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ABSTRACT
MicroRNAs (miRNAs) are a group of crucial regulators in the process of animal
growth and development. However, little is known about the expression and function
of miRNAs in pigeon muscles. To identify the miRNAs participating in the rapid
development of pigeon pectoral muscles and quantitate their expression levels of
pectoral muscles in different age stages, we performed miRNA transcriptome analysis
in pigeon pectoral muscles by sequencing small RNAs over three different age stages
(1-day old, 28 days old, and 2 years old). Dual-luciferase reporter assay was applied to
validate the interaction between miRNA and its target gene. We identified 304 known
miRNAs, 201 conservedmiRNAs, and 86 novelmiRNAs in pigeonpectoralmuscles. 189
differentially expressed (DE) miRNAs were screened out during pigeon development.
A short time-series expression miner (STEM) analysis indicated 89 DE miRNAs were
significantly clustered in a progressively decreasing expression profile, and mainly
enriched in biosynthesis-related GO categories and signaling pathways for MAPK and
TGF-β. Dual-luciferase reporter assay indicated that a progressively down-regulated
miRNA (miR-20b-5p) could directly target Krüppel-like factor 3 (KLF3) gene. To sum-
up, our data expand the repertoire of pigeon miRNAs and enhance understanding of
the mechanisms underlying rapid development in squabs.

Subjects Developmental Biology, Genomics, Zoology
Keywords Development, miRNAs, Pigeon, Pectoral muscle, Small RNA-seq

INTRODUCTION
Pigeons (Columba livia) have been reared for meat production and racing since at least
2500 BC Sales & Janssens (2003). In China, pigeon is the fourth-largest domestic poultry in
breeding scale following chicken, duck and goose. As the largest muscle in pigeons, pectoral
muscles are important for flight ability and meat production, constituting approximately
15% of total body weight (James & Meek, 1976). The pectoral muscle is the dominant
avian flight muscle producing mechanical work during the downstroke and pronation of
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the wing (Biewener, 2011). The pectoral muscle in pigeon squabs develops rapidly; Gao et
al. (2016) reported the weight of the pectoral increased by a striking 173.3-fold from 1-
to 35-day-old birds. To date, the underlying mechanism of such rapid growth in pigeon
pectoral muscles remains poorly understood. Muscle development is a complicated process
involving proliferation and differentiation of myogenic progenitor cells, and formation
of fused myotubes and myofibers (Yang et al., 2016). In birds, the number of myofibers
present in muscle is defined at hatching (Smith, 1963), and post-hatch skeletal muscle
growth is dependent on the accumulation of nuclei in myofibers and hypertrophy of
existing fibers (Li et al., 2012). More specifically, skeletal muscle growth is dictated by the
fusion of proliferating satellite cells to myofibers, ultimately causing an increase in DNA
content and protein synthetic capacity (Yin et al., 2014). This process is a highly regulated
multi-step process orchestrated by myogenic regulatory factors including Myf5, Myf6,
MyoD, and myogenin (Bryson-Richardson & Currie, 2008).

As a group of endogenous small non-coding RNAs, microRNAs (miRNAs) are crucial
post-transcriptional regulators of gene expression that usually bind to the 3′-UTR of
target mRNAs, leading to transcriptional repression or mRNA degradation (Dweep
et al., 2011). miRNAs participate in a wide range of biological processes, including
proliferation, differentiation, development, and disease pathogenesis (Li et al., 2011; Bartel,
2004). Notably, numerous studies have demonstrated that miRNAs are abundant in
skeletal muscles and exert essential functions in orchestrating gene regulation processes
during muscle development (Horak, Novak & Bienertova-Vasku, 2016). Dicer is involved
in miRNA maturation, which is greatly reduced by knocking down Dicer expression
(Hutvagner et al., 2001). In Dicer knock-out mutants in mice, skeletal muscle development
was heavily disrupted (O’Rourke et al., 2007). Additionally, miRNAs affect myogenesis
by regulation of myoblast differentiation and proliferation processes (Luo, Nie & Zhang,
2013). For example, miR-133 was implicated in myogenic differentiation through specific
modulation of MAML1 and nPTB expression (Luo, Nie & Zhang, 2013). miR-24 was
found to affect myoblast differentiation by regulating expression of MEF2D, Myf5, MyoD,
Myogenin and MHC (Sun et al., 2008). miR-143 was found to be involved in modulating
the proliferation and differentiation of bovine muscle satellite cells by targeting IGFBP5
(Zhang et al., 2017).

To date, miRNAs expressed in skeletal muscle have been identified in some species
(e.g., swine (Mai et al., 2016), sheep (Zhao et al., 2016), chicken (Li et al., 2011)), but have
not yet been reported in pigeons. Here, we explore miRNA expression profiles in pigeon
pectoral muscles over three stages, including 1 day, 28 day and 2 years old, to identify
miRNAs and determine their potential roles in pectoral muscle development. Our findings
will enhance understanding of the mechanisms underlying rapid development in squabs.

MATERIALS AND METHODS
Experimental animals and tissues collection
Thirty-six white king pigeons, including twelve parent pigeons and twenty-four squabs,
were obtained from the FengMao pigeon breeding farm (Mianyang, China). The pigeons
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were housed in individual wire-mesh cages. Pigeons squabs (1-day old) were fed by parents
with crop milk. Adult pigeons and 28-day-pigeons were fed with a mixed-grain diet.
Water and grit was given ad libtum. Twelve parent pigeons (six males and six females
at 2 years old) and twenty-four squabs (mixed sex) were grouped into three age stages
(twelve replicates for each stage): the age of 1 day (1d), 28 day (28d) and 2 years old (2yr).
The animal experiment was conducted in accordance with protocols approved by the
Institutional Animal Care and Use Committee of Sichuan Agricultural University (Permit
No. DKY-S20176908). Pigeons were first anesthetized with ether and then euthanized.
Subsequently, the bilateral pectorals of each pigeon were collected and weighed. From
these tissue samples, samples for small RNA sequencing were immediately frozen in liquid
nitrogen and stored at −80 ◦C until RNA extraction, while samples for hematoxylin and
eosin (H&E) staining were fixed in 10% neutral buffered formalin solution.

Histomorphological examination of pectorals tissue
Pectoral muscle tissues were fixed for 24 h. After being dehydrated in graded alcohol,
the specimens were embedded in paraffin and subjected to a microtome (Leica, Wetzlar,
Germany). Serial slices at 5 µm thickness were prepared and stained with H&E, and
examined by light microscopy.

RNA isolation and small RNA sequencing
Frozen pectoral muscle samples from nine male pigeons across three age stages (3 pigeons
for each stage) were used for total RNA extraction with Invitrogen TRIzol reagent (Thermo
Fisher Scientific, Waltham, MA, USA). The integrity and concentration of total RNA
samples was assessedwith anAgilent 2100 RNANano 6000Assay Kit (Agilent Technologies,
Santa Clara, CA, USA). A total RNA sample from each pigeon was individually used for
library construction. The library was prepared according to the method and process of
Small RNA Sample Preparation Kit (Illumina, RS-200-0048). For each library, small RNAs
ranging from 10–45 nt in length were separated from total RNA by polyacrylamide gel
electrophoresis and ligated with proprietary adaptors. The modified small RNA molecules
were then subjected to RT-PCR. After the library construction was completed, Qubit2.0 was
used for preliminary quantitative analysis, and the library was diluted to 1ng/µl. Insert size
was assessed using the Agilent Bioanalyzer 2100 system (Agilent Technologies, CA, USA),
and after the insert size consistent with expectations, qualified insert size was accurate
quantitative using Taqman fluorescence probe of AB Step One Plus Real-Time PCR system
(Library valid concentration>2nM). Finally, qualified libraries were sequenced by an
Illumina Hiseq 2500 platform (Illumina, Inc.; San Diego, CA, USA) as 50 bp single-end
reads.

Identification and differential expression analysis of miRNAs
MicroRNAs in pigeon pectoral muscles were identified as previously described (Wang
et al., 2020). Differential miRNA expression analysis was performed across the different
developmental stages by using EdgeR (http://www.omicshare.com/tools). In this study,
miRNAs were considered to be differentially expressed only when the value of log2Fold-
change was at least 1 or ≤ −1 and the false discovery rate (FDR) was less than 0.05.
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qPCR
Six randomly selected DE miRNAs were subjected to quantitative RT-PCR. Reverse-
transcription and PCR amplifications were respectively performed with Mir-X miRNA
First-Strand Synthesis Kit (TaKaRa, Otsu, Japan) and SYBR R© Premix Ex TaqTM II (TaKaRa,
Dalian, China) on a CFX96 Real-Time PCR Detection System (Bio-Rad, Hercules, CA,
USA) according to the manufacturer’s protocols. We used three technical replicates for
each sample. Expression levels of selected miRNAs were normalized against U6 snRNA.
Relative miRNA levels were calculated using the 2−11Ct method. Information on the
primer sequences used is available in Table S1.

miRNA expression patterns analysis
To obtain knowledge about expression patterns of DE miRNAs in pigeon pectoral muscles
during development, DE miRNAs were clustered with STEM software using the log
normalize data option, with all other settings at default (Ernst & Bar-Joseph, 2006).

Target genes prediction and enrichment analysis
The TargetScan algorithm was applied to predict the target genes of DE miRNAs (Garcia et
al., 2011). Gene Ontology (GO) and KEGG pathway enrichment analyses for DE miRNA
target genes were conducted using the R package ClusterProfiler (Yu et al., 2012) with
org.Gg.eg.db (Carlson, 2019).

Dual-luciferase reporter assay
Fragment of KLF3 (XM_005501266.3) containing the putative cli-miR-20b-5p binding
site (WT) or mutant binding site (MUT) were synthesized by Tsingke (Chengdu, Sichuan,
China) and cloned into the SacI and XhoI sites of the pmirGLO plasmid (Promega,
Madison, WI, USA) at the 3′ end of the firefly luciferase reporter gene. HeLa cells were
seeded in 96-well plates, and recombinant pmirGLO vectors with WT or MUT binding
sites were co-transfected into these cells with cli-miR-20b-5p mimics or NC mimics
(GenePharma, Shanghai, China) using Lipofectamine 3000 reagent. 48 h after transfection,
luciferase assay was performed using the Dual-Luciferase Reporter Assay System kit
(Promega) according to the manufacturer’s protocols.

Statistical analysis
Data are presented as the mean ± standard error of the mean (SEM). Statistical analysis
was performed using SPSS v.19.0 (IBM, Armonk, NY, USA). Differences between groups
were evaluated using ANOVA or Student’s t -test; p-values less than 0.05 were considered
statistically significant.

RESULTS
Phenotypic measurements
In this study, we investigated the weight of pectoral muscle and histomorphological
changes during pigeon development. The weight and index of pectoral muscle gradually
increased from the time squabs were 1 day old until the pigeons reached the age of 2 years
(Figs. 1A–1B). Furthermore, noticeable histomorphological differences existed in pectoral
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Figure 1 Pectoral muscle weight and H&E staining at the different age stages of pigeons. (A) Pectoral
muscle weight (n= 12). (B) Pectoral muscle index (n= 12). Asterisks (**) denote significant differences at
P ≤ 0.01. (C) H&E staining (1d) (400×). (D) H&E staining (28d) (400×). (E) H&E staining (2yr) (400×).

Full-size DOI: 10.7717/peerj.11438/fig-1

muscles among the different stages. As depicted in Fig. 1C, the connective tissue between
the muscle bundles occupies a large area. From 1 to 28 days of age, the diameter of squab
pectoral muscle cells increased gradually and most of the nuclei migrated to the cell
membrane edge. The muscle bundles were tightly arranged at 28 days of age (Fig. 1D),
while the spacing of muscle bundles conspicuously increased in adult pigeons (Fig. 1E).

Summary of sequencing data
To identify miRNAs in pectoral muscle during the development of pigeon squabs, we
constructed nine small RNA libraries and generated 125.99million raw reads (Table S2).The
average number of raw reads produced for each sample was 14.0 million. High-quality
clean reads were obtained after filtering adaptor sequences, contamination and low-quality
reads. The proportion of high-quality clean reads ranged from 82.77% to 97.16%. The
majority (75.26–93.23%) of the small RNAs in the nine libraries ranged from 21 nt to 24
nt in length (Fig. S1). Of these, the 22-nt category was the most abundant.

miRNA transcriptome profiles during pectoral muscle development
We identified 591 mature miRNAs corresponding to 396 pre-miRNAs in pigeon pectoral
muscle across the three age stages (Table 1). Among these miRNA candidates, 304 known
pigeon miRNAs corresponded to 169 known pigeon pre-miRNAs (Table S3). For the
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Table 1 PigeonmiRNAs identified in nine sRNA libraries.

Group (number of pre-miRNA/miRNA) 1d 28d 2yr Total

Pigeon known miRNAs 161/293 145/264 140/246 169/304
Pigeon conserved miRNAs 113/136 84/105 65/81 163/201
Pigeon putative novel miRNAs 39/57 34/48 30/37 64/86
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Figure 2 Top 10 highly abundant miRNAs in pigeonmuscle at different age stages. The dashed vertical
lines denote the cumulative percentage of the top 10 unique miRNAs. Seven miRNAs within the top 10 in
each stage are shared across all three stages and are connected by lines.

Full-size DOI: 10.7717/peerj.11438/fig-2

conserved pigeon miRNAs, 201 corresponded to 163 pre-miRNAs in two other avian
species (Gallus gallus and Taeniopygia guttata) and mammalian species (Table S4). 64
candidate pre-miRNAs yielded 86 putative novel miRNAs (Table S5).

To unveil potential functions of miRNAs in pigeon pectoral muscle during different
developmental stages, we ranked the miRNAs according to their expression abundances.
As depicted in Fig. 2, expression abundances of the top 10 unique miRNAs accounted for
80.44%–91.73% of the total counts in each stage. The unified set of the top 10 unique
miRNAs over three stages corresponded to 14 kinds of unique miRNAs, seven of which
(cli-miR-133a-3p, cli-miR-26-5p, cli-miR-148a-3p, cli-miR-30e-5p, cli-miR-143-3p, cli-
miR-30a-5p, and cli-miR-30d-5p) were shared by all stages.

Hierarchical clustering (HCL) analysis and principal component analysis (PCA) were
performed using RPM values of miRNAs in nine miRNA libraries (miRNAs with fewer
than 10 counted reads were removed). Results indicated that miRNA expression data in
pigeon pectoral muscle clustered into two groups according to developmental stages. The
largest cluster was composed of the younger squabs (1d and 28d) and separated from 2yr
pigeons (Fig. 3A), suggesting that developmental time contributes to discrepancies among
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Full-size DOI: 10.7717/peerj.11438/fig-3

miRNA transcriptomes in pigeon pectoral muscle. These dissimilarities were confirmed by
PCA (Fig. 3B) and Pearson’s correlation matrix (Fig. 3C).

Differential expression analysis
To identify the DE miRNAs among different age stages, differential expression analysis was
performed by taking | log2(fold change)| ≥ 1 and FDR < 0.05 as the cut-off values after
removing miRNAs with fewer than 10 counted reads. 189 DE miRNAs were screened out
during pigeon development, accounting for 31.98% of total identified miRNAs (Table S6).
Notably, three contrasts (1d vs. 28d, 1d vs. 2yr, 28d vs. 2yr) screened out 70, 168, and 70
DEmiRNAs, respectively (Fig. 4). To validate the small RNA sequencing results, 6 miRNAs
(miR-133a-3p, miR-181a-5p, miR-187-3p, miR-199-5p, miR-1a-3p, miR-22-3p) were
randomly selected to perform a qPCR assay. There was good correlation between qPCR
and sequencing data (Pearson r = 0.904 ± 0.095, n = 6, Fig. 5).
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Among DE miRNAs, there were 16 miRNAs overlapped between the comparisons of 1d
vs. 28d, 1d vs. 2yr and 28d vs. 2yr (Fig. 6A). Function analysis showed that the target genes
of 16 overlapped DE miRNAs mainly related with regulation of cellular macromolecule
biosynthetic process (GO:2000112), regulation of macromolecule biosynthetic process
(GO:0010556), regulation of RNA metabolic process (GO:0051252), MAPK signaling
pahway and regulation of actin cytoskeleton, etc (Figs. 6B–6C and Table S7).
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DE miRNA expression patterns and functional enrichment analysis
DE miRNA expression patterns in pectoral muscles during pigeon development was
assessed with STEM software. A single significant model profile (profile 0) was generated
from the 20 distinct expression patterns (Fig. 7A and Table S8). Profile 0 comprised 89
miRNAs and their expression levels progressively declined across all three age stages. It
is thought that miRNAs exert their function in a dose-dependent manner (Carlsbecker et
al., 2010); hence, only miRNAs with relatively high expression abundance (>1,000 read
counts) were employed for potential target gene prediction. As shown in Fig. 7B, the
target genes of miRNAs in profile 0 are implicated in the regulation of macromolecule
biosynthetic process (GO:0010556), tube development (GO:0035295), anatomical structure
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morphogenesis (GO:0009653), regulation of cellular biosynthetic process (GO:0031326),
and regulation of developmental process (GO:0050793) (Table S9). Additionally, KEGG
pathway enrichment analysis found miRNAs in profile 0 are involved in 22 pathways,
including MAPK, Wnt, mTOR, TGF-β, FoxO and Hedgehog signaling pathways (Fig. 7C
and Table S9). These results indicated that these miRNAs carry out an array of vital
functions during pectoral muscle development in pigeons.
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Target verification of miR-20b-5p
Based on bioinformatic analysis, we characterized the putative binding sites in the pigeon
KLF3 mRNA with miR-20b-5p (Fig. 8A), suggesting this miRNA likely interacted with
KLF3 mRNA and repressed its expression. To determine whether miR-20b-5p directly
targets the KLF3 mRNA, we performed luciferase assays using a dual-luciferase reporter
system containing either wild-type or mutated fragments of KLF3 mRNA. As shown in
Fig. 8B, cli-miR-20b-5p conspicuously decreased the relative luciferase activity of wild-type
reporter of KLF3 mRNA. In contrast, no notable decrease in activity was observed with the
mutant reporters, confirming that miR-20b-5p directly targets KLF3 mRNA.

DISCUSSION
Pigeon squabs are altrices and have an extraordinarily high growth rate. At 28 days post-
hatching, the body weight of pigeons is about 25 times that of newly hatched squabs. In
particular, pectoral muscle weight increases by a striking 173.3-fold from 1- to 35-day-old
birds (Gao et al., 2016). In the present study, we observed morphological change of the
pectoral muscle in pigeons and identified the involved miRNAs and their expression levels
at different age stages, including 1d, 28d, and 2yr, representing newly hatched, ‘‘weaning’’
and adult stages, respectively. We identified 591 mature miRNAs in the pectoral muscle
during development, and determined differentially expressed miRNAs. Some of these
miRNAs have been previously shown to regulate muscle development and regeneration,
including miR-133, miR-1, miR-21, miR-499, miR-26, miR-222, and miR-181 (Bai et al.,
2015; Luo, Nie & Zhang, 2013). Of these, miR-133 and miR-1 belong to the MyomiRs,
which play important roles in controlling muscle myosin content, myofiber identity
and muscle performance (Zuo et al., 2015). It was reported that gga-miR-133a-3p could
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positively regulate myogenic differentiation by inhibiting PRRX1 expression (Guo et al.,
2018). Our results indicated that miR-133a-3p exhibited the highest abundance in pigeon
pectoral muscle across all age stages. Intriguingly, miR-133a-3p is also the most abundant
miRNA in the longissimus dorsimuscle of pigs during early developmental stages (prenatal
embryonic day 90–30 day), but not in 180-day-old and 7-year-old pigs (Mai et al., 2016).
Furthermore, the relative abundance of miR-133a-3p increased gradually from 1d to
2yr. These results indicate that miR-133a-3p might be crucial for the development of
pigeon pectoral muscles. In addition to miR-133a-3p, another six miRNAs (cli-miR-26-5p,
cli-miR-148a-3p, cli-miR-30e-5p, cli-miR-143-3p, cli-miR-30a-5p, and cli-miR-30d-5p)
also ranked within the ten most highly expressed miRNAs in each stage and overlapped
in the three age stages. These highly expressed miRNAs are also closely linked with
myogenesis and muscle development. One previous study found overexpression of miR-
26a promotes myogenesis whereby induction of creatine kinase activity enhanced myoD
and myogenin mRNA expression levels (Wong & Tellam, 2008). miR-148a interacted with
a myogenesis inhibitor (Rho-associated coiled-coil containing protein kinase 1 [ROCK1]
gene), to promote myogenic differentiation (Zhang et al., 2012), whereas miR-30 family
miRNAs affectedmyoblast terminal differentiation by repressing expression of two negative
regulators of myogenesis (Smarcd2 and Snai2) (Guess et al., 2015).

In this study, we identified a total of 189 differentially expressed (DE) miRNAs in pigeon
pectoral muscle over three age stages. Of these, 89 (e.g., miR-20b-5p, miR-181a-3p) were
significantly clustered in a progressively decreasing expression profile. The target genes
of DE miRNAs (number of read counts >1000) in this profile were enriched mostly in
biosynthesis-related GO categories including ‘regulation of cellular biosynthetic processes’
and ‘regulation of macromolecule biosynthetic processes.’ It has been well established that
enhanced protein synthesis and reduced protein turnover result in muscle hypertrophy
(Johnson, Smith & Yong Chung, 2014), which our functional enrichment analysis results
concur with. IGF-I is a crucial modulator of muscle development, which has a direct
anabolic effect on muscle—for instance, increased protein production (Adams, 2000).
Our results indicated that some miRNAs with progressively decreasing expression (e.g.,
cli-miR-19a-3p, cli-miR-130c-3p, cli-miR-99-5p, and cli-miR-15c-5p) were predicted to
target pigeon IGF-I or IGF-I receptor mRNA, implying that these DE miRNAs might
regulate muscle development and growth by targeting IGF-I and IGF-1R. Furthermore,
KEGG pathway enrichment analysis revealed that the same target genes are involved in
MAPK, mTOR, Wnt, and TGF-β signaling pathways, which have been demonstrated to
be directly relevant to skeletal muscle development and growth (Girardi & Le Grand,
2018; Hatfield et al., 2015; Hua et al., 2016; Keren Tamir, & Bengal, 2006). For example,
TGF-β is a multifunctional regulator that modulates cell proliferation, differentiation,
morphogenesis, tissue homeostasis, and regeneration (Massague, 2012). A member of the
TGF-β family,myostatin, acts as a negative regulator of skeletalmuscle growth by inhibiting
activation and self-renewal of the satellite cells (McCroskery et al., 2003) Additionally, the
p38 MAPK pathway is activated during myogenesis. As a result, activated p38 signaling
affects the activities of transcription factors from the MyoD andMEF2 families, promoting
expression of muscle-specific genes (Keren Tamir, & Bengal, 2006). Notably, we found that
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cli-miR-20b-5p may be involved in regulation of MAPK signaling pathways by directly
targeting KLF3. KLF3, a member of the Krüppel-like factor (KLF) family of transcription
factors, is enriched at promoters of many muscle genes including muscle creatine kinase
(MCK), myosin heavy chain IIa, and skeletal α-actin; it is upregulated during skeletal
myocyte differentiation (Himeda et al., 2010). Serum response factor (SRF) is a widely
expressed transcription factor activated by the MAPK signaling pathway (Ohrnberger
et al., 2015). As a KLF3 interaction partner, SRF exhibits strong synergy with KLF3 in
trans-activating theMCK promoter that is expressed upon differentiation of myoblasts into
myotubes (Himeda et al., 2010). Taking these previous findings together with our luciferase
assay result, we speculate that progressive downregulation of miR-20b-5p potentially
alleviates inhibition of KLF3 expression, which in turn affect muscle development.

CONCLUSIONS
In summary, we identified a total of 304 known miRNAs, 201 conserved miRNAs, and
86 novel miRNAs in pigeon pectoral muscle at different age stages using small RNA
sequencing. The cli-miR-133a-3p had the highest abundance in pigeon pectorals across all
age stages. DE miRNAs with progressively decreasing expression were mainly involved in
the regulation of cellular biosynthetic process and enriched in MAPK and TGF-β signaling
pathways. Our findings expand the repertoire of pigeonmiRNAs andmay aid in elucidating
the mechanisms of rapid development in squabs.
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