predict all single-point
mutations that could improve their soluble expression in E. coli
(see more details in the Methods section). As a result, there were
21 and 30 predicted mutations that were satisfied the above three
conditions, located at the non-conserved sites and the predicted



Table 2
Spearman rank correlation of the predicted high-level propensity with PA.a

Number of Genes r(Log(PA), Pre1)b r(Log(PA), Pre2)c r(Log(PA), Pre3)d

Bacteria
E. coli 3063 0.1342 0.4036 0.4581
S. enterica 2200 0.0447 0.2240 0.2494
B. subtilis 2943 0.2130 0.3270 0.3718
S. aureus 1166 0.0443 0.2939 0.3816
S. pyogenes 1064 0.0531 0.2685 0.3290

Archaea
T. gammatolerans 1092 �0.1538 0.2637 0.1428
Fungi
S. cerevisiae 4646 �0.0582 0.3386 0.3617

a Protein abundance data of genes from paxdb.
b Pre1: Predicted high-level propensity with the coding scheme of the synonymous codon number.
c Pre2: Predicted high-level propensity with the coding scheme of the specific amino acid.
d Pre3: Predicted high-level propensity with the coding scheme of the specific nucleotide combination.
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high-level expression propensity by the constructed model higher
than that of the wild-type (Tables S5 and S6). Notably, most of
these mutations were located at the C-terminal end and exposed
at the protein surface (Fig. 4A and C). The AlphaFold 2.0 tool was
used to simulate the three-dimensional structures of laccase
13B22 and FAD-AtGDH. The location of the mutation sites on the
3D structure were analyzed and their percent solvent accessibili-
ties (PSA) were calculated using Discovery Studio (2016), respec-
tively. The average PSA of the mutations of 13B22 and FAD-
AtGDH were 43.67% and 32.12%, respectively (Fig. 4B and D,
Table S6).
3.6. Expression levels and enzyme activity validation of the predicted
point mutations

To validate the effects of the predicted single point mutations
on soluble protein expression in E. coli, we individually constructed
the 21 and 30 single-point mutations into laccase 13B22 and FAD-
AtGDH, respectively. The proteins of all of the variants was
expressed in E. coli under the same induction and expression con-
ditions. Since SDS-PAGE analysis could not clearly distinguish dif-
ferences in expression between the 13B22 single point mutants
and wild type (Fig. S7), we screened for laccase positive mutants
using laccase activity assays with culture supernatant to character-
ize their soluble expression levels. By contrast, SDS-PAGE clearly
indicated that FAD-AtGDH single point mutants were expressed
at significantly higher levels than that of wild type (Fig. S8). The
enzymatic activities of FAD-AtGDH variants and wild type in crude
enzyme solution were also examined. The results showed that,
among the 21 laccase 13B22 single point mutants, 16 mutants
exhibited higher enzymatic activity than that of wild type. In par-
ticular, L508F-TTC showed the highest activity of 841.73 ± 33.25 U/
L, 2.854 times higher than that of wild type (Fig. 5A, Table S7).
Among the 30 FAD-AtGDH single point mutants, 9 mutants had
higher enzymatic activity than the wild type, and of the 15 variants
that retained activity after mutagenesis. A454V-GTA had the high-
est activity (555.49 ± 4.51 U/L), which was 3.05 times greater than
that of the wild type (137.02 ± 4.92 U/L) (Fig. 5B, Table S8).

Sequence analysis of these positive mutants revealed that glu-
tamic acid (E) and lysine (K), encoded by two synonymous codons,
appeared at higher frequency in the 13B22 and FAD-AtGDH vari-
ants, while arginine (R) or leucine (L), encoded by six synonymous
codons, were less abundant in the variants than in the wild type
(Fig. 5C and D). These findings suggested that most of variants with
improved soluble expression likely benefitted from the charged
amino acids and acceleration of translational rate in the protein
C-terminal.
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3.7. Characterization of variants with multiple point mutations

In order to determine whether combining the point mutations
could further increase the soluble expression levels of the two pro-
teins, we next generated variants harboring 3, 5, or 7 point muta-
tions (selected based on the magnitude of their effects on soluble
expression), and expressed them in E. coli. Soluble expression of
13B22 in culture supernatant gradually increased with increasing
numbers of mutated sites (Fig. 6A and B). In particular, laccase
mutant L7M (harboring L508F/L507M/H436E/R431D/R355K/T294
E/N196D) showed the highest expression, approximately
3.49 ± 0.90 times that of wild type (Fig. 6A). In addition, laccase
13B22-L7M activity reached 3954.03 ± 74.03 U/L, approximately
12.40 times that of the wild type (294.938 ± 7.962 U/L) (Fig. 6C).
The soluble protein expression of FAD-AtGDH by E. coli BL21
(DE3) also increased significantly with increasing numbers of
mutation sites. Notably, AtGDH-A7M (carrying mutations A454V/
Y457M/E493D/S495D/N490D/K373E/E469E) was apparently
expressed almost entirely in the soluble fraction (Fig. 6D and E).
The enzymatic activity of the AtGDH-A7M variant was 1213.48 ± 2
07.07 U/L, or 7.86 times greater than wild type (137.02 ± 4.92 U/L)
(Fig. 6F). In summary, these results demonstrated that introducing
mutations predicted by the preferential usage of charged amino
acids in non-conserved sites and codons with fewer synonymous
codons significantly improved the expression of these two proteins
in E. coli, thereby validating the predictive accuracy of MPEPE.
4. Discussion

In this study, we constructed DNN-based models for predicting
mutations conducive to higher soluble protein expression in E. coli.
In particular, we developed a predictive strategy (MPEPE) to screen
for mutations that confer these properties and trained the model
with gene sequence data calculated from publicly available, exper-
imental, protein expression data. The dataset analysis showed the
preferential use of four charged amino acids (E, K, D, and H) in the
high-level expressed dataset. These results support previous stud-
ies that the charged amino acid can affect translation speed initia-
tion and elongation [37–39].

In addition, we evaluated the high-level expression propensity
of a human acetylcholinesterase (hAChE) variant bearing 51 muta-
tions, which was approximately 2000-fold higher than that of the
wild type in E. coli [40]. Based on our predictive scoring with
MPEPE, the 51-point mutant of hAChE was 0.482, higher than the
score of 0.463 for the wild type, which suggested an increased
propensity for soluble expression. Moreover, the amino acids were
mutated to the charged amino acids and the codons with high
translational rate (Fig. S9).



Fig. 4. The entropy of the residue and the distribution of the mutations on the sequence and structure of laccase 13B22 and FAD-AtGDH. A–C. Residue entropy of the laccase
13B22 (A) and FAD-AtGDH (B). The black dot represents the location of the screened mutation. The strand, helix, and coil are the predicted secondary structure based on the
method. B–D. The distribution of the mutations on the structure of laccase 13B22 and FAD-AtGDH.
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Fig. 5. The detection of enzymatic activity and distribution of amino acid and codon of the mutants and wild-type of the laccase 13B22 and FAD-AtGDH. A. Measured
enzymatic activity of the single-point mutants and wild-type of the laccase 13B22. B. The measured enzymatic activity of the single-point mutants and wild-type of the FAD-
AtGDH. C-D. The amino acid and codon selection of the mutants and wild-type of the laccase 13B22(C) and FAD-AtGDH(D). The color bar represents the amino acid usage
difference between the high- and low-level expressed genes.
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Our results support the fact that expression levels are affected
by the gene translation rate. In 2004, Wernisch and co-workers
introduced the concept of tAI, which measures that adaptation of
a coding region to the tRNA pool in the cell [41]; this measure
was later generalized to fit various organism [42]. It was suggested
in various additional studies that codons with higher adaptation to
the tRNA pool (i.e. that are recognized by tRNAs with higher con-
centration in the cell) tend to have fast translational speed
[43,44]. For example, E. coli has four copies of the tRNA gene for
codon GAA, encoding glutamate (E), and six copies of the tRNA
gene for codon AAA, encoding lysine (K). By contrast, the E. coli
genome contained one or zero copies of the vast majority of tRNA
genes matching codons for arginine (R) and leucine (L), which both
have several synonymous codons, coinciding with the rule we
found through development of MPEPE [45]. In addition, the muta-
tion sites that we found could positively affect 13B22 and FAD-
AtGDH expression in this study were mainly concentrated in the
C-terminus of the protein. These results were consistent with the
findings reported in [41] (see also [46,47]) which showed the N-
terminus of proteins are translated at a slower rate than the down-
stream region, resulting in increased translation efficiency and
ribosomal allocation.
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The predictors designed here are based only on the coding
sequence and where trained based on the analysis of the expres-
sion genes with the same promoter. Thus, the fact that there is a
correlation of 0.46 between the predicted protein levels by our
model and the protein abundance of endogenous genes in E. coli
suggest that may suggest that at least 20% of the gene expression
variability in E. coli can be explained by coding region features. This
is a non-negligible value that should be considered when deigning
heterologous genes and when studying genome evolution.

Compared to the relatively scattered data that might apply dif-
ferent expression vectors or different expression conditions used
by Yu et al., which was only collected from the PDB database
[14,48], we used high-quality data published by Letso et al. strictly
derived from E. coli under the same expression vector and condi-
tions [17], to construct the MPEPE deep learning model. Although
these experimental data cannot be clustered by traditional meth-
ods (Fig. S10), our model can effectively extract the features rele-
vant to our protein engineering research question. In addition,
our model was validated through mutagenesis and activity assays
in laccase 13B22 and FAD-AtGDH, suggesting that the MPEPE pro-
vides highly accurate predictions, with broad potential
applicability.



Fig. 6. Soluble expression and enzymatic activity assay of 13B22 and FAD-AtGDH. A. The Western-Blot of the expression of laccase 13B22 in supernatants in E. coli, L1M, L3M,
L5M, and L7M represented 1, 3, 5, and 7 point mutants of laccase 13B22, respectively. B. The SDS-PAGE of the expression of laccase 13B22 in supernatants in E. coli, L1M, L3M,
L5M, and L7M represented 1, 3, 5, and 7 point mutants of 13B22 respectively. C. The enzymatic activity of laccase 13B22, L1M, L3M, L5M, and L7M represented 1, 3, 5, and 7
point mutants of 13B22 respectively. D. The SDS-PAGE of the expression of FAD-AtGDH in supernatants in E. coli, A1M, A3M, A5M, and A7M represented 1, 3, 5, and 7 point
mutants of FAD-AtGDH respectively. E. The SDS-PAGE of the expression of FAD-AtGDH in precipitations in E. coli, A1M, A3M, A5M, and A7M represented 1, 3, 5, and 7 point
mutants of FAD-AtGDH respectively. F. The enzymatic activity of FAD-AtGDH, A1M, A3M, A5M, and A7M represented 1, 3, 5, and 7 point mutants of FAD-AtGDH respectively.
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Data availability

The gene sequence of laccase 13B22 was uploaded to GenBank
under the accession number MZ817083. The details of PCR primers
are available in the Supplementary Data.
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