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Abstract: The aim of this study was to characterize image quality and to determine the optimal
strength levels of a novel iterative reconstruction algorithm (quantum iterative reconstruction, QIR)
for low-dose, ultra-high-resolution (UHR) photon-counting detector CT (PCD-CT) of the lung. Images
were acquired on a clinical dual-source PCD-CT in the UHR mode and reconstructed with a sharp
lung reconstruction kernel at different strength levels of QIR (QIR-1 to QIR-4) and without QIR
(QIR-off). Noise power spectrum (NPS) and target transfer function (TTF) were analyzed in a
cylindrical phantom. 52 consecutive patients referred for low-dose UHR chest PCD-CT were included
(CTDIvol: 1 ± 0.6 mGy). Quantitative image quality analysis was performed computationally which
included the calculation of the global noise index (GNI) and the global signal-to-noise ratio index
(GSNRI). The mean attenuation of the lung parenchyma was measured. Two readers graded images
qualitatively in terms of overall image quality, image sharpness, and subjective image noise using
5-point Likert scales. In the phantom, an increase in the QIR level slightly decreased spatial resolution
and considerably decreased noise amplitude without affecting the frequency content. In patients, GNI
decreased from QIR-off (202 ± 34 HU) to QIR-4 (106 ± 18 HU) (p < 0.001) by 48%. GSNRI increased
from QIR-off (4.4 ± 0.8) to QIR-4 (8.2 ± 1.6) (p < 0.001) by 87%. Attenuation of lung parenchyma
was highly comparable among reconstructions (QIR-off: −849 ± 53 HU to QIR-4: −853 ± 52 HU,
p < 0.001). Subjective noise was best in QIR-4 (p < 0.001), while QIR-3 was best for sharpness and
overall image quality (p < 0.001). Thus, our phantom and patient study indicates that QIR-3 provides
the optimal iterative reconstruction level for low-dose, UHR PCD-CT of the lungs.

Keywords: phantoms; imaging; tomography; X-ray computed; lung

1. Introduction

Photon-counting detector computed tomography (PCD-CT) is an emerging technology
that enables the direct conversion of incident x-ray photons into an electrical signal. As
compared to conventional energy-integrating detector (EID)-CT systems, PCD-CT has
shown improved spatial resolution, lower image noise, and higher contrast-to-noise ratio
(CNR) [1–9]. Previous studies on preclinical prototype PCD-CT suggest that these benefits
can be translated to an improved diagnosis of pulmonary nodules [10] and to improvements
in shape and texture image information due to the higher spatial resolution of PCD-CT as
compared to EID-CT [11,12].
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Recently, the first whole-body full field-of-view dual-source PCD-CT [13–15] has
become available for clinical use. This system overcomes the limitations of previous PCD-
CT prototype systems by offering a 50 cm scan FOV and 5.76 cm longitudinal detector
coverage with automatic exposure control in both angular and longitudinal directions [14].
The PCD of the system offers a 0.15 × 0.176 mm2 detector element size (projected to the
iso-center) that enables ultra-high spatial resolution (UHR) without the radiation dose
penalty of other conventional CT systems [14]. Specifically, this new UHR-mode surpasses
prior UHR implementations on EID-CT systems in terms of spatial resolution and it does
not need a comb filter, which was traditionally associated with a decreased dose efficiency
of 50% [16]. The detector pixels of the PCD can either be read out independently in the UHR
data acquisition mode or 2 × 2 pixels can be binned to a “macropixel” in the “standard”
data acquisition mode (z-coverage, 57.6 mm; 144 × 0.4 mm at the isocenter). The z-coverage
in the UHR data acquisition mode is limited to 24 mm (120 × 0.2 mm at the isocenter) [17].
In the context of lung imaging, the use of UHR imaging is of particular clinical interest,
as fine parenchymal changes and disorders can be visualized in high quality at low noise
levels [18,19].

While hardware improvements are critical to ensure high-quality CT, image recon-
struction techniques also contribute decisively toward image quality and perception [20,21].
Latest generation iterative reconstruction (IR) algorithms considerably reduce image noise
thus becoming an important strategy to achieve diagnostic image quality for lung CTs at
low-radiation doses [22–24].

For PCD-CT, conventional IR algorithms as developed for EID-CT systems are not
suitable due to a variety of technical factors such as the increased data complexity, spectral
information, and noise model [20]. Therefore, a new IR algorithm named quantum iterative
reconstruction (QIR) has been introduced. The QIR algorithm has four strength levels
and it is tailored toward the hardware and software requirements of the PCD-CT system.
Importantly, QIR can be combined with all acquisition modes of the PCD-CT, including the
UHR mode. Given these considerations, we hypothesize that a combination of QIR and
UHR may be particularly interesting for lung imaging as high-quality, ultra-high-resolution
imaging at very low radiation doses may be achieved.

The purpose of our study was to characterize the image quality and to determine the
optimal strength level of QIR for low-dose, ultra-high-resolution, photon-counting detector
CT of the lung using various quantitative and qualitative metrics of image quality in a
phantom and in patients.

2. Materials and Methods
2.1. Phantom

To assess noise texture and spatial resolution, the noise power spectrum (NPS) and
target transfer function (TTF) were measured on images of a 25 cm diameter cylindrical
water phantom. The phantom was scanned using the same acquisition and reconstruction
parameters as in patients (see Section 2.2 for details below).

High-contrast TTF was calculated from central cylindrical inserts with a diameter of
10 cm made of Polytetrafluoroethylene (PTFE—mean CT number 1050 HU at 120 kVp).
The method of TTF computation used in this study was previously described in detail [25].
Seventy-two radial edge spread functions (ESF) were measured every 5 degrees from
280 identical slices of each insert, using a 10-degree angular aperture. The modulus of the
Fourier transforms of the radial ESFs gave 72 radial TTFs for each angular sector. Each 1D
radial TTF was the average of the 72 angular TTFs.

A homogeneous volume of water on one side of the phantom without an insert was
used for the NPS measurement. The NPS was measured in homogeneous slices of water as
previously shown [25], based on the recommendations of the International Commission of
Radiation Units and Measurements Reports 54 and 87 [26,27]. The 2D NPS were calculated
from a square region of interest (ROI) of 270 × 270 pixels (158 × 158 mm2) centered in the
middle of the phantom over 400 identical slices, yielding a statistic of over 29 million pixels.
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The angular mean of the 2D NPS resulted in a 1D radial NPS. In detail, the 2D in-plane NPS
amplitude was expressed by a one-dimensional (1D) radial NPS. This 1D radial NPS was
obtained by plotting the 2D in-plane NPS amplitude as a function of the radial frequency
in polar coordinates. Thus, the 1D NPS represented the 2D in-plane NPS averaged over all
angular frequencies. No correction of pixel values, such as trend removal, was performed
on the images prior to the calculation of the NPS.

2.2. Patients

This study was approved by the institutional review board and local ethics committee.
All patients provided written informed consent. Between March and August 2021, we
retrospectively assessed 52 consecutive patients (30 male, 22 female; age 61 ± 13 years; body
mass index (BMI) 24.3 ± 5.6 kg/m2; effective patient diameter defined as the square root of
the product of the anteroposterior and the lateral diameter 275 ± 43 mm) who underwent
low-dose UHR lung CT at our radiology department. Inclusion criterion was 18 years
or older. Exclusion criteria were metal artifacts in the chest that could potentially affect
image quality. The diagnoses of the patients were as follows: pulmonary nodule (n = 19),
interstitial lung disease (n = 15), pneumonia (n = 8), carcinoma/metastases/sarcoma (n = 6),
pulmonary embolism (n = 1), rib fractures (n = 2), and elevation of the diaphragm (n = 1).

2.3. Data Acquisition

Both in the phantom and in patients, images were acquired on the same first-generation
clinical dual-source PCD-CT (NAEOTOM Alpha, Siemens Healthcare GmbH, Forchheim,
Germany) in the single-source UHR mode. In the current system version, the UHR mode
employs a single energy threshold at 20 keV [14]. The following scan parameters were used:
120 kVp, detector collimation of 120 × 0.2 mm, pitch 0.85, and gantry rotation time 0.5 s.
The tube current was automatically adjusted to achieve an image quality level (IQ level)
of 15 for each scan. The IQ-level represents quality reference milliampere-seconds (mAs),
which denotes effective mAs applied for the protocol-specific reference water-equivalent
diameter with a CT geometry correction, particularly for the effect of the focal spot to
iso-center distance. Therefore, the image quality level provides a system-independent
image quality definition. Radiation dose parameters of the applied protocol in the patients
were as follows: effective mAs 13.1 ± 7.3, CTDIvol 1 ± 0.6 mGy, dose length product (DLP)
35.5 ± 19.8 mGy*cm, and size specific dose estimate (SSDE) 1.3 ± 0.6 mGy. In the phantom,
CTDIvol was 0.9± 0.1 mGy.

2.4. Image Reconstruction

Axial images were reconstructed with QIR-off and with all strength levels of QIR
(QIR 1-4). A sharp, fine-detail reconstruction kernel (Bl64), a section thickness of 1.5 mm,
an increment of 1mm, and a matrix size of 512 × 512 pixels were used.

In brief, QIR is an iterative reconstruction approach which performs a statistical
optimization of spectral data and corrects for geometric cone beam artifacts. The config-
uration QIR-off is equivalent to a weighted filtered back projection (FBP) reconstruction.
The QIR strength levels 1–4 trigger an additional statistical optimization in terms of a
globally reduced target noise level. Statistical optimization (noise reduction) is based on
locally adaptive iterative regularization. In contrast to naive regularization in standard
model-based IR, adaptive regularization incorporates statistical weighting directly in the
regularization step. This corresponds to using a locally adaptive noise model in order
to separate information and noise by (local) signal-to-noise analysis of the data content
and partially subtract detected noise in each iteration step. In contrast to single-spectra
application, all spectra need to be treated consistently for statistical improvement. This
means that the structural content is assumed congruent for all spectra, which is satisfied
due to spatially and temporarily consistent acquisition of the spectral data, however, with
individual contrast as well as individual local noise levels. Therefore, regularization can
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be constrained geometrically, utilizing structural information derived from common data.
Further details regarding QIR can be found elsewhere [28].

2.5. Quantitative Analysis

A fully automatic computational pipeline for in vivo quantitative image analysis was
developed in the R programming language. Specifically, the CT patient images were
first loaded into the program. Then, a segmentation of the lungs was performed using a
previously validated segmentation algorithm that leverages thresholding- and region-based
segmentation methodology to create lung templates [29]. Thereby all voxels of the lungs
were extracted from the original dataset. Then, noise maps were computed specifically for
the lungs and the global noise index (GNI) was calculated. The GNI metric was adapted
from Christianson et al. [30] and represents a robust measure to quantify the noise level
in vivo across the whole target imaging volume of a single examination. By using the
noise maps as derived from each image, a histogram of the noise distribution over the
lungs could be calculated. From this histogram, the mode value was extracted which then
corresponded to the GNI.

Furthermore, SNR maps were generated for the whole lung and the global SNR index
(GSNRI) was extracted. The SNR maps were computed by dividing the attenuation by
the standard deviation (SD) of the attenuation (i.e., noise) within a target region. Then, a
histogram of the SNR distribution over the lungs was generated and the mode value of the
histogram was extracted representing the GSNRI as a global metric to quantify the overall
SNR performance across the whole lung. Finally, the mean attenuation of all voxels across
the lungs was recorded. A visual representation of this procedure is provided in Figure 1.
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Figure 1. Visual representation of the quantitative image analysis in patients. First, the lungs were
segmented automatically from the CT image sets. Second, mean CT attenuation was measured.
Third, noise and signal-to-noise ratio maps were generated. The mode values of the corresponding
distributions were defined as GNI and GSNRI.

2.6. Qualitative Analysis

A subjective image quality assessment of patient scans was performed by two readers
(V.M. and L.J., radiology residents with two and three years of experience, respectively) in
a randomized, blinded fashion as recommended in a previous study [31]. The images were
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evaluated with 5-point Likert scales for overall image quality (1—unacceptable, 2—fair,
3—moderate, 4—good, and 5—excellent), image sharpness (1—unacceptable reduction
of sharpness, 2—significantly reduced sharpness and blurring with adjacent structures,
3—minimally reduced sharpness with blurring aspect to adjacent structures, 4—minimally
reduced sharpness, and 5—excellent sharpness), and image noise (1—unacceptable image
noise, 2—above average noise, 3—average image noise, 4—less than average noise, and
5—minimal image noise).

2.7. Statistical Analysis

The data distribution was checked using histograms, boxplots, and quantile-quantile
plots. Friedman tests with post-hoc Wilcoxon signed-rank tests were used to assess differ-
ences in qualitative metrics (and non-normally distributed quantitative data). The inter-
reader agreement of qualitative scores was quantified with Krippendorff’s α coefficients
(0.0–0.20 = poor agreement, 0.21–0.40 = fair agreement, 0.41–0.60 = moderate agreement,
0.61–0.80 = substantial agreement, and 0.81–1.00 = almost perfect agreement). One-way
repeated measures ANOVAs with post-hoc paired t-tests were used to test for differences
in normally distributed quantitative metrics. The p-values were corrected for multiple
comparisons with the Benjamini–Hochberg procedure. Two-tailed p-values < 0.05 were
considered statistically significant. The quantitative data is presented as mean ± standard
deviation (SD) while the qualitative data is presented as median (interquartile range). All
statistical analyses were performed in the R statistical software (version 4.0.2; R Foundation
for Statistical Computing, Vienna, Austria, https://www.R-project.org/, last accessed on
4 December 2021).

3. Results
3.1. Phantom

The impact of QIR on high-contrast TTF is summarized in Figure 2 and Table 1. An
increase in the QIR level decreased noise considerably and only decreased spatial resolution
slightly. For QIR-off, the TTF peaked at 1.52.
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Figure 2. High contrast TTF as a function of image reconstruction. Graphs show TTF for a high-
contrast task (PTFE—Polytetrafluoroethylene) as a function of spatial frequency among reconstruc-
tions. A slight shift towards lower frequencies was observed with increasing QIR level indicating
slightly decreased spatial resolution.

Table 1. High-contrast TTF50 and TTF10 frequency shifts in percentage differences for QIR-1 to
4 levels in comparison with QIR-off.

Algorithm TTF50 TTF10

QIR 1 0 2.7

QIR 2 −0.2 3.6

QIR 3 −1.8 2.1

QIR 4 −2.0 6.1

https://www.R-project.org/
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Increasing the QIR level from QIR-1 to QIR-4 reduced the noise magnitude to 78%,
59%, 43%, and 29% of the initial noise level (QIR-off), respectively. The NPS peak frequency
was affected only minimally by QIR (Figure 3 and Table 2), with QIR levels 1–3 exhibiting
no shift in peak frequency relative to QIR-off and QIR-4 exhibiting a shift of −6.7% in peak
frequency relative to QIR-off. Therefore, changing the QIR level had no relevant effect on
the NPS shape and frequency bandwidth. The noise texture of the images was not modified
by the choice of the QIR level.
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Figure 3. NPS as a function of image reconstruction. The NPS showed decreasing noise magnitude
with increasing QIR level. The shape of the NPS indicated similar noise texture among reconstructions.

Table 2. The NPS peak frequency shifts in percentage differences for QIR levels from 1 to 4 in
comparison with QIR-off.

Algorithm NPS Peak Frequency Shifts (%)

QIR-1 0.0

QIR-2 0.0

QIR-3 0.0

QIR-4 −6.7

3.2. Patients

A detailed overview of the results is provided in Figure 4 and Table 3. Representative
image examples are provided in Figures 5 and 6.

3.2.1. Quantitative Analysis

The GNI decreased linearly from QIR-off (202 ± 34 HU) to QIR-4 (106 ± 18 HU),
with significantly lower image noise for QIR-4 compared to all other reconstructions (all,
p < 0.001); and QIR-4 achieved a 47.5% noise reduction relative to QIR-off. The GSNRI
increased linearly from QIR-off (4.4 ± 0.8) to QIR-4 (8.2 ± 1.6) with significantly higher
GSNRI for QIR-4 compared to all other reconstructions (all, p < 0.001). Specifically, QIR-4
achieved an 86.9% higher SNR compared to QIR-off.

The attenuation values in lung parenchyma ranged from −849 ± 53 HU for QIR-off
to −853 ± 52 HU for QIR-4, with a mean attenuation decreasing by an average of 1 HU
per level of QIR from QIR-off to QIR-4. Still, this difference was statistically significant (all,
p < 0.001).
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Figure 4. Detailed overview of the results from qualitative and quantitative analysis in patients.
(A) shows the results from quantitative analysis by means of notched boxplots. A linear decrease of
GNI and a linear increase of GSNRI were observed with increasing level of QIR. The CT attenuation
was similar among reconstructions. (B) shows the results from qualitative analysis by means of
stacked bar plots. While QIR-4 achieved highest ratings for image noise, QIR-3 performed best for
sharpness and overall image quality.

Table 3. Detailed overview of the results from quantitative and qualitative analysis in patients.

QIR-Off QIR-1 QIR-2 QIR-3 QIR-4

Global Noise
Index [HU] 202 ± 34 178 ± 30 154 ± 26 130 ± 22 106 ± 18

Global SNR Index 4.4 ± 0.8 5 ± 0.9 5.7 ± 1.1 6.7 ± 1.3 8.2 ± 1.6

Mean Attenuation
[HU] −849 ± 53 −850 ± 53 −851 ± 52 −852 ± 52 −852 ± 52

Overall Image
Quality

R1: 3; [3,4]
R2: 3; [3,4]

R1: 4; [4,4]
R2: 4; [4,4]

R1: 5; [4,5]
R2: 5; [4,5]

R1: 5; [5,5]
R2: 5; [5,5]

R1: 5; [4,5]
R2: 5; [4,5]

Image Sharpness R1: 4; [4,4]
R2: 4; [3,4]

R1: 4; [4,5]
R2: 4; [4,4.25]

R1: 5; [5,5]
R2: 5; [5,5]

R1: 5; [5,5]
R2: 5; [5,5]

R1: 4; [3,5]
R2: 4; [4,5]

Image Noise R1: 3; [3,3.25]
R2: 3; [3,3]

R1: 4; [3,4]
R2: 4; [3,4]

R1: 4; [4,5]
R2: 4; [4,4]

R1: 5; [5,5]
R2: 5; [5,5]

R1: 5; [5,5]
R2: 5; [5,5]

Quantitative data is presented as mean ± standard deviation. Qualitative data is presented as median; (interquar-
tile range) for reader 1 (R1) and reader 2 (R2), respectively.
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Figure 6. Images of a 58-year-old male patient with a solid 6 mm pulmonary nodule in the lateral
middle lobe. Noise was reduced considerably when switching from QIR-off to higher levels of QIR.
Note the slightly smoothed appearance of the nodule on QIR-4 as opposed to lower levels of QIR.

3.2.2. Qualitative Analysis

The interreader agreement ranged from substantial to almost perfect (α = 0.71/0.825/
0.878/ for image sharpness/overall image quality/image noise, respectively). For image
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noise, QIR-4 (reader 1: 5; [5,5] and reader 2: 5; [5,5]) significantly outperformed all other
reconstructions (p < 0.001—p = 0.02 for both readers), followed by QIR-3 (reader 1: 5; [5,5]
and reader 2: 5; [5,5]). For image sharpness, QIR-2 (reader 1: 5; [5,5] and reader 2: 5; [5,5])
and QIR-3 (reader 1: 5; [5,5] and reader 2: 5; [5,5]) outperformed all other reconstructions
(all, p < 0.001 for both readers) without significant differences between QIR-2 and QIR-3
(reader 1: p = 0.23, reader 2: p = 0.16). For overall image quality, QIR-3 (reader 1: 5; [5,5] and
reader 2: 5; [5,5]) outperformed all other reconstructions (all, p < 0.001 for both readers).

4. Discussion

In this study, we assessed the image quality and optimal strength level of an iterative
reconstruction algorithm (quantum iterative reconstruction (QIR)) designed for photon-
counting detector CT (PCD-CT) for low-dose, ultra-high-resolution (UHR) CT of the lungs.
In our phantom and patient study, we found that high levels of QIR enabled considerable
noise reductions, increased SNR, and improved subjective image quality without affecting
noise texture. Although higher levels of QIR were associated with slightly decreased
objective spatial resolution, subjective image sharpness was deemed best on QIR-2 and
QIR-3 relative to all other reconstructions. Thus, when considering all metrics, our results
indicate that QIR-3 provides the optimal trade-off between objective and subjective image
quality, noise reduction, spatial resolution, and noise texture.

To date, only a few studies have explored the potential of PCD-CT for lung imaging.
Specifically, previous studies sought to establish the added value of PCD-CT relative to
EID-CT. Bartlett et al. assessed the performance of a prototype PCD-CT system for high-
resolution lung imaging [18]. Twenty-two patients underwent both PCD-CT imaging and
EID-CT imaging with matching dose levels. Images were reconstructed either with wFBP
or IR algorithms (ADMIRE for EID-CT and SAFIRE for PCD-CT) as well as with 512 and/or
1024 matrix sizes. The authors concluded that high-resolution PCD-CT may outperform
current EID-CT systems for the visualization of higher-order bronchi and bronchial walls
without compromising nodule visualization [18].

Jungblut et al. provided initial data on the performance of a first-generation clinical
dual-source PCD-CT for lung nodule imaging [17]. An anthropomorphic chest-phantom
was imaged both on the PCD-CT and on an EID-CT system at various matching dose levels.
Importantly for PCD-CT, images were reconstructed with QIR strength level 3. The authors
concluded that PCD-CT provides superior image quality to dose-matched EID-CT across a
range of dose levels [17].

To the best of our knowledge, the phantom study by Jungblut et al. was the first to
introduce a clinical PCD-CT system for lung imaging and more specifically QIR as a novel
IR algorithm optimized for PCD-CT imaging [17]. In prior studies, such as that of Bartlett
et al. [18], images were acquired with prototype PCD-CT systems thereby relying on wFBP
or conventional EID-CT-based IR algorithms (such as SAFIRE) for image reconstruction.

Since its first introduction in 2009, several generations of IRs have been developed
for EID-CT thus enabling substantial radiation dose and/or image noise reductions as
compared to FBP [20,21,24]. Current IR algorithms are, however, geared toward the specific
needs of EID-CT. These algorithms need to be refined for PCD-CT due to their more
complex data structure and the inherently available multi-energy data [3,20]. The QIR was
designed to address these specific requirements.

This is the first study to systematically assess the use of QIR for UHR clinical PCD-CT
imaging of the lung. While QIR-4 achieved the lowest noise level and the highest SNR of all
reconstructions, scores from subjective analysis indicated that QIR-3 outperformed QIR-4
in terms of overall image quality and sharpness. Therein, QIR-3 slightly outperformed
QIR-4 in terms of spatial resolution, as demonstrated with TTF analysis in the phantom. In
general, TTF was slightly higher for low QIR levels than for high QIR levels, which is a
well-known phenomenon from previous IR algorithms [25,32–34].

In this regard, it should be noted that while spatial resolution is an essential parameter
in lung imaging, its impact on nodule detection may only be minor. Ichikawa et al. [35]
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demonstrated that the use of edge enhancement reconstruction kernels does not necessarily
improve nodule visibility. Certainly, the effect of spatial resolution must be assessed in
future PCD-CT studies. Additionally, in an upcoming software release the manufacturer
intends to further refine QIR to maintain the objective spatial resolution even further.

Our study demonstrated equal image noise texture among QIR-off and all QIR strength
levels. Image noise texture may have an impact on perceived image quality and diagnostic
confidence [21,36]. Previous IRs designed for EID-CT have been shown to change noise
texture by altering the noise frequency distribution. Specifically, the change in image
texture and appearance as seen with previous IRs was often caused by a shift of central
noise frequency toward lower values [32,37–40]. In our NPS analysis, we demonstrated that
average and peak noise frequency remained virtually identical among all reconstructions
(maximum deviation of 6.7% for QIR-4), thus corroborating the fact that QIR does not
suffer from the limitations of previous IRs. Consequently, QIR enables considerable noise
reductions without compromising image texture.

Moreover, our results indicate that mean CT attenuation was comparable among recon-
structions with clinically negligible (though statistically significant) absolute differences of
a maximum of 4 HU between two reconstructions. Such stability is important for example,
in automated lung emphysema imaging or nodule volumetry [41] in which attenuation
thresholds are being used to distinguish healthy from affected lung parenchyma.

Lastly, we would like to address the radiation dose of our protocol. The average
volume CT dose index (CTDIvol) in our patient cohort was 1 ± 0.6 mGy. A recent study
assessing the radiation dose of low-dose lung cancer screening CT in 12,529 patients
from 72 institutions found an average CTDIvol of 2.4 ± 2 mGy. The American College of
Radiology (ACR) recommends low dose scans to have CTDIvol values of 3 mGy or less [42].
Thus, despite the very low radiation dose in our study cohort, the PCD-CT system enabled
high quality lung imaging in all patients.

Our study had several limitations. First, all data was collected at a single healthcare
center. Second, while in range of similar studies [24,28,43], the number of patients was
limited. Futures studies encompassing a larger number of study subjects are desirable to
confirm our results. Third, we did not assess the impact of QIR on diagnostic performance.
Finally, we did not compare the performance of PCD-CT to EID-CT. This should be ad-
dressed in future phantom and clinical studies in order to establish the magnitude of the
benefit of PCD-CT for lung imaging.

In conclusion, we recommend quantum iterative reconstruction at a strength level of 3
for low-dose, ultra-high-resolution photon-counting detector CT of the lung as it provides
the best overall performance with regard to quantitative and qualitative image quality.
Future studies should assess the impact of QIR on diagnostic accuracy and its potential for
radiation dose reduction.
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