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Abstract

Introduction: Recent evidence suggests a link between constitutional telomere length (TL) and cancer risk. Previous studies
have suggested that longer telomeres were associated with an increased risk of melanoma and larger size and number of
nevi. The goal of this study was to examine whether TL modified the risk of melanoma in melanoma-prone families with and
without CDKN2A germline mutations.

Materials and Methods: We measured TL in blood DNA in 119 cutaneous malignant melanoma (CMM) cases and 208
unaffected individuals. We also genotyped 13 tagging SNPs in TERT.

Results: We found that longer telomeres were associated with an increased risk of CMM (adjusted OR = 2.81, 95% CI = 1.02–
7.72, P = 0.04). The association of longer TL with CMM risk was seen in CDKN2A- cases but not in CDKN2A+ cases. Among
CMM cases, the presence of solar injury was associated with shorter telomeres (P = 0.002). One SNP in TERT, rs2735940, was
significantly associated with TL (P = 0.002) after Bonferroni correction.

Discussion: Our findings suggest that TL regulation could be variable by CDKN2A mutation status, sun exposure, and
pigmentation phenotype. Therefore, TL measurement alone may not be a good marker for predicting CMM risk.
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Introduction

Cutaneous malignant melanoma (CMM) is an etiologically

heterogeneous disease with genetic, host, environmental factors,

and their interactions contributing to its development. The main

environmental risk factor is ultraviolet radiation (UVR), which

may influence melanoma risk through multiple mechanisms, such

as directly causing DNA damage, influencing the expression of

apoptosis-related molecules and inducing immunosuppression. [1]

Host phenotypic factors such as having a large number of benign

and dysplastic nevi (DN), blond or red hair color, light eye color,

freckling, and poor tanning ability have also been associated with

increased melanoma risk. [2] Approximately 10% of CMM cases

occur in a familial setting. [3] To date, two high-risk melanoma

susceptibility genes, CDKN2A on chromosome 9p21 and CDK4 on

12q14, have been identified. Germline mutations of the CDKN2A

gene have been described in approximately 20% of familial

melanoma kindreds. [4–5] Mutations of CDK4 are rare, and only a

few families worldwide have been found to harbor mutations.

Although germline CDKN2A mutations are associated with a high

risk of CMM, the penetrance of this gene is incomplete and varies

by age and geographical location. [6] Additionally, phenotypic

manifestations such as age at diagnosis, presence/number of DN,

number of melanomas, and cosegregation of pancreatic cancer

vary significantly among mutation carriers even within a single
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family. These findings suggest that other factors modify the effect

of CDKN2A.

Telomeres are located at the ends of chromosomes, and consist

of tandem nucleotide repeats (TTAGGG)n, the telomerase

enzyme, the shelterin protein complex, and many other accessory

proteins. They maintain genomic stability and chromosomal

integrity by protecting chromosome ends from degradation, end-

to-end fusion, and atypical recombination. [7] Telomeres shorten

with each cell division, due to ineffective replication of the 39 end

of DNA. [8] The telomerase enzyme complex consists of the

reverse transcriptase, TERT, and additional proteins which are

essential to maintain telomere length (TL). Telomerase is

upregulated in the majority of cancers [9] and in the immortal-

ization of skin keratinocytes. [10] Previous studies have shown that

genetic variation in TERT was associated with melanoma risk.

[11] Recently, a germline mutation in the promoter of TERT was

identified in a melanoma-prone family that caused a 2–4 fold

increase of TERT transcription. [12] Multiple mutations in the

TERT promoter were also found in primary melanoma tissues

with high frequency (33%),[12–13] suggesting that the dysregu-

lation of TERT may play an important role in the genesis of

melanoma.

TL is influenced by multiple factors, including both genetic and

environmental. A twin study indicated 78% heritability for mean

TL in blood [14], and subsequent studies mapped several

candidate loci for TL using linkage and genome-wide association

analyses. [15–20] Telomeres are highly sensitive to damage by

oxidative stress, alkylation, and UVR, which can cause telomere

shortening without DNA replication by inducing telomeric

double-strand breaks at high frequency. [21] Epidemiologic

studies examining the association between constitutional TL and

cancer risk have generated inconsistent results. Although short-

ened TL has been associated with increased risk of a number of

cancers such as bladder, gastric, and head and neck [22],

associations between longer TL and increased risk were reported

for other cancer types including Non-Hodgkin Lymphoma [23],

Hepatitis B Virus-Related Hepatocellular Carcinoma [24], and

melanoma. [25–26] Similarly, a previous study also found that

longer telomeres were associated with larger size and number of

melanocyte nevi. [27] These findings suggest that the association

of TL with cancer risk is complex and cancer-type specific, which

can be tumor suppressing or promoting depending on the host or

cell type’s susceptibility to genetic and environmental exposures.

The goal of our study was to examine whether TL modified the

risk of melanoma in melanoma-prone families in which the disease

etiology involved major genetic factors, at-risk host pigmentation

phenotypes, and environmental exposures.

Materials and Methods

Study Population
The details of this family study have been previously described.

[28–29] In brief, US families with at least two living first degree

relatives with a history of invasive melanoma were ascertained

through health care professionals or self-referrals. All family

members willing to participate in the study underwent a full-body

skin examination for phenotypes (type and total number of nevi,

extent of freckling, skin complexion, evidence for solar injury, and

hair and eye color) and completed risk factor questionnaires for

sun-related exposures such as tanning ability. All diagnoses of

melanoma were confirmed by histologic review of pathologic

material, pathology reports, or death certificates for deceased

CMM cases. The study was approved by the National Cancer

Institute Clinical Center Institutional Review Board and conduct-

ed according to the Declaration of Helsinki. Informed consent was

obtained from all participants.

The current study was based on 53 families (23 families

segregating CDKN2A mutations [CDKN2A+] and 30 families

without known mutations [CDKN2A-]). All study participants were

Caucasian. Two controls were selected for each case. The study

population for genotyping was comprised of 183 CMM cases and

379 unaffected individuals. TL data was available from a subset of

individuals (119 CMM cases and 208 unaffected individuals). The

unaffected individuals included 144 unaffected family members

and 64 genetically unrelated spouses. Demographic and CMM

risk factors did not differ significantly among subjects who were

included and not included in the TL analysis (data not shown).

Telomere Length Measurement
DNA was extracted from whole blood (N = 267) whenever

available and from EBV-transformed lymphocytes (N = 60) when

whole blood DNA was not available. Quantitative PCR was used

to measure telomere length. The average, relative TL was

estimated from the ratio of the telomere (T) repeat copy number

to a single gene copy number (36B4 gene; S), expressed as the T/S

ratio for each sample using standard curves. All samples for both

the telomeres and single-copy gene reactions were performed in

triplicate. Three blind replicate samples were interspersed with the

samples to assess inter-plate variability. The coefficients of

variation (CVs) within triplicates of the telomere assay, single-

gene assay, and T/S ratio were 0.87%, 0.65%, and 6.67%

respectively. The inter-assay CVs were 0.98%, 1.62%, and 7.92%

respectively.

SNP Genotyping
13 tag SNPs in TERT were genotyped at the NCI Core

Genotyping Facility (Advanced Technology Center, Gaithersburg,

MD; http://snp500cancer.nci.nih.gov) using a custom-designed

iSelect Infinium assay (Illumina, www.illumina.com), which

included a total of 27,904 tag SNPs that were selected for a

variety of cancers. Tag SNPs were selected using a minimum

minor allele frequency (MAF) criterion of MAF$5% based upon

HapMap data for Caucasian (CEU) and Yoruban (YRI) samples

using Tagzilla, software that implements a tagging algorithm based

on pairwise linkage disequilibrium. [30] SNPs within the region

spanning 20 kb 59 of the start of transcription (exon 1) to 10 kb 39

of the end of the last exon were grouped using a binning threshold

of r2.0.8 to define a gene/region. When there were multiple

transcripts available for genes, only the primary transcript was

assessed. SNPs with low completion (,90%) and low concordance

(,95%) were excluded. Among 586 genotyped samples, 20 were

excluded due to either low completion (,90%, n = 12) or

Mendelian inconsistencies (n = 8). Four individuals were further

removed from all analyses due to missing CMM status.

Statistical Analysis
The Wilcoxon-Mann-Whitney test was used to assess whether

TL differed significantly between spouse controls and unaffected

family members. TL was not significantly different in the two

control groups (P = 0.63), therefore we combined all controls in the

analyses. The Wilcoxon-Mann-Whitney test was used to assess

whether TL differed significantly between DNA from whole blood

and DNA from EBV-transformed lymphocytes. TL did not differ

significantly by DNA source in unaffected individuals (P = 0.47) or

in CMM cases (P = 0.09), however we still adjusted for DNA

source in all regression models. We also performed a sensitivity

analysis by restricting the evaluation to individuals whose DNA

was extracted from whole blood. Spearman correlation was used
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Table 1. Distribution of age, gender, CDKN2A, pigmentation phenotype, and sun exposure variables in 53 melanoma-prone
families by CMM status.

Unaffected Individuals (n = 208) CMM Cases (n = 119)

N % N % P1

Age at Blood Draw

#30 41 19.7 16 13.4

30–40 49 23.6 25 21

40–50 46 22.1 34 28.6

50–60 40 19.2 22 18.5

60+ 32 15.4 22 18.5 0.45

Gender

Female 121 58.2 59 49.6

Male 87 41.8 60 50.4 0.13

CDKN2A

Non-Carrier 178 85.6 59 49.6

Carrier 30 14.4 60 50.4 ,.0001

Moles

0–24 58 29.4 7 6.4

25–49 37 18.8 14 12.8

50–99 53 26.9 17 15.6

100+ 49 24.9 71 65.1 ,.0001

Solar injury

None/mild 133 67.2 54 50.5

Moderate 42 21.2 31 29

Severe 23 11.6 22 20.6 0.01

MC1R

Wild type 35 24.8 7 7.2

1 nonsynonymous variant 63 44.7 46 47.4

2 nonsynonymous variants 43 30.5 44 45.4 0.001

Tanning ability

Tan/Little burn 94 51.9 46 46.9

Burn/Little tan 87 48.1 52 53.1 0.43

Skin type

Dark/medium 64 32.7 18 16.8

Pale/fair 132 67.3 89 83.2 0.003

Eye color

Black/brown 54 27.8 25 22.9

Hazel 44 22.7 28 25.7

Green/gray 16 8.2 11 10.1

Blue 80 41.2 45 41.3 0.76

Hair color

Black/brown 93 47.4 50 45.9

Blond brown/light brown 56 28.6 32 29.4

Blond 28 14.3 11 10.1

Red 19 9.7 16 14.7 0.47

Freckles

None/few 67 40.6 18 20

Moderate 40 24.2 29 32.2

Many 58 35.2 43 47.8 0.004

1P-values were obtained by comparing CMM cases to unaffected individuals using the chi-square test.
doi:10.1371/journal.pone.0071121.t001
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to evaluate the correlation between TL and age at blood draw,

both as continuous variables.

We defined tertiles of TL distribution using cut-points based on

the distribution among all unaffected individuals (Short: ,0.53;

Medium: 0.53–0.72; Long: .0.72) and evaluated the associations

between TL and CMM risk factors using a generalized estimating

equation approach that accounts for familial correlation in the

variance computation, age at blood draw, gender, and DNA

source. Conditional logistic regression was used to obtain the odds

ratios (OR) and 95% confidence intervals (CIs) for the association

between CMM risk and TL, with the shortest telomere tertile used

as the reference group. We included age at blood draw, gender,

and DNA source in the basic model, and further adjusted for

germline CDKN2A mutation status, number of nevi, solar injury,

and MC1R (as a surrogate for pigmentation characteristics) [28] in

the final model. Conditioning on families was used to account for

family ascertainment and differences in disease prevalence among

families. While this approach ignores residual familial correlations

among family members, it gives estimates that are attenuated

toward the null and is thus conservative [31].

We used conditional logistic regression models to estimate the

trend p-value for the association between CMM and each TERT

SNP, using codominant coding for genotypes (0,1,2) with the

homozygote of the common allele as the reference group, and

adjusted for age at exam/diagnosis and gender. The associations

between TL and genotypes were assessed using a generalized

estimating equations (GEE) approach to account for correlation

among family members [32], adjusted for age at blood draw,

gender, and CMM. ORs and 95% CIs were computed using

cumulative logistic regression for ordinal outcomes (PROC

GENMOD, SAS 9.1). The working correlation matrix was the

independent correlation matrix. We used a Bonferroni correction

to account for the number of SNPs and outcomes (CMM and TL)

tested, and thus used P,0.05/26 (0.002) to define statistical

significance. All statistical tests were two-sided and data was

analyzed using SAS version 9.1 (SAS Institute, Cary, NC).

Results

In total, there were 119 CMM cases and 208 unaffected

individuals included in the TL analysis. As expected, CDKN2A

mutations, pale or fair skin type, increased number of nevi,

increased number of freckles, solar injury, and MC1R variants

were significantly associated with CMM risk in these families

(Table 1).

As expected, TL was negatively correlated with age at blood

draw among both unaffected individuals (r = 20.14) and CMM

cases (r = 20.12) (Figure 1). Among unaffected individuals, TL did

not differ significantly by any CMM risk factor examined (Table 2).

Among CMM cases, shorter telomeres were significantly associ-

ated with the presence of moderate or severe solar injury

(P = 0.017) after adjusting for age at blood draw, gender, and

DNA source (whole blood or EBV-transformed lymphocytes).

Longer telomeres appeared to be associated with increased

number of moles in both unaffected and CMM individuals,

however, the association was not significant in either phenotype

group after the covariate adjustment.

Although solar injury was more common among CMM cases

than unaffected individuals, CMM cases had longer telomeres

(36.1% in the longest tertile) compared to unaffected individuals

(33.2%) (Table 3). After adjustment for age at blood draw, gender,

DNA source, CDKN2A carrier status, number of nevi, solar injury,

and MC1R, individuals in the longest TL category had close to a 3-

fold increase in CMM risk compared to individuals in the shortest

TL category (OR = 2.81, 95% CI = 1.02–7.72, P = 0.04) (Table 3).

When CDKN2A+ and CDKN2A- cases were separately compared to

unaffected individuals, we found that the association of longer TL

with CMM risk was seen in CDKN2A- cases (OR = 3.34, 95%

CI = 1.12–10.00, P = 0.03; comparing longest to shortest TL) but

not in CDKN2A+ cases (OR = 1.00, 95% CI = 0.42–2.38, P = 0.99)

(Table 4).

The association between CMM and TL did not change

significantly when we restricted the analysis to individuals whose

DNA was drawn from whole blood (age and gender adjusted

OR = 1.83, 95% CI = 0.85–3.90, P = 0.12). Similarly, results did

not vary significantly by age at blood draw (,50 vs. $50 years),

time of blood draw in relation to CMM diagnosis (before vs. after

CMM diagnosis), age at CMM diagnosis (,40 vs. $40 years), or

number of melanomas (single vs. multiple) (data not shown).

We examined whether genetic variants in TERT were

associated with CMM risk and TL in blood. This analysis

included 562 individuals (183 CMM cases and 379 unaffected

individuals). Among the 13 tag SNPs genotyped in this analysis,

one SNP, rs2735940, was significantly associated with TL

(P = 0.002) after Bonferroni correction. Another SNP,

Figure 1. Correlations between relative telomere length and
age at blood draw in unaffected individuals and CMM cases. P
values were obtained from the Spearman correlation test.
doi:10.1371/journal.pone.0071121.g001
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rs10078761, showed suggestive association with CMM status

(P = 0.003).

Discussion

In this exploratory analysis, we evaluated TL in blood in

relation to CMM, CDKN2A germline mutation status, and CMM

risk factors in 53 melanoma-prone families with and without

CDKN2A mutations. Consistent with a previous report that found

that longer telomeres were associated with the development of

sporadic CMM [26], we found that longer telomeres were also

associated with increased CMM risk in melanoma families,

although the association was only seen in cases without CDKN2A

mutations.

Although extremely short telomeres cause genomic instability

and therefore increase cancer risk, senescence induced by telomere

Table 2. Distribution of age, gender, CDKN2A, pigmentation phenotype, and sun exposure variables in 53 melanoma-prone
families by telomere length, stratified by CMM status.

Unaffected Individuals CMM Cases

Short (n = 70) Medium (n = 69) Long (n = 69) Short (n = 34) Medium (n = 42) Long (n = 43)

N % N % N % P1 N % N % N % P1

Age at blood draw

#50 42 30.9 50 36.8 44 32.4 16 21.3 26 34.7 33 44

50+ 28 38.9 19 26.4 25 34.7 0.009 18 40.9 16 36.4 10 22.7 0.03

Gender

Female 38 31.4 45 37.2 38 31.4 14 23.7 21 35.6 24 40.7

Male 32 36.8 24 27.6 31 35.6 0.77 20 33.3 21 35 19 31.7 0.2

CDKN2A

Non-Carrier 60 33.7 58 32.6 60 33.7 16 27.1 19 32.2 24 40.7

Carrier 10 33.3 11 36.7 9 30 0.37 18 30 23 38.3 19 31.7 0.09

Moles

0–49 34 35.8 34 35.8 27 28.4 6 28.6 8 38.1 7 33.3

50+ 31 30.4 33 32.4 38 37.3 0.83 22 25 31 35.2 35 39.8 0.61

Solar injury

None/mild 43 32.3 47 35.3 43 32.3 6 11.1 22 40.7 26 48.1

Moderate/Severe 22 33.8 20 30.8 23 35.4 0.19 22 41.5 16 30.2 15 28.3 0.017

MC1R

Wild type/1 variant 30 30.6 38 38.8 30 30.6 11 20.8 21 39.6 21 39.6

2 variants 16 37.2 8 18.6 19 44.2 0.61 14 31.8 15 34.1 15 34.1 0.51

Tanning ability

Tan/little burn 30 31.9 37 39.4 27 28.7 10 21.7 15 32.6 21 45.7

Burn/little tan 28 32.2 28 32.2 31 35.6 0.73 17 32.7 19 36.5 16 30.8 0.08

Skin type

Dark/medium 23 35.9 26 40.6 15 23.4 5 27.8 6 33.3 7 38.9

Pale/fair 40 30.3 41 31.1 51 38.6 0.15 23 25.8 32 36 34 38.2 0.97

Eye color

Black/brown 15 27.8 24 44.4 15 27.8 9 36 4 16 12 48

Hazel/green/ 49 35 42 30 49 35 0.89 19 22.6 35 41.7 30 35.7 0.65

gray/blue

Hair color

Black/brown 27 29 35 37.6 31 33.3 11 22 14 28 25 50

Blond brown/light 28 33.3 29 34.5 27 32.1 0.58 11 25.6 18 41.9 14 32.6 0.26

brown/blond

Red 9 47.4 3 15.8 7 36.8 0.5 6 37.5 7 43.8 3 18.8 0.09

Freckles

None/few 21 31.3 29 43.3 17 25.4 3 16.7 5 27.8 10 55.6

Moderate/many 33 33.7 27 27.6 38 38.8 0.06 18 25 28 38.9 26 36.1 0.3

1P-values were obtained by comparing individuals in the telomere tertiles using a generalized estimating equation accounting for familial correlation in the variance
and adjusting for age at blood draw, gender, and DNA source.
Short: ,0.53; Medium: 0.53–0.72; Long: .0.72.
doi:10.1371/journal.pone.0071121.t002
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shortening places a limit on cell proliferation and is believed to

provide a barrier for cancer growth [33]. On the other hand,

longer telomeres, which may result from upregulated telomerase

when cells reach a critically short TL but do not undergo

senescence or apoptosis, may be associated with increased

proliferative potential and cancer susceptibility. Constitutive

telomerase expression in TERT-deficient transgenic mouse models

resulted in increased incidence of epidermal tumors and skin

wound healing [34]. Therefore, longer telomeres, in combination

with decreased cell senescence, may greatly increase the prolifer-

ation potential of melanocytes, which leads to an increased

propensity for nevi and melanoma. Consistent with a previous

study which found that longer telomeres were associated with

larger size and number of nevi [27], we found that longer

telomeres were associated with an increased number of moles.

Interestingly, the association between longer TL and CMM risk

was seen in CDKN2A- cases but not in CDKN2A+ cases. One

possible reason is that melanomas in individuals with CDKN2A

mutations may develop from telomere-independent mechanisms.

Alternatively, the uncontrolled cell proliferation coupled with

impaired DNA repair caused by CDKN2A mutations may lead to

genomic instability and telomere shortening. CDKN2A-deficient

mice exhibited increased levels of intracellular reactive oxygen

species (ROS) in response to UVR [35] and demonstrated reduced

ability to process UVR-induced DNA damage [36]. In prolifer-

ating cells, telomere DNA can be lost due to the inability of the

DNA replication machinery to duplicate the linear DNA ends.

Consistent with this hypothesis, a recent study demonstrated that

telomere length shortening was significantly associated with

hypermethylation of CDKN2A promoters in breast cancer [37].

Due to a high content of guanines, telomeres are especially

sensitive to damage by oxidative stress [38]. Although the exact

mechanism is unknown, telomere shortening is likely caused by

oxidative DNA damage and deficiency in DNA repair in telomeric

regions [39]. Our observation that moderate or severe solar injury

was associated with shorter TL is in line with these findings. It is

not clear why the association only occurred among CMM cases

but not in unaffected individuals. One possibility is that solar

injury reflected the interaction of sun exposure and sun sensitivity,

and CMM cases are more likely to have sensitive skin types and be

deficient in DNA repair capacities.

Some, but not all of our findings are consistent with those of

Bodelon et al. based on a Mediterranean population [40]. In that

study TL was also significantly associated with age but not with

other CMM risk factors among unaffected individuals [40], but in

contrast to our results, TL was not associated with CMM risk. The

inconsistency is likely due to the differences in the populations, sun

exposure, pigmentation characteristics, family history of melano-

ma, and melanoma phenotypes (usually diagnosed at early-stage in

US because of more frequent screening) between the Mediterra-

nean and American populations.

In our study, one SNP in TERT (rs2735940) was significantly

associated with TL (P = 0.002). Another SNP (rs4635969) in

TERT-CLPTM1L, a region that was previously associated with

multiple cancers including melanoma [41], showed a suggestive

association with TL (P = 0.005). A common polymorphism

(rs2853669) in TERT, which was in complete allelic linkage with

the recently identified germline mutation in the promoter of

TERT, was unfortunately not genotyped in our study and not in

LD with any of our genotypted SNPs.

Our study was exploratory due to the limited number of

melanoma cases analyzed. In addition, in a small subset of

individuals DNA was extracted from EBV-transformed lympho-

cytes, which could potentially cause bias in TL measurement.

Table 3. Association of telomere length with melanoma in 53 melanoma-prone families1.

Telomere Unaffected (n = 208) CMM (n = 119) Model 13 Model 24 Model 35

Tertile2 N % N % OR 95% CI P OR 95% CI P OR 95% CI P

1st (short) 70 33.7 34 28.6 Ref Ref Ref

2nd (medium) 69 33.2 42 35.3 1.39 0.74–2.62 0.31 2.42 1.02–5.76 0.05 2.03 0.76–5.44 0.16

3rd (long) 69 33.2 43 36.1 1.38 0.73–2.63 0.33 2.89 1.20–6.94 0.02 2.81 1.02–7.72 0.04

1ORs and P-values were obtained from conditional logistic regression with melanoma as the outcome variable.
2Telomere tertile: Short: ,0.53; Medium: 0.53–0.72; Long: .0.72.
3Model 1: age at blood draw, gender, and DNA source adjustment.
4Model 2: age at blood draw, gender, DNA source, CDKN2A, and solar injury adjustment.
5Model 2: age at blood draw, gender, DNA source, CDKN2A, moles, solar injury, and MC1R adjustment.
doi:10.1371/journal.pone.0071121.t003

Table 4. Association of telomere length with melanoma in 53 melanoma-prone families, stratified by CDKN2A status among
cases1.

Telomere Unaffected (n = 208) CDKN2A+ CMM Cases (n = 60) CDKN2A- CMM Cases (n = 59)

Tertile2 N % N % OR 95% CI P N % OR 95% CI P

1st (short) 70 33.7 18 30 Ref 16 27.1 Ref

2nd (medium) 69 33.2 23 38.3 1.4 0.58–3.36 0.46 19 32.2 2.45 0.81–7.44 0.11

3rd (long) 69 33.2 19 31.7 1 0.42–2.38 0.99 24 40.7 3.34 1.12–10.00 0.03

1ORs and P-values were obtained from conditional logistic regression with melanoma as the outcome variable. Age at blood draw, gender, DNA source, and solar injury
adjustment.
2Telomere tertile: Short: ,0.53; Medium: 0.53–0.72; Long: .0.72.
doi:10.1371/journal.pone.0071121.t004
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However, we adjusted the analysis for DNA source in our logistic

regression models. We also restricted the analysis to individuals

with DNA extracted from whole blood and the results showed

similar patterns. Another limitation was that our families were

ascertained primarily through self- or physician-referral, and thus

findings may not be generalizable to other familial melanoma

sample sets or to sporadic melanoma patients. The strengths of our

study include a rich collection of genetic, exposure, clinical, and

pigmentation data in melanoma-prone families with and without

known CDKN2A mutations. We confirmed results from previous

studies which found that longer telomeres were associated with

CMM risk. Furthermore, our findings suggest that TL in CMM

cases might be influenced by multiple mechanisms with opposing

directions. Genetic background associated with proliferation

potential and at-risk pigmentation phenotypes may predispose

CMM cases to longer TL, whereas CDKN2A mutations and sun

exposure may cause telomere shortening in these individuals.

Therefore, using TL alone as a potential biomarker to predict

CMM risk may oversimplify the complex role and regulation of

telomeres.
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