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Timing is everything: Exercise therapy 
and remote ischemic conditioning for 
acute ischemic stroke patients
Hangil Lee1, Ho Jun Yun1, Yuchuan Ding1,2

Abstract:
Physical exercise is a promising rehabilitative strategy for acute ischemic stroke. Preclinical trials 
suggest that exercise restores cerebral blood circulation and re‑establishes the blood–brain barrier’s 
integrity with neurological function and motor skill improvement. Clinical trials demonstrated that exercise 
improves prognosis and decreases complications after ischemic events. Due to these encouraging 
findings, early exercise rehabilitation has been quickly adopted into stroke rehabilitation guidelines. 
Unfortunately, preclinical trials have failed to warn us of an adverse effect. Trials with very early 
exercise rehabilitation (within 24 h of ischemic attack) found an inferior prognosis at 3 months. It was not 
immediately clear as to why exercise was detrimental when performed very early while it was ameliorative 
just a few short days later. This review aimed to explore the potential mechanisms of harm seen in very 
early exercise administered to acute ischemic stroke patients. To begin, the mechanisms of exercise’s 
benefit were transposed onto the current understanding of acute ischemic stroke’s pathogenesis, 
specifically during the acute and subacute phases. Then, exercise rehabilitation’s mechanisms were 
compared to that of remote ischemic conditioning (RIC). This comparison may reveal how RIC may be 
providing clinical benefit during the acute phase of ischemic stroke when exercise proved to be harmful.
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Introduction

Stroke is a leading cause of mortality 
and morbidity worldwide.[1,2] As life 

expectancy around the world increases, 
the global lifetime risk of stroke has also 
increased.[3] Of the various categories of 
strokes that plague the elderly, acute ischemic 
stroke comprises the largest portion.[4] And 
yet, treatment of acute ischemic stroke 
is currently limited to thrombolysis and, 
for a limited few, clot retrieval.[5] Despite 
improvements in recanalization rates and 
broadening of treatment eligibility criteria,[6] 
the rate of disability among survivors 
remains at a staggering rate of 50%.[7] 
Development of new treatment modalities 
with broad indications is necessary to relieve 

the tremendous disease burden of acute 
ischemic stroke.

Physical exercise is a promising rehabilitative 
strategy for acute ischemic stroke patients. 
Preclinical trials suggest that exercise 
rehabilitation can help to restore cerebral 
blood circulation[8,9] and re‑establish the 
blood-brain barrier’s integrity[10] with 
improvements of neurological functions[11,12] 
and motor skills.[13] Clinical trials have 
demonstrated that exercise improves 
prognosis, decreases complications after 
ischemic events,[14] and improves motor 
function.[15] Due to these encouraging 
findings, early exercise rehabilitation 
has been quickly adopted into stroke 
rehabilitation guidelines.[16] Unfortunately, 
preclinical trials have failed to warn us of 
an adverse effect. Trials that started very 
early exercise rehabilitation  (i.e.  within 
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24  h of ischemic attack) found an inferior prognosis 
at 3 months.[17] It was not immediately clear as to why 
exercise was detrimental when performed very early 
while it was ameliorative just a few short days later. 
Furthermore, exercise has proven to be challenging 
to implement in stroke patients due to morbidities, 
instability, and disabilities after ischemic events.[18]

Another form of stroke rehabilitation is ischemic 
conditioning. In ischemic conditioning, sublethal 
hypoxia is induced on the body to coerce endogenous 
production of signaling molecules to aid in recovery 
from hypoxic damage.[19,20] RIC is one of the various 
forms of ischemic conditioning that is currently 
being explored.[21,22] It is currently being used for 
neuroprotection in other contexts such as symptomatic 
intracranial arterial stenosis (SIAS)[23] and carotid artery 
stent placements.[24] The sublethal dose of hypoxia is 
achieved on a distal limb with a blood pressure cuff and 
released to permit the beneficial signaling cascades to 
travel to the hypoxia‑damaged tissue.[25‑27] In preclinical 
studies, RIC was efficacious in stroke therapy[28‑30] and 
acted synergistically with exercise in stroke therapy.[31,32] 
Furthermore, unlike exercise, it is a convenient therapy 
that is easy to administer on sick, recovering stroke 
patients.[26,33]

This review aims to explore the potential mechanisms of 
harm seen in very early exercise administered to acute 
ischemic stroke patients. To begin, the mechanisms of 
exercise’s benefit will be transposed onto the current 
understanding of acute ischemic stroke’s pathogenesis, 
specifically during the subacute phase. Then, we will 
explore exercise rehabilitation’s effect on the human 
body and how it may interact with the pathogenesis 
of ischemic stroke during the acute phase. Throughout 
the discussion, we will compare exercise rehabilitation’s 
mechanisms to that of RIC. This comparison may reveal 
how RIC may potentially provide clinical benefit during 
the acute phase of ischemic stroke, the same time frame 
in which exercise proved to be harmful. This review will 
focus on the acute and subacute phases of stroke, as the 
rehabilitative strategies that will be discussed have been 
prescribed within hours to days of the ischemic events 
in the studies that we are considering.

Acute and Subacute Phases of Stroke

The pathogenesis of acute ischemic stroke has been 
described extensively by Kurisu and Yenari.[34] They 
divide the pathogenesis of acute ischemic stroke 
into three phases: acute, subacute, and chronic. The 
time frames for these phases are minutes to hours, 
hours to days, and weeks to months, respectively. 
The acute phase of stroke is precipitated primarily 
due to alteration of blood flow. Ischemia resulting 

from an embolus, thrombus, or severe hypotension 
initiates a cascade of metabolic disequilibrium. Energy 
storing capacity quickly becomes impaired, leaving 
the neuron to depend on anerobic respiration, a 
considerably inefficient method of ATP generation 
compared to oxidative phosphorylation. Anerobic 
respiration generates lactic acid and inevitably 
acidosis. Inadequate ATP stores lead to cellular 
ion pump failure and loss of ion gradients across 
the membrane; these result in receptor activation 
from significant calcium influx and membrane 
insufficiency from hyperemia. The combination of 
cellular excitotoxicity from receptor activation and 
mitochondrial failure from membrane insufficiency 
ultimately ends with neuronal death.

The subacute phase relies on slower molecular 
signaling pathways for its tale of neuronal apoptosis to 
unfold. Its fate is determined by an interplay between 
proapoptotic and antiapoptotic molecules. Apoptosis 
can be divided into intrinsic and extrinsic pathways. 
The intrinsic pathway involves proapoptotic molecules 
of BCL‑2‑associated X  (BAX), protein kinase Cδ, and 
cytochrome C, which are antagonized by antiapoptotic 
molecules, such as BCL‑2 and PKCε. The extrinsic 
pathway involves the proapoptotic signaling pathway 
initiated by FAS‑ligand‑induced FAS activation. Both 
pathways ultimately end with caspase activation and 
subsequent apoptosis.

In summary, as depicted by Figure 1, the acute phase 
of stroke is progressed by the immediate consequences 
of interruptions to circulation within minutes to hours 
of the onset. The subacute phase of stroke counts on 
molecular cascades and marker expressions that are 
induced within hours to days. Exercise therapy should 
have underlying physiological mechanisms affected 
by time frames of acute and subacute phases of stroke. 
Understanding the mechanisms could help elucidate 
how the intended clinical amelioration occurs and how 
in other times they cause unintended harm instead.

Figure 1: Pathophysiology of acute and subacute phases of stroke
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Therapies and Subacute Phase of Stroke

Exercise and remote ischemic conditioning
As mentioned in the introduction, exercise rehabilitation 
has demonstrated its ameliorative effects in stroke 
patients by improving neurological function[6] and 
outcomes,[16] granted that it is not prescribed within 24 h 
of the ischemic event.[35] Exercise helps to maintain the 
blood–brain barrier[8,10] and prevent neuronal death,[8,9] 
which supports the associated observations of mitigated 
neurological impairment[11] and memory loss.[12]

RIC is a lesser‑known method of postischemic stroke 
conditioning. RIC is based on an intrinsic process, 
named ischemic preconditioning, in which ischemia 
of short duration protects internal organs against 
subsequent ischemia. Ischemic preconditioning can 
be experimentally induced with a blood pressure cuff 
that creates a transient blood flow blockage at a distal 
limb. This procedure instigates endogenously protective 
effects on important internal organs from lethal 
ischemic damage.[25] RIC has also been induced through 
hypobaric and normobaric chambers.[36,37] This treatment 
method has been used for protection after myocardial 
infarction,[38] during carotid artery stent placements,[24] 
prophylactically for SIAS,[23] global cerebral ischemia,[20] 
and subcortical ischemic vascular dementia.[39] RIC has 
been reported to improve outcomes in chronic stroke 
as well.[40]

Exercise has been found to have very similar 
neuroprotective effects of RIC as it pertains to the 
subacute phase of acute ischemic stroke.[31] It supports 
neuroprotection[41] and regeneration by enhancing 
angiogenesis,[42] cerebral perfusion, cerebral collateral 
formation, and cerebral ischemia tolerance.[43,44] Further 
neuroprotection is established by reducing nerve 
injury,[45] promoting nerve remodeling,[42] and restoring 
function of paralyzed limbs.[31,40]

Therapies and mechanism of amelioration in the 
subacute phase
Hinted by their similar neuroprotective effects, it has 
been found that exercise and RIC have many overlaps 
in their ameliorative mechanism of action during the 
subacute phase of acute ischemic stroke [Figure 2]. 
Exercise and RIC protect brain tissue against injury 
by preventing apoptosis, modulating neuroplasticity 
regulation, and securing resources through angiogenesis.

Apoptosis, as described above, is regulated through 
a fine balance between the pro and antiapoptotic 
pathways. Apoptosis is prevented through Bcl‑2 
interacting‑domain death agonist inhibition by RIC[46] 
and exercise.[47] Increases in the Bcl‑2/Bax ratio are 
favorable for neuron survival and are upregulated by 

RIC[48] and exercise.[49] ROS causes apoptosis through 
oxidative stress.[50] Exercise decreases oxidative stress by 
increasing catalase[51] and glutathione peroxidase.[52] RIC 
also increases antioxidant activity through glutathione,[53] 
catalase, and SOD.[54] NO scavenges ROS to prevent 
apoptosis;[55] exercise [56] and RIC [57] increase NO 
production.

Neuroplast ic i ty  can be assessed with many 
molecular markers. Synaptogenesis plays a critical 
role in neuroplasticity and can be measured with 
synaptophysin (SYN), a marker of synaptic plasticity in 
cerebral ischemia and damage.[58] Interestingly, SYN is 
increased by ischemic conditioning[59] and exercise.[60] In 
addition, neuroplasticity is regulated by cAMP response 
element‑binding protein  (CREB), brain‑derived 
neurotrophic factor (BDNF), and tropomyosin receptor 
kinase B (TrkB), which act in coordination.[61,62] Ischemic 
conditioning[21] and exercise[60,63] increase CREB as well 
as BDNF.[21,64]

CREB supports neurogenesis[65] by encouraging 
functional recovery and increases circuit plasticity after 
stroke.[66] It also activates antioxidants and antiapoptotic 
proteins[38] to augment cell survival. The presence 
of BDNF indicates neuronal survival and synaptic 
plasticity; BDNF works with TrkB[67,68] to trigger an 
intracellular signaling cascade to mediate neuronal 
survival and differentiation,[69] angiogenesis,[70] and 
neuroplasticity.[71]

HIF‑1α is a marker that is upregulated in hypoxic 
conditions and helps to mediate hypoxia by 
inducing vascular endothelial growth factor  (VEGF), 
erythropoietin (EPO), and the respective receptors.[72,73] 
Through downstream effects of VEGF and EPO induction, 
HIF‑1α ensures O2

[74] and glucose[75] supplies to the brain. 
VEGF accelerates cognitive rehabilitation.[72] Ischemic 

Figure 2: Subacute phase of stroke and the mechanism of exercise rehabilitation 
and remote ischemic conditioning
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conditioning[76] and exercise[77] are reported to increase 
HIF‑1α. Preclinical trials have suggested that exercise and 
RIC, through HIF‑1α, augment the BDNF/TrkB/CREB 
pathway in its amelioration of ischemic stroke.[32,78]

Therapies and Acute Phase of Ischemic 
Stroke

Cerebral autoregulation in the acute phase of 
ischemic stroke
Tissue death and injury in the acute phase of ischemic 
stroke are precipitated by inadequate blood supply 
due to a thrombus, emboli, or severe hypotension. 
In a healthy individual, perfusion of the cerebrum is 
supplemented by cerebral autoregulation through 
myogenic, neurogenic, metabolic, and endothelial 
mechanisms.[79] However, cerebral blood perfusion 
can still be insufficient following reperfusion. Various 
injuries to the head, such as traumatic brain injury,[80] 
hemorrhagic stroke,[81] and ischemic stroke,[82] can 
lead to autoregulation impairment, known as cerebral 
dysautoregulation. Inability to control blood flow to 
the brain may lead to both hypo and hyperperfusion. 
Cerebral dys‑autoregulation results in hemorrhagic 
transformation and cerebral edema, which are often 
associated with a poor prognosis. The mechanism 
of these complications is hyperreperfusion, in which 
dys‑autoregulation permits low vascular resistance 
and high blood flow velocity to the brain.[83] Studies 
have stressed the importance of maintaining cerebral 
autoregulation, which is associated with less atrophy 
and better neurological function in chronic ischemic 
infarctions.[84] At times, dys‑autoregulation has been 
found to spread to the contralateral side of the injury 
as well, which was unsurprisingly associated with poor 
outcomes.[85]

Clinical studies have found that vascular recanalization 
helps to preserve the function of autoregulation, but the 
extent of its preservation is not well understood and 
requires more investigation.[86,87] Interestingly, animal 
studies have found rt‑PA to cause dys‑autoregulation.[88,89] 
Ma et al. discuss in their clinical trial that the superior 
autoregulation in the recanalized population may be 
because the patients with milder ischemia were eligible 
for the recanalization treatment, acting as a confounding 
variable.[86] Furthermore, cerebral dys‑autoregulation 
has been observed from as early as 22  h[90] to as late 
as 6 months[91] following an ischemic event, making it 
relevant to our discussion.

Exercise and dys‑autoregulation
Exercise induces changes to the hemodynamics of 
blood flow in the body. For instance, as skeletal muscles 
demand greater blood flow, other organs compete to 
maintain their critical perfusion levels to avoid ischemic 

damage. To supply both sides of the competition, heart 
rate and stroke volume increase to boost the overall 
cardiac output. Normal cardiac output is around 5 L/min 
for a resting adult human. With exercise, it can go up to 
20 L/min for an average adult or to 40 L/min for athletes. 
Organs that are not directly involved in exercise, such as 
the kidneys and liver, have their blood flow redirected 
to skeletal and cardiac muscle tissue, decreasing their 
perfusion to ~25% of the flow at rest. The exception to 
this compensatory mechanism is the brain in a healthy 
individual, which maintains the same blood flow of 
0.75 L/min both at rest and exercise.[92] In addition to the 
changes to the blood flow during exercise, the chemical 
composition of blood changes due to the increased 
metabolism in muscle tissues. Cerebral autoregulation 
must take these chemical changes into account in 
addition to the changes of the cardiac output to ensure 
consistent blood flow to the brain – the mechanism of 
which has been reviewed by Smith and Ainslie.[93]

Patients in the acute phase of ischemic stroke are unable 
to regulate cerebral blood flow during exercise because 
of cerebral dys‑autoregulation. Brain tissues of patients 
with acute stroke can be overstressed by the changes of 
the cerebral blood flow’s hemodynamics, intracranial 
pressure, and intra‑ and extracellular chemistry while 
undergoing exercise rehabilitation. The brain can be 
hyperperfused or hypoperfused, depending on the 
specific regimen of the exercise and posture of the 
patient. Exercise during the acute phase of ischemic 
stroke may worsen prognosis by tempering blood 
supply to the brain during its vulnerable moments of 
dys‑autoregulation [Figure 3].

Remote ischemic conditioning in the acute phase 
of ischemic stroke
Those who are unfamiliar with RIC may express concerns 
for potential damage to the ischemic site and consequent 
cardiopulmonary response, which may potentially 
worsen cerebral perfusion.[94] It has been reported that up 

Figure 3: Acute phase of stroke and the mechanism of exercise
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to 3 h of remote ischemia will not cause muscle damage to 
the ischemic site,[95] and concern for reperfusion damage 
is only necessary from 1 h of ischemia onward.[96] Because 
RIC protocols in ischemic tissue amelioration typically 
induce ischemia for only minutes at a time, ischemic 
tissue damage is not significant.

RIC has been demonstrated to be safe in a variety of 
contexts. As a preconditioning method, it has proven its 
safety and efficacy in pulmonary dysfunction[97] without 
damage to remote organs.[98] As a postconditioning method, 
its usage has been proven for spinal cord ischemia[99] 
and vascular endothelial dysfunction.[100] Finally, RIC is 
safe in acute ischemic stroke[101] as well as other cranial 
injuries, such as intracranial atherosclerosis,[102] carotid 
stenting, endarterectomy,[24] cerebral small vessel 
disease,[103] and aneurysm subarachnoid hemorrhage.[26]

As further reassurance, RIC in acute ischemic stroke has 
shown its efficacy with stable blood pressure, heart rate, 
intracranial pressure, cranial perfusion pressure, and 
peak velocity of middle cerebral artery.[101] Despite the 
brain’s inability to autoregulate in the context of acute 
ischemic stroke, the cerebral perfusion remains intact as 
RIC does not disturb the body’s circulatory dynamics. 
Stable cerebral perfusion is an important advantage of 
RIC because it does not occur with exercise rehabilitation. 
If the deleterious effects of exercise in the acute phase 
of stroke are primarily due to the instability of cerebral 
blood flow, RIC can be an excellent adjunct therapy. 
Exercise may not be able to induce clinical amelioration 
and prevent acute stroke damage within the first 24 h 
but RIC could [Figure 4].

Additional considerations for exercise therapy
Although this review has focused on dys‑autoregulation 
as a possible source of exercise’s detriment in the very 
early stages of acute ischemic stroke, the reality is likely 
more complex. Calcium overload[104] and ATP depletion[105] 
after exercise are clearly counterproductive to acute 
ischemic stroke therapy. Glutamate excitotoxicity is 
also a detrimental consequence of exercise to stroke 

patients;[106,107] however, these were observed only in 
intense exercise,[108,109] while mild exercise proved to 
decrease glutamate levels.[110‑112] ROS production with 
exercise contributes to oxidative damage,[113,114] but 
counterintuitively the same oxidative stress is seen to 
benefit patients with neurodegenerative diseases.[115] 
Moderate exercise decreases pro‑inflammatory cytokines 
such as tumor necrosis factor‑alpha, interleukin‑6 (IL‑6), 
IL‑1 beta  (IL‑1 β), and C‑reactive protein, while intense 
exercise increased them.[116] On a similar note, muscle 
damage increases both inflammation and white blood cell 
recruitment,[117] which was believed to be only detrimental. 
However, recent evidence points to microglia/macrophage 
polarization, in which some populations contribute to the 
tissue damage, while others assist in clearing cellular debris 
and facilitate neuronal restoration.[118]

As more research is conducted to better understand 
exercise’s role in acute ischemic stroke therapy, 
improved models of its interaction with the damaged 
and recovering brain are beneficial for discovering 
alternative treatment modalities and understanding 
stroke pathophysiology.

Conclusion

Although exercise has proven to be therapeutic for 
patients with acute ischemic stroke, it is harmful when 
implemented within 24 h of the ischemic event. RIC is 
another stroke therapy that is not used as widely. Exercise 
and RIC both induce ameliorative effects through similar 
mechanisms during the subacute phase of stroke, primarily 
through promoting neuroprotection, angiogenesis, and 
apoptosis inhibition. During the acute phase, tissue death 
and injury are caused by the ischemic event initiating 
a series of events consequent to lack of perfusion and 
ATP depletion. Injury during the acute phase may be 
aggravated by cerebral dys‑autoregulation, a phenomenon 
observable in many types of injuries to the cranium. 
Exercise perturbs the cardiovascular physiology, causing 
hyper or hypoperfusion of the brain during cerebral 
dys‑autoregulation. This combination may explain the 
reason for exercise’s deleterious effect during the first 24 h 
following the ischemic event. Meanwhile, RIC does not 
cause significant changes to the brain’s circulation during 
its dys‑autoregulation. Because RIC is therapeutic through 
the same mechanisms as exercise without causing harm, 
RIC may be the suitable candidate for stroke therapy 
during the first 24 h following an ischemic event, followed 
by exercise therapy several days afterward. Together, 
RIC and exercise therapy may induce additive, if not 
synergistic, amelioration for acute ischemic stroke patients.
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